Upgrade to PRO for Only $50/Year—Limited-Time Offer! 🔥
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
READY FOR THE BATTLE? -Introduction to Live Cod...
Search
Amagi
December 01, 2018
Technology
1
480
READY FOR THE BATTLE? -Introduction to Live Coding-
A brief introduction to GLSL and livecoding, presented at TokyoDemoFest 2018.
Amagi
December 01, 2018
Tweet
Share
More Decks by Amagi
See All by Amagi
Enchant your website with VFX-JS
fand
0
55
How to hack VS Code: evil ways (Japanese)
fand
5
3.5k
GLSL PostEffect in TouchDesigner
fand
2
1.9k
VEDA GLSL Livecoding workshop
fand
2
5.1k
PWA 方法 無料 今すぐ
fand
3
1.5k
Have you ever heard GPUs cry?
fand
2
3.7k
Real World GLSL
fand
0
250
APIs for VJ-ing
fand
1
6.7k
Style your Components with styled-component!
fand
1
700
Other Decks in Technology
See All in Technology
クラウドネイティブなNewSQLで実現するミッションクリティカルなアプリケーションの運用
yuyu_hf
PRO
1
160
Amazon Forecast亡き今、我々がマネージドサービスに頼らず時系列予測を実行する方法
sadynitro
0
220
実践/先取り「入門 Kubernetes Validating/Mutating Admission Policy」 / CloudNative Days Winter 2024
pfn
PRO
1
140
LLMアプリケーションの評価と継続的改善
pharma_x_tech
2
170
asumikamというカンファレンスオーガナイザの凄さを語る / The Brilliance of Asumikam
tomzoh
1
170
クルマのサブスクを Next.jsで内製化した経験とその1年後
kintotechdev
2
420
Amazon CloudFrontを活用したゼロダウンタイム実現する安定的なデプロイメント / 20241129 Yoshiki Shinagawa
shift_evolve
0
110
RDRAとLLM
kanzaki
4
490
MediaPipe と ML Kit ってどう ちがうの? / What is the difference between MediaPipe and ML Kit?
yanzm
0
190
SLMをエッジAIとして検証してみて分かったこと
iotcomjpadmin
0
280
ご挨拶
iotcomjpadmin
0
280
生成AI時代のセキュリティはAWSでどう進化する? ~AWSセキュリティの3つのポイントからアップデートを予測する~ / How will Security Evolve on AWS in the Era of Generative AI and Predicting Updates from 3 Points of AWS Security
