Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Rage Against The Learning of the Machine
Search
Errazudin Ishak
August 27, 2017
Technology
0
220
Rage Against The Learning of the Machine
Talk presented at Pycon APAC 2017, Kuala Lumpur, Malaysia.
Errazudin Ishak
August 27, 2017
Tweet
Share
More Decks by Errazudin Ishak
See All by Errazudin Ishak
The Spock Guide To Think Out of The Vagrant Box
errazudin
0
110
Develop and Deploy your Mobile API with Ruby on Rails, Nginx, Unicorn and Capistrano
errazudin
1
610
Rediscover Speed with Redis(and PHP)
errazudin
1
290
Other Decks in Technology
See All in Technology
1,000 にも届く AWS Organizations 組織のポリシー運用をちゃんとしたい、という話
kazzpapa3
0
140
ECS障害を例に学ぶ、インシデント対応に備えたAIエージェントの育て方 / How to develop AI agents for incident response with ECS outage
iselegant
2
280
StrandsとNeptuneを使ってナレッジグラフを構築する
yakumo
1
120
Amazon S3 Vectorsを使って資格勉強用AIエージェントを構築してみた
usanchuu
4
460
Agile Leadership Summit Keynote 2026
m_seki
1
670
顧客との商談議事録をみんなで読んで顧客解像度を上げよう
shibayu36
0
290
予期せぬコストの急増を障害のように扱う――「コスト版ポストモーテム」の導入とその後の改善
muziyoshiz
1
2k
Cosmos World Foundation Model Platform for Physical AI
takmin
0
970
生成AIを活用した音声文字起こしシステムの2つの構築パターンについて
miu_crescent
PRO
3
220
usermode linux without MMU - fosdem2026 kernel devroom
thehajime
0
240
~Everything as Codeを諦めない~ 後からCDK
mu7889yoon
3
480
Webhook best practices for rock solid and resilient deployments
glaforge
2
300
Featured
See All Featured
Self-Hosted WebAssembly Runtime for Runtime-Neutral Checkpoint/Restore in Edge–Cloud Continuum
chikuwait
0
340
Put a Button on it: Removing Barriers to Going Fast.
kastner
60
4.2k
ラッコキーワード サービス紹介資料
rakko
1
2.3M
How Fast Is Fast Enough? [PerfNow 2025]
tammyeverts
3
460
Unsuck your backbone
ammeep
671
58k
From Legacy to Launchpad: Building Startup-Ready Communities
dugsong
0
140
Claude Code のすすめ
schroneko
67
210k
Reality Check: Gamification 10 Years Later
codingconduct
0
2k
From π to Pie charts
rasagy
0
130
SERP Conf. Vienna - Web Accessibility: Optimizing for Inclusivity and SEO
sarafernandez
1
1.3k
jQuery: Nuts, Bolts and Bling
dougneiner
65
8.4k
Performance Is Good for Brains [We Love Speed 2024]
tammyeverts
12
1.4k
Transcript
RAGE AGAINST THE LEARNING OF THE MACHINE ERRAZUDIN ISHAK
PYCON APAC 2017
AGENDA ABOUT ME WHAT ON EARTH FOR WHAT REASON SO
HOW TO DO THAT SUMMARY PYCON APAC 2017
ABOUT ME Data Masseuse Solutions Architect DevOps Freak Bitcoin Farmer
:) PYCON APAC 2017
I WAS HERE 2009: foss.my, MyGOSSCON 2010: PHP North West
(UK), Entp. PHP Techtalk, BarcampKL, MOSC.my, MyGOSSCON 2011: Wordpress Conf. Asia, Joomla! Day KL, MOSC.my, OWASP Day KL PYCON APAC 2017
I WAS HERE 2012: OWASP AppSec APAC (Sydney), MOSC.my 2013:
OSDC (Auckland), MOSC.my 2016: SCM Workshop UMP PYCON APAC 2017
WHAT ON EARTH? PYCON APAC 2017
WHAT ON EARTH? PYCON APAC 2017 ML
–Tom M.Mitchell, CMU “A computer program is said to learn
from experience E with respect to some class of tasks T and performance measure P if its performance at tasks in T, as measured by P, improves with experience E.” TYPICAL EXPLANATION…..
WHAT ON EARTH? PYCON APAC 2017 Source : NVIDIA
FOR WHAT REASON PYCON APAC 2017 “…it is now the
golden age of Machine Learning” –Random guy “… because big guys (Google and Facebook) work on it” –Another random guy
FOR WHAT REASON PYCON APAC 2017
FOR WHAT REASON Web Search & Recommendation Engines Finance :
Stock, Fraud, Credit Check Healthcare : Drug Discovery, Computational Biology Text, Speech, Object Recognition Space, Astronomy PYCON APAC 2017
FOR WHAT REASON PYCON APAC 2017 “Drawing lines through data”
FOR WHAT REASON PYCON APAC 2017
FOR WHAT REASON PYCON APAC 2017 Classification : “Draw lines
to separate data” Source : ML Berkeley Labelled Data Decision Boundary (D.B.) More complicated algo, More complicated D.B. FOR WHAT REASON
FOR WHAT REASON PYCON APAC 2017 Regression : “Draw lines
to describe data” Source : ML Berkeley Labelled Data Probability Predictor FOR WHAT REASON
FOR WHAT REASON PYCON APAC 2017 Source : Brown EDU
SO HOW TO DO THAT Formulate the problem Design the
solution Bring up the data Technology to master Build ML model Evaluate, fine tune the quality Package it nicely PYCON APAC 2017
FORMULATE YOUR PROBLEM What : Describe it Why : Benefits
How : The flow (step-by-step) PYCON APAC 2017
BRING UP THE DATA Prepare (the right) Data Identify Outliers
Data Pre-Processing PYCON APAC 2017
TECHNOLOGIES “Right tools for the right job” PYCON APAC 2017
BUILD THE MODEL PYCON APAC 2017 The most challenging part
Build, Train, Test, Repeat
FINE TUNING Test harness Measuring the performance Datasets (Test, Training)
PYCON APAC 2017
FINE TUNING “If You Knew Which Algorithm or Algorithm Configuration
To Use, You Would Not Need To Use Machine Learning” - Jason Brownlee, PhD PYCON APAC 2017
PRESENTATION PYCON APAC 2017
SAMPLE #1 PYCON APAC 2017
FORMULATE YOUR PROBLEM PYCON APAC 2017 Toyota’s stock price on
January 6th 2017
FORMULATE YOUR PROBLEM PYCON APAC 2017 Ford’s stock price on
January 4th 2017
DESIGN THE SOLUTION PYCON APAC 2017 trump2cash Python Google Cloud
Natural Language API Wikidata Query Service Tradeking API
BUILD (PLAY WITH) THE MODEL PYCON APAC 2017
PRESENTATION PYCON APAC 2017
PRESENTATION PYCON APAC 2017
SAMPLE #2 : SPAM DETECTION PYCON APAC 2017 ML problem:
text classification Algorithms: naive bayes, linear classifiers, tree classifiers, all-you-want classifiers Technologies: sklearn, nltk, scrapy Data: sms spam dataset, e-mail spam dataset , youtube comments spam dataset
SUMMARY PYCON APAC 2017 Source : Google Cloud Next 2017
THANK YOU We’re Hiring
[email protected]
PYCON APAC 2017