Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Rage Against The Learning of the Machine
Search
Errazudin Ishak
August 27, 2017
Technology
0
210
Rage Against The Learning of the Machine
Talk presented at Pycon APAC 2017, Kuala Lumpur, Malaysia.
Errazudin Ishak
August 27, 2017
Tweet
Share
More Decks by Errazudin Ishak
See All by Errazudin Ishak
The Spock Guide To Think Out of The Vagrant Box
errazudin
0
110
Develop and Deploy your Mobile API with Ruby on Rails, Nginx, Unicorn and Capistrano
errazudin
1
610
Rediscover Speed with Redis(and PHP)
errazudin
1
290
Other Decks in Technology
See All in Technology
20250913_JAWS_sysad_kobe
takuyay0ne
2
190
20250903_1つのAWSアカウントに複数システムがある環境におけるアクセス制御をABACで実現.pdf
yhana
3
550
DDD集約とサービスコンテキスト境界との関係性
pandayumi
3
280
共有と分離 - Compose Multiplatform "本番導入" の設計指針
error96num
2
400
Snowflake Intelligenceにはこうやって立ち向かう!クラシルが考えるAI Readyなデータ基盤と活用のためのDataOps
gappy50
0
180
dbt開発 with Claude Codeのためのガードレール設計
10xinc
2
1.2k
roppongirb_20250911
igaiga
1
220
Rustから学ぶ 非同期処理の仕組み
skanehira
1
130
AIエージェント開発用SDKとローカルLLMをLINE Botと組み合わせてみた / LINEを使ったLT大会 #14
you
PRO
0
110
Android Audio: Beyond Winning On It
atsushieno
0
110
会社紹介資料 / Sansan Company Profile
sansan33
PRO
6
380k
AWSで始める実践Dagster入門
kitagawaz
1
610
Featured
See All Featured
Producing Creativity
orderedlist
PRO
347
40k
We Have a Design System, Now What?
morganepeng
53
7.8k
Code Review Best Practice
trishagee
70
19k
Dealing with People You Can't Stand - Big Design 2015
cassininazir
367
27k
jQuery: Nuts, Bolts and Bling
dougneiner
64
7.9k
Facilitating Awesome Meetings
lara
55
6.5k
4 Signs Your Business is Dying
shpigford
184
22k
Bash Introduction
62gerente
615
210k
Statistics for Hackers
jakevdp
799
220k
Documentation Writing (for coders)
carmenintech
74
5k
Balancing Empowerment & Direction
lara
3
620
Six Lessons from altMBA
skipperchong
28
4k
Transcript
RAGE AGAINST THE LEARNING OF THE MACHINE ERRAZUDIN ISHAK
PYCON APAC 2017
AGENDA ABOUT ME WHAT ON EARTH FOR WHAT REASON SO
HOW TO DO THAT SUMMARY PYCON APAC 2017
ABOUT ME Data Masseuse Solutions Architect DevOps Freak Bitcoin Farmer
:) PYCON APAC 2017
I WAS HERE 2009: foss.my, MyGOSSCON 2010: PHP North West
(UK), Entp. PHP Techtalk, BarcampKL, MOSC.my, MyGOSSCON 2011: Wordpress Conf. Asia, Joomla! Day KL, MOSC.my, OWASP Day KL PYCON APAC 2017
I WAS HERE 2012: OWASP AppSec APAC (Sydney), MOSC.my 2013:
OSDC (Auckland), MOSC.my 2016: SCM Workshop UMP PYCON APAC 2017
WHAT ON EARTH? PYCON APAC 2017
WHAT ON EARTH? PYCON APAC 2017 ML
–Tom M.Mitchell, CMU “A computer program is said to learn
from experience E with respect to some class of tasks T and performance measure P if its performance at tasks in T, as measured by P, improves with experience E.” TYPICAL EXPLANATION…..
WHAT ON EARTH? PYCON APAC 2017 Source : NVIDIA
FOR WHAT REASON PYCON APAC 2017 “…it is now the
golden age of Machine Learning” –Random guy “… because big guys (Google and Facebook) work on it” –Another random guy
FOR WHAT REASON PYCON APAC 2017
FOR WHAT REASON Web Search & Recommendation Engines Finance :
Stock, Fraud, Credit Check Healthcare : Drug Discovery, Computational Biology Text, Speech, Object Recognition Space, Astronomy PYCON APAC 2017
FOR WHAT REASON PYCON APAC 2017 “Drawing lines through data”
FOR WHAT REASON PYCON APAC 2017
FOR WHAT REASON PYCON APAC 2017 Classification : “Draw lines
to separate data” Source : ML Berkeley Labelled Data Decision Boundary (D.B.) More complicated algo, More complicated D.B. FOR WHAT REASON
FOR WHAT REASON PYCON APAC 2017 Regression : “Draw lines
to describe data” Source : ML Berkeley Labelled Data Probability Predictor FOR WHAT REASON
FOR WHAT REASON PYCON APAC 2017 Source : Brown EDU
SO HOW TO DO THAT Formulate the problem Design the
solution Bring up the data Technology to master Build ML model Evaluate, fine tune the quality Package it nicely PYCON APAC 2017
FORMULATE YOUR PROBLEM What : Describe it Why : Benefits
How : The flow (step-by-step) PYCON APAC 2017
BRING UP THE DATA Prepare (the right) Data Identify Outliers
Data Pre-Processing PYCON APAC 2017
TECHNOLOGIES “Right tools for the right job” PYCON APAC 2017
BUILD THE MODEL PYCON APAC 2017 The most challenging part
Build, Train, Test, Repeat
FINE TUNING Test harness Measuring the performance Datasets (Test, Training)
PYCON APAC 2017
FINE TUNING “If You Knew Which Algorithm or Algorithm Configuration
To Use, You Would Not Need To Use Machine Learning” - Jason Brownlee, PhD PYCON APAC 2017
PRESENTATION PYCON APAC 2017
SAMPLE #1 PYCON APAC 2017
FORMULATE YOUR PROBLEM PYCON APAC 2017 Toyota’s stock price on
January 6th 2017
FORMULATE YOUR PROBLEM PYCON APAC 2017 Ford’s stock price on
January 4th 2017
DESIGN THE SOLUTION PYCON APAC 2017 trump2cash Python Google Cloud
Natural Language API Wikidata Query Service Tradeking API
BUILD (PLAY WITH) THE MODEL PYCON APAC 2017
PRESENTATION PYCON APAC 2017
PRESENTATION PYCON APAC 2017
SAMPLE #2 : SPAM DETECTION PYCON APAC 2017 ML problem:
text classification Algorithms: naive bayes, linear classifiers, tree classifiers, all-you-want classifiers Technologies: sklearn, nltk, scrapy Data: sms spam dataset, e-mail spam dataset , youtube comments spam dataset
SUMMARY PYCON APAC 2017 Source : Google Cloud Next 2017
THANK YOU We’re Hiring
[email protected]
PYCON APAC 2017