yuj1osm
0
100
Featured
See All Featured
Done Done
chrislema
181
16k
Agile that works and the tools we love
rasmusluckow
327
21k
Building Flexible Design Systems
yeseniaperezcruz
327
38k
Helping Users Find Their Own Way: Creating Modern Search Experiences
danielanewman
29
2.3k
Building Your Own Lightsaber
phodgson
103
6.1k
Embracing the Ebb and Flow
colly
84
4.5k
Art, The Web, and Tiny UX
lynnandtonic
297
20k
Bootstrapping a Software Product
garrettdimon
PRO
305
110k
Optimizing for Happiness
mojombo
376
70k
The Cult of Friendly URLs
andyhume
78
6.1k
Large-scale JavaScript Application Architecture
addyosmani
510
110k
Rebuilding a faster, lazier Slack
samanthasiow
79
8.7k
Transcript
BNBHJUBLBZPTJ READY FOR THE BA TTLE READY FOR THE BA
TTLE READY FOR THE BA TTLE
@amagitakayosi
None
VEDA (GLSLϥΠϒίʔσΟϯάڥ) ͷ࡞ऀͰ͢
ϥΠϒίʔσΟϯάVJͯ͠·͢
ࠓͷϝχϡʔ w ϥΠϒίʔσΟϯάJTԿ w (-4-ͷجૅ w ͕ΜΖ͏
8IBUJT -JWF$PEJOH
None
ϥΠϒίʔσΟϯά w ϥΠϒͰίʔσΟϯά͢Δ͜ͱ w ٕज़ܥΧϯϑΝϨϯεͷσϞͱͯ͠ w ઌਐతͳԻָө૾ύϑΥʔϚϯεͱͯ͠
ϥΠϒίʔσΟϯάจԽ w 501-"1DPNNVOJUZ ʙ w *$-$ ʙ w
"MHPSBWF
None
None
-JWF$PEJOHJO %FNPTDFOF
EFNPTDFOFʹ͓͚ΔϥΠϒίʔσΟϯά w 3FWJTJPOͳͲͷσϞύʔςΟͰ ότϧ͕ߦΘΕΔΑ͏ʹ w ٕज़ྗॏࢹ w ڥΛଗ͑ͯɺ੍ݶ࣌ؒʹ ͲΕ͚ͩੌ͍ϏδϡΞϧΛ࡞ΕΔ͔ڝ͏ w
উഊථPSͰܾ·Δ
3FWJTJPOͷΑ͏͢ IUUQTXXXZPVUVCFDPNXBUDI W0[&P%%X
සग़ωλ w ϨΠϚʔνϯά w ڑؔͰਤܗΛඳը w ϑϥΫλϧ w ਤܗΛ࠶ؼతʹมܗ͍ͯ͘͜͠ͱͰ ϝνϟϝνϟෳࡶͳਤܗΛඳ͚Δ
සग़ωλ w ϨΠϚʔνϯά w ڑؔͰਤܗΛඳը w ϑϥΫλϧ w ਤܗΛ࠶ؼతʹมܗ͍ͯ͘͜͠ͱͰ ϝνϟϝνϟෳࡶͳਤܗΛඳ͚Δ
レイマーチングこわ…… 難しそう……
ϨΠϚʔνϯάແ͠ͰউͯΔͧʂ w ڈ(-4-(SBQIJDTҐͷ࡞ ϨΠϚʔνϯάͰͳ͍ w ΞΠσΞɺ͢͝͞ɺ͔ͬ͜Α͕͞େࣄ
(-4- JOUSPEVDUJPO
͜ͷষͷඪ w ϑϥάϝϯτγΣʔμʔ͚ͩͰਤܗΛඳ͘ w (-4-ͷجૅจ๏ΛֶͿ
(-4-JTԿ w γΣʔμʔݴޠͷҰͭ w %$(ͰɺӄӨςΫενϟͷॲཧΛ͢Δҝʹ ࡞ΒΕͨݴޠ w ʁʁʁʮ୯ମͰΞχϝʔγϣϯ࡞ΕΔ͡ΌΜʯ ˠσϞΞʔτք۾ͰΘΕΔΑ͏ʹ
