Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Rage Against The Learning of the Machine
Search
Errazudin Ishak
August 27, 2017
Technology
0
210
Rage Against The Learning of the Machine
Talk presented at Pycon APAC 2017, Kuala Lumpur, Malaysia.
Errazudin Ishak
August 27, 2017
Tweet
Share
More Decks by Errazudin Ishak
See All by Errazudin Ishak
The Spock Guide To Think Out of The Vagrant Box
errazudin
0
110
Develop and Deploy your Mobile API with Ruby on Rails, Nginx, Unicorn and Capistrano
errazudin
1
610
Rediscover Speed with Redis(and PHP)
errazudin
1
290
Other Decks in Technology
See All in Technology
AIAgentの限界を超え、 現場を動かすWorkflowAgentの設計と実践
miyatakoji
1
170
いまからでも遅くない!SSL/TLS証明書超入門(It's not too late to start! SSL/TLS Certificates: The Absolute Beginner's Guide)
norimuraz
0
200
成長自己責任時代のあるきかた/How to navigate the era of personal responsibility for growth
kwappa
4
320
スタートアップにおけるこれからの「データ整備」
shomaekawa
2
420
BI ツールはもういらない?Amazon RedShift & MCP Server で試みる新しいデータ分析アプローチ
cdataj
0
110
GoでもGUIアプリを作りたい!
kworkdev
PRO
0
140
HR Force における DWH の併用事例 ~ サービス基盤としての BigQuery / 分析基盤としての Snowflake ~@Cross Data Platforms Meetup #2「BigQueryと愉快な仲間たち」
ryo_suzuki
0
130
Codexとも仲良く。CodeRabbit CLIの紹介
moongift
PRO
0
190
「AI駆動PO」を考えてみる - 作る速さから価値のスループットへ:検査・適応で未来を開発 / AI-driven product owner. scrummat2025
yosuke_nagai
3
830
『バイトル』CTOが語る! AIネイティブ世代と切り拓くモノづくり組織
dip_tech
PRO
1
120
『OCI で学ぶクラウドネイティブ 実践 × 理論ガイド』 書籍概要
oracle4engineer
PRO
3
210
Wasmのエコシステムを使った ツール作成方法
askua
0
140
Featured
See All Featured
Building Applications with DynamoDB
mza
96
6.7k
KATA
mclloyd
32
15k
"I'm Feeling Lucky" - Building Great Search Experiences for Today's Users (#IAC19)
danielanewman
229
22k
Easily Structure & Communicate Ideas using Wireframe
afnizarnur
194
16k
The Web Performance Landscape in 2024 [PerfNow 2024]
tammyeverts
9
870
GraphQLの誤解/rethinking-graphql
sonatard
73
11k
How GitHub (no longer) Works
holman
315
140k
Bash Introduction
62gerente
615
210k
Why You Should Never Use an ORM
jnunemaker
PRO
59
9.6k
Exploring the Power of Turbo Streams & Action Cable | RailsConf2023
kevinliebholz
34
6.1k
Testing 201, or: Great Expectations
jmmastey
45
7.7k
Building Flexible Design Systems
yeseniaperezcruz
329
39k
Transcript
RAGE AGAINST THE LEARNING OF THE MACHINE ERRAZUDIN ISHAK
PYCON APAC 2017
AGENDA ABOUT ME WHAT ON EARTH FOR WHAT REASON SO
HOW TO DO THAT SUMMARY PYCON APAC 2017
ABOUT ME Data Masseuse Solutions Architect DevOps Freak Bitcoin Farmer
:) PYCON APAC 2017
I WAS HERE 2009: foss.my, MyGOSSCON 2010: PHP North West
(UK), Entp. PHP Techtalk, BarcampKL, MOSC.my, MyGOSSCON 2011: Wordpress Conf. Asia, Joomla! Day KL, MOSC.my, OWASP Day KL PYCON APAC 2017
I WAS HERE 2012: OWASP AppSec APAC (Sydney), MOSC.my 2013:
OSDC (Auckland), MOSC.my 2016: SCM Workshop UMP PYCON APAC 2017
WHAT ON EARTH? PYCON APAC 2017
WHAT ON EARTH? PYCON APAC 2017 ML
–Tom M.Mitchell, CMU “A computer program is said to learn
from experience E with respect to some class of tasks T and performance measure P if its performance at tasks in T, as measured by P, improves with experience E.” TYPICAL EXPLANATION…..
WHAT ON EARTH? PYCON APAC 2017 Source : NVIDIA
FOR WHAT REASON PYCON APAC 2017 “…it is now the
golden age of Machine Learning” –Random guy “… because big guys (Google and Facebook) work on it” –Another random guy
FOR WHAT REASON PYCON APAC 2017
FOR WHAT REASON Web Search & Recommendation Engines Finance :
Stock, Fraud, Credit Check Healthcare : Drug Discovery, Computational Biology Text, Speech, Object Recognition Space, Astronomy PYCON APAC 2017
FOR WHAT REASON PYCON APAC 2017 “Drawing lines through data”
FOR WHAT REASON PYCON APAC 2017
FOR WHAT REASON PYCON APAC 2017 Classification : “Draw lines
to separate data” Source : ML Berkeley Labelled Data Decision Boundary (D.B.) More complicated algo, More complicated D.B. FOR WHAT REASON
FOR WHAT REASON PYCON APAC 2017 Regression : “Draw lines
to describe data” Source : ML Berkeley Labelled Data Probability Predictor FOR WHAT REASON
FOR WHAT REASON PYCON APAC 2017 Source : Brown EDU
SO HOW TO DO THAT Formulate the problem Design the
solution Bring up the data Technology to master Build ML model Evaluate, fine tune the quality Package it nicely PYCON APAC 2017
FORMULATE YOUR PROBLEM What : Describe it Why : Benefits
How : The flow (step-by-step) PYCON APAC 2017
BRING UP THE DATA Prepare (the right) Data Identify Outliers
Data Pre-Processing PYCON APAC 2017
TECHNOLOGIES “Right tools for the right job” PYCON APAC 2017
BUILD THE MODEL PYCON APAC 2017 The most challenging part
Build, Train, Test, Repeat
FINE TUNING Test harness Measuring the performance Datasets (Test, Training)
PYCON APAC 2017
FINE TUNING “If You Knew Which Algorithm or Algorithm Configuration
To Use, You Would Not Need To Use Machine Learning” - Jason Brownlee, PhD PYCON APAC 2017
PRESENTATION PYCON APAC 2017
SAMPLE #1 PYCON APAC 2017
FORMULATE YOUR PROBLEM PYCON APAC 2017 Toyota’s stock price on
January 6th 2017
FORMULATE YOUR PROBLEM PYCON APAC 2017 Ford’s stock price on
January 4th 2017
DESIGN THE SOLUTION PYCON APAC 2017 trump2cash Python Google Cloud
Natural Language API Wikidata Query Service Tradeking API
BUILD (PLAY WITH) THE MODEL PYCON APAC 2017
PRESENTATION PYCON APAC 2017
PRESENTATION PYCON APAC 2017
SAMPLE #2 : SPAM DETECTION PYCON APAC 2017 ML problem:
text classification Algorithms: naive bayes, linear classifiers, tree classifiers, all-you-want classifiers Technologies: sklearn, nltk, scrapy Data: sms spam dataset, e-mail spam dataset , youtube comments spam dataset
SUMMARY PYCON APAC 2017 Source : Google Cloud Next 2017
THANK YOU We’re Hiring
[email protected]
PYCON APAC 2017