Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Speaker Deck
PRO
Sign in
Sign up for free
Rage Against The Learning of the Machine
Errazudin Ishak
August 27, 2017
Technology
0
120
Rage Against The Learning of the Machine
Talk presented at Pycon APAC 2017, Kuala Lumpur, Malaysia.
Errazudin Ishak
August 27, 2017
Tweet
Share
More Decks by Errazudin Ishak
See All by Errazudin Ishak
The Spock Guide To Think Out of The Vagrant Box
errazudin
0
100
Develop and Deploy your Mobile API with Ruby on Rails, Nginx, Unicorn and Capistrano
errazudin
1
560
Rediscover Speed with Redis(and PHP)
errazudin
1
220
Other Decks in Technology
See All in Technology
AWSで2022に打破されたアンチパターン(2022.09まで)
armaniacs
1
210
持続可能な社内研修の運営に向けて
watany
7
1.8k
2022年秋の最新GuardDuty攻略ガイド〜裏技封じとマルウェアスキャン〜
cmusudakeisuke
1
1.6k
Power Virtual Agents について
miyakemito
0
270
Python 3.11: What changed in math?
hamukazu
0
230
AWSにテストデータをかっこよく投入したいのでAWS SDK for pandasと向き合うことにした
watany
0
560
Python使いのためのスポーツデータ解析のきほん - PySparkとメジャーリーグデータを添えて #PyConJP 2022
shinyorke
2
1.9k
React Nativeを中心にTypeScriptでApplication開発をできるようにアーキテクチャ変更した話
savemedical
1
210
Oracle Cloud Infrastructureデータベース・クラウド:各バージョンのサポート期間
oracle4engineer
PRO
1
1.1k
Vue.js でアクセシブルなコンポーネントをつくるために / To make accessible components in Vue.js
yamanoku
0
820
情報処理応用B第03回 /advancedB03
kfujita
0
250
ITエンジニアとしてのこれからの働き方を考える(ITのプロ46代表 三好 康之 氏)
jinsights
0
260
Featured
See All Featured
Designing for humans not robots
tammielis
244
24k
What’s in a name? Adding method to the madness
productmarketing
11
1.7k
JazzCon 2018 Closing Keynote - Leadership for the Reluctant Leader
reverentgeek
174
8.8k
Product Roadmaps are Hard
iamctodd
35
7.3k
Designing Dashboards & Data Visualisations in Web Apps
destraynor
223
49k
"I'm Feeling Lucky" - Building Great Search Experiences for Today's Users (#IAC19)
danielanewman
214
20k
Building Flexible Design Systems
yeseniaperezcruz
311
34k
The Language of Interfaces
destraynor
148
21k
Why Our Code Smells
bkeepers
PRO
326
55k
Cheating the UX When There Is Nothing More to Optimize - PixelPioneers
stephaniewalter
270
12k
Pencils Down: Stop Designing & Start Developing
hursman
113
9.9k
Testing 201, or: Great Expectations
jmmastey
23
5.6k
Transcript
RAGE AGAINST THE LEARNING OF THE MACHINE ERRAZUDIN ISHAK
PYCON APAC 2017
AGENDA ABOUT ME WHAT ON EARTH FOR WHAT REASON SO
HOW TO DO THAT SUMMARY PYCON APAC 2017
ABOUT ME Data Masseuse Solutions Architect DevOps Freak Bitcoin Farmer
:) PYCON APAC 2017
I WAS HERE 2009: foss.my, MyGOSSCON 2010: PHP North West
(UK), Entp. PHP Techtalk, BarcampKL, MOSC.my, MyGOSSCON 2011: Wordpress Conf. Asia, Joomla! Day KL, MOSC.my, OWASP Day KL PYCON APAC 2017
I WAS HERE 2012: OWASP AppSec APAC (Sydney), MOSC.my 2013:
OSDC (Auckland), MOSC.my 2016: SCM Workshop UMP PYCON APAC 2017
WHAT ON EARTH? PYCON APAC 2017
WHAT ON EARTH? PYCON APAC 2017 ML
–Tom M.Mitchell, CMU “A computer program is said to learn
from experience E with respect to some class of tasks T and performance measure P if its performance at tasks in T, as measured by P, improves with experience E.” TYPICAL EXPLANATION…..
WHAT ON EARTH? PYCON APAC 2017 Source : NVIDIA
FOR WHAT REASON PYCON APAC 2017 “…it is now the
golden age of Machine Learning” –Random guy “… because big guys (Google and Facebook) work on it” –Another random guy
FOR WHAT REASON PYCON APAC 2017
FOR WHAT REASON Web Search & Recommendation Engines Finance :
Stock, Fraud, Credit Check Healthcare : Drug Discovery, Computational Biology Text, Speech, Object Recognition Space, Astronomy PYCON APAC 2017
FOR WHAT REASON PYCON APAC 2017 “Drawing lines through data”
FOR WHAT REASON PYCON APAC 2017
FOR WHAT REASON PYCON APAC 2017 Classification : “Draw lines
to separate data” Source : ML Berkeley Labelled Data Decision Boundary (D.B.) More complicated algo, More complicated D.B. FOR WHAT REASON
FOR WHAT REASON PYCON APAC 2017 Regression : “Draw lines
to describe data” Source : ML Berkeley Labelled Data Probability Predictor FOR WHAT REASON
FOR WHAT REASON PYCON APAC 2017 Source : Brown EDU
SO HOW TO DO THAT Formulate the problem Design the
solution Bring up the data Technology to master Build ML model Evaluate, fine tune the quality Package it nicely PYCON APAC 2017
FORMULATE YOUR PROBLEM What : Describe it Why : Benefits
How : The flow (step-by-step) PYCON APAC 2017
BRING UP THE DATA Prepare (the right) Data Identify Outliers
Data Pre-Processing PYCON APAC 2017
TECHNOLOGIES “Right tools for the right job” PYCON APAC 2017
BUILD THE MODEL PYCON APAC 2017 The most challenging part
Build, Train, Test, Repeat
FINE TUNING Test harness Measuring the performance Datasets (Test, Training)
PYCON APAC 2017
FINE TUNING “If You Knew Which Algorithm or Algorithm Configuration
To Use, You Would Not Need To Use Machine Learning” - Jason Brownlee, PhD PYCON APAC 2017
PRESENTATION PYCON APAC 2017
SAMPLE #1 PYCON APAC 2017
FORMULATE YOUR PROBLEM PYCON APAC 2017 Toyota’s stock price on
January 6th 2017
FORMULATE YOUR PROBLEM PYCON APAC 2017 Ford’s stock price on
January 4th 2017
DESIGN THE SOLUTION PYCON APAC 2017 trump2cash Python Google Cloud
Natural Language API Wikidata Query Service Tradeking API
BUILD (PLAY WITH) THE MODEL PYCON APAC 2017
PRESENTATION PYCON APAC 2017
PRESENTATION PYCON APAC 2017
SAMPLE #2 : SPAM DETECTION PYCON APAC 2017 ML problem:
text classification Algorithms: naive bayes, linear classifiers, tree classifiers, all-you-want classifiers Technologies: sklearn, nltk, scrapy Data: sms spam dataset, e-mail spam dataset , youtube comments spam dataset
SUMMARY PYCON APAC 2017 Source : Google Cloud Next 2017
THANK YOU We’re Hiring errazudin.ishak@gmail.com PYCON APAC 2017