γΣʔμʔͷछྨ w γΣʔμʔ w ϑϥάϝϯτγΣʔμʔ w ίϯϐϡʔτγΣʔμʔ w δΦϝτϦʔγΣʔμʔ
ৄ͘͠ʮϨϯμϦϯάύΠϓϥϯʯͰάάͬͯ͘Ε ˡࠓճ͜Ε͚ͩ
ϑϥάϝϯτγΣʔμʔͷྲྀΕ w γΣʔμʔϐΫηϧຖʹ࣮ߦ͞ΕΔ w HM@'SBH$PMPSʹɺͦͷϐΫηϧͷ৭Λ WFD S H C B
ܗࣜͰೖΕͯ͋͛Δ
None
None
ԁΛඳ͍ͯΈΑ͏
ԁΛඳ͍ͯΈΑ͏ ݪ͔Βͷ ڑ͕Ұఆ ݪ͔Βͷ ڑ͕Ұఆ ݪ͔Βͷ ڑ͕Ұఆ
WFD MFOHUI Q
WFD TUFQ MFOHUI Q
ͷछྨ w JOU w qPBUුಈখ w WFDdWFDϕΫτϧ
JOU w $ݴޠͳͲͰ͓ͳ͡Έ w AJOUBAͱॻ͘ w ͋Μ·ΘΜ w GPSϧʔϓͷΠϯσοΫε͘Β͍
qPBUුಈখ w AqPBUBAຢɹɹɹɹɹɹͱͱॻ͘ w খΛΕΔͱΤϥʔʹͳΔͷͰҙʂ w ϑΝΠϧઌ಄ͷɹɹɹɹɹ qPBUͷਫ਼Λࢦఆ͍ͯ͠Δ w MPXQ
NFEJVNQ IJHIQͷॱʹਫ਼͕ߴ͘ͳΔ w ͍͍ͩͨNFEJVNQͰे
WFD WFD WFDϕΫλʔ w AqPBUBɹɹɹɹPS w ͱॻ͍ͯ0, ʢத͕JOUʹͳΔ༁Ͱͳ͍ʣ w ɹɹɹɹɹɹɹɹͱ͢Δͱ
CWFD ʹͳΔ TXJ[[MF
جຊςΫ w ܁Γฦ͠ w ϊΠζ w CBDLCV⒎FSΛ༻͍ͨදݱ w ΦʔσΟΦϦΞΫςΟϒͳԿ͔
܁Γฦ͠ w UJNFΛͬͯɺಈ͖ΤϑΣΫτΛ܁Γฦ͠ w TJO DPT ͳͲͷࡾ֯ؔ w GSBDU NPE
Ͱ w ࠲ඪΛ܁Γฦ͢ͱɺਤܗΛίϐʔͰ͖Δͧʂ
܁Γฦ͠ಈ͖ͷϧʔϓ
܁Γฦ͠ਤܗͷίϐʔ
ϊΠζ w ཚΛݩʹɺ༗ػతͳಈ͖ςΫενϟΛදݱ w ΤϑΣΫτಈ͖ͷ੍ޚʹ͏ͱ ܁Γฦ͠ײΛݮΒͤͯΦεεϝʂ
ϊΠζΏ͕Έ
ϊΠζಈ͖
ϊΠζϒϩοΫϊΠζ
CBDLCVGGFSΛ༻͍ͨදݱ w CBDLCV⒎FSʹϑϨʔϜલͷ݁Ռ͕ೖͬͯΔ w ૾͕ΔΑ͏ʹͨ͠Γʜʜ w 3(#ΛͣΒͨ͠Γʜʜ
CBDLCVGGFS૾
CBDLCVGGFS3(#ͣΒ͠
ΦʔσΟΦϦΞΫςΟϒͳԿ͔ w 7&%" #PO[PNBUJDͷڥͰ ԻೖྗΛར༻Ͱ͖Δ w 7+ͬΆ͍ࣄ͢Δ࣌΄΅ඞਢ
%&.0ʜ
ҰาਐΜͩදݱςΫ w TFUDIJ͞ΜͷࢿྉΦεεϝͰ͢ w IUUQTEPDTHPPHMFDPNQSFTFOUBUJPOE 3SRZ"L'BO,NG-;)WI%$P[& @S,'1M6:7XFK@CD
7+ -*7&$0%*/(
ϥΠϒίʔσΟϯάύʔςΟ w "MHPSBWF w Γ্͛ॏࢹ w 7+ͬͯݴ͏ͱౖΒΕΔ͔
7+γʔϯʹ͓͚Δ(-4- w δΣωϥςΟϒͳ7+ڥͰେମରԠͯ͠Δ ʢ5PVDI%FTJHOFS WWWW FUDʣ w 7%.9 $P(FͳͲͷ7+ιϑτରԠ w
7%.9*4'ͱ͍͏ಠࣗن֨·Ͱ࡞ͬͯΔ
5PVDI%FTJHOFS w ࠷ۙྲྀߦͬͯΔɺϦΞϧλΠϜॲཧ͚ ΦʔσΟΦϏδϡΞϧڥ w (-4-ͷόʔδϣϯΛࣗ༝ʹબΜͩΓɺ ඳըύεΛ؆୯ʹՃͰ͖Δ w ίϯϐϡʔτγΣʔμʔͬ͘͞ͱॻ͚Δ
ԻָϥΠϒίʔσΟϯά w 5JEBM$ZDMFT 4POJD1JͳͲ w 4IBEFSUPZ 7&%"Ͱ (-4-ͰԻָΛԋͰ͖Δʢʁʁʁʁʣ
None
࠷ޙʹ w (-4-ΊͬͪΌָ͍͠ͷͰ օνϟϨϯδͯ͘͠ΕΔͱ͍͍ͳʙ w ࣭ײɺ͜ͷ͋ͱͷۭ͖࣌ؒ 5XJUUFSͰ͓ؾܰʹͲ͏ͧʂ
(-4-ͷࢀߟϦϯΫ w 5IF#PPL0G4IBEFST IUUQTUIFCPPLPGTIBEFSTDPN MBOKQ w XHMEPSHc(-4- IUUQTXHMEPSHEHMTM w 7&%"
IUUQTWFEBHM
@amagitakayosi