Lock in $30 Savings on PRO—Offer Ends Soon! ⏳

.Astronomy 6 - Super Planet Crash & Apps for As...

Avatar for Stefano Meschiari Stefano Meschiari
December 10, 2014
570

.Astronomy 6 - Super Planet Crash & Apps for Astronomy Education

Avatar for Stefano Meschiari

Stefano Meschiari

December 10, 2014
Tweet

More Decks by Stefano Meschiari

Transcript

  1. Stefano Meschiari, UT Austin December 10th, 2014 APPS FOR ASTRONOMY

    EDUCATION Engaging students, teachers & the general public through interactive astronomy apps & games. SUPER PLANET CRASH An experiment in creating a minimum- viable-game. Orbits Systemic SimTelescope 6
  2. Systemic 2 http://www.stefanom.org/systemic Meschiari+ ‘09, ‘10, ‘11, Meschiari+ ‘14 (in

    prep.) Full half of all downloads comes from students & non-academic users.
  3. Systemic Live A web app for modelling exoplanetary data, at

    just the right level for introductory graduate & undergraduate classes. http://www.stefanom.org/systemic has tutorials and pre-made homework. So responsive!
  4. R + R packages (Python) C library (libsystemic) Gnu Scientific

    Library (GSL) ODEX.f SWIFT.f Mercury.f convert C/Fortran code into JavaScript Open source, but can you dare building it? JAVAAAAAARGH HTML5/JavaScript C Fortran
  5. Systemic is employed in classes at Caltech, Caltech, UF, MIT,

    SJSU, Delaware, Yale, Columbia, UCSC, and others, reaching ∼500 students to date, and was part of a homework on the MOOC “The Science of the Solar System” , taken by ∼13,000 Coursera students. However, it can’t be the end-all of a good education & outreach platform: it is still too complicated to use, and not immediate enough!
  6. ~12,000,000 games played by ~500,000 users since April Huffington Post

    The Verge Hacker News, front page Washington Post Physics World SciAm News io9 Space.com VICE The Creators Project & others
  7. What do 12,000,000 clicks look like? [subset of 100,000] U/L

    bias Closer to the controls on the left- hand side of the window; People pay more attention to upper field of vision “Crosshair” bias Related to “oblique effect”? Empirical preference for cardinal directions Orbital spin
  8. 12,000,000 plays, big pulsating Donate button $70 in donations to

    McDonald Observatory 6.4 × 10-6 dollars per game Can YOU guess?
  9. $70 in donations to McDonald Observatory 6.4 × 10-6 dollars

    per game Can YOU guess? 11,000,000 plays, big pulsating Donate button
  10. Longhorn Innovation Fund for Technology (LIFT) Awards seed money for

    pilot projects. We’re funded for 2014-2015. I’m funded to do full-time development! Goal Develop customizable educational apps with deep game elements, with a high degree of scientific accuracy and ties to real astronomical data. Stefano Meschiari (UT Austin) Randi Ludwig (UT, UTeach) Joel Green (StScI) The SAVE-Point collaboration:
  11. Philosophy of the pilot project • A suite of apps

    will provide students at all levels with a “virtual astronomy lab” , running in their browser. No installation hassle, can run on mobile platforms, easily accessible anywhere. • Prioritize accurate physics, real astronomical datasets, game-level fun and engaging design. • Easy scoring/grading systems for instructors. • Complete customizability by instructors. OR Touch Gesture Reference Guide Press Double tap Tap Press and drag Drag Press and tap, then drag 1 2 Press and tap Multi-finger tap 1 2 Orbits Systemic Classroom scores
  12. Why games? Often the goals of entertain and educate can

    come into conflict. [...] There will be non-local maxima which are progressively less recognisable to you. - Martin Hollis (former Head of software at Rare; director of GoldenEye 007 and Perfect Dark)
  13. • People learn better by interactive engagement than passive listening

    (Hake 1998, Prather et al. 2004) • Watching entertaining lectures is not enough (Duncan, 1999) • Lecture demos are not enough, as students often remember them wrong (Miller, Lasry, Chu, & Mazur, 2013) • People learn best by being exposed to material in multiple ways. E.g. in-class instruction + discussion + interactive games (Kress, Jewitt, Ogborn, & Charalampos, 2006; Tulving, 1985; Vekiri, 2002) ...But research supports interactive learning & “gamification”
  14. Our projects Each mission in the applets have a specific

    educational goal. These will be quick to develop & easily customizable by an instructor. APPLETS Examples: • Gravity simulator (orbits) • Habitability • Super Planet Crash • Exposure time simulator ... Activities where students and citizen scientists can interact with real astronomical data. Start out simple, become open- ended. SYSTEMIC/DATA ANALYSIS Examples: • Systemic “On Rails” , using radial velocity and photometric data. instructor. SIM-TELESCOPE Simulate the planning and running of a survey, e.g. to discover exoplanets. Take care of: • Budget • Time constraints • Data analysis • ...
  15. Open-source, standard tools • Universal apps built on HTML5 +

    JavaScript stack that can run on any device with a browser. • Instructors, students, researchers can customize and transform our software. • Since the license will be free and open-source compatible, anyone will be free to fully modify the code. Want to take a peek? Send me an email and we’ll add you to the GitHub repository!
  16. Interactive small-scale exhibits A cut-down version of our applications could

    be ideal for small astronomy demos and exhibits. Our group just got a small department grant to outfit several floors of our buildings with wall-mounted iPads running educational apps. A lot of kids don’t know how to use a trackpad or a mouse!
  17. Sketch: Exoplanet Scout 4:21 PM 100% Survey planning Discoveries Back

    • Populate a field of stars (e.g. the Kepler field) with a known, synthetic exoplanet population. • Select a portion of the field and start the challenge. • Design a survey: telescope, methods, schedule, budget, operating costs. • Each discovery nets points and money. Money& Time& O+o&Struve&2.1m& Harlan&J.&Smith&2.7m& Hobby&Eberly&9.2m& Planets&Found:&&27& Points:&&12,180&
  18. PART 2 - Conclusions • We are developing a suite

    of educational apps with a focus on Astronomy, funded under the LIFT program. • We expect to have usable activities in time for Spring 2015. These activities will run on the web, on any modern computer or mobile device. • Post-Spring 2015, we will be able to assess the impact and reach of our initiative. • Applications are being developed under an open-source license and hosted on GitHub (pending UT approval). • We are interested in (a) implementing new or expanded modules from our basic set and (b) inviting others to produce related material and connect with us.
  19. Summer 2015 • Assess educational outcomes; • Plan for future

    development and expansion; • Apply for grants! Timeline Fall 2014 • Development & implementation; • Curriculum development; • Initial in-classroom testing. Spring 2015 • Further development of more complex apps; • Classroom implementation. (funding started this month)