$30 off During Our Annual Pro Sale. View Details »
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Data caching and data grids
Search
Galder Zamarreño
October 03, 2011
Technology
0
55
Data caching and data grids
Galder Zamarreño
October 03, 2011
Tweet
Share
More Decks by Galder Zamarreño
See All by Galder Zamarreño
Principles and Patterns for Streaming Data Analysis
galderz
0
100
Streaming Data Analysis with Kubernetes
galderz
0
2.5k
The Rough Guide to Java RPC Frameworks
galderz
1
7k
Streaming Data Analysis with Kubernetes
galderz
1
420
Streaming Data Workshop @ Codemotion Madrid
galderz
0
1.4k
Streaming Data : ni pierdas el tren, ni esperes en balde
galderz
0
3k
Data grids : descubre qué esconden los datos
galderz
0
3.1k
Streaming Data Workhop @ Devoxx
galderz
0
370
Streaming Data Analysis with Kubernetes
galderz
0
2.1k
Other Decks in Technology
See All in Technology
私のRails開発環境
yahonda
0
180
32のキーワードで学ぶ はじめての耐量子暗号(PQC) / Getting Started with Post-Quantum Cryptography in 32 keywords
quiver
0
210
Introduction to Sansan for Engineers / エンジニア向け会社紹介
sansan33
PRO
5
48k
Multimodal AI Driving Solutions to Societal Challenges
keio_smilab
PRO
1
120
生成AI時代の自動E2Eテスト運用とPlaywright実践知_引持力哉
legalontechnologies
PRO
0
110
【5分でわかる】セーフィー エンジニア向け会社紹介
safie_recruit
0
37k
MAP-7thplaceSolution
yukichi0403
2
250
翻訳・対話・越境で強いチームワークを作ろう! / Building Strong Teamwork through Interpretation, Dialogue, and Border-Crossing
ar_tama
4
1.6k
AI 時代のデータ戦略
na0
8
3.3k
Sansan Engineering Unit 紹介資料
sansan33
PRO
1
3.3k
ML PM Talk #1 - ML PMの分類に関する考察
lycorptech_jp
PRO
1
540
知っていると得する!Movable Type 9 の新機能を徹底解説
masakah
0
210
Featured
See All Featured
RailsConf 2023
tenderlove
30
1.3k
Designing for humans not robots
tammielis
254
26k
[RailsConf 2023 Opening Keynote] The Magic of Rails
eileencodes
31
9.8k
How To Stay Up To Date on Web Technology
chriscoyier
791
250k
Being A Developer After 40
akosma
91
590k
Optimising Largest Contentful Paint
csswizardry
37
3.5k
Save Time (by Creating Custom Rails Generators)
garrettdimon
PRO
32
1.8k
Optimizing for Happiness
mojombo
379
70k
Build your cross-platform service in a week with App Engine
jlugia
234
18k
Refactoring Trust on Your Teams (GOTO; Chicago 2020)
rmw
35
3.3k
Facilitating Awesome Meetings
lara
57
6.7k
Visualizing Your Data: Incorporating Mongo into Loggly Infrastructure
mongodb
48
9.8k
Transcript
None
None
Data Grids and Data Caching ! Galder Zamarreño Senior Software
Engineer Red Hat, Inc ! 3rd October 2011, Soft Shake
Galder Zamarreño • R&D Engineer, Red Hat Inc. • Infinispan
developer • 5+ years exp. with distributed data systems • Twitter: @galderz • Blog: zamarreno.com
Agenda • What is Infinispan? • Infinispan as in-memory cache
• Infinispan as in-memory data grid • Data-as-a-Service with Infinispan • Who uses Infinispan?
Introducing
What is Infinispan? An in-memory, highly available, elastic, and open
source (LGPL) data grid platform
Infinispan can be used as...
Local in-memory cache Boost performance caching data which is hard
to calculate or expensive to retrieve
ConcurrentHashMap ? Infinispan provides greater concurrency with MVCC, has built-in
eviction...etc
Local cache example
A local cache might not be enough...
Clustered caches Scale up your application and maintain cache consistency
Consistency in a clustered cache...
Invalidation
Invalidation
Invalidation
Cache-oriented operations...
putForExternalRead() put() putForExternalRead() Use for updating state Use to cache
state read from external source Regular lock acquisition timeout Fail-fast Could throw an exception Fails quietly Could cause existing transaction to fail Will never affect existing transactions
Accessing Infinispan caches
Embedded Access
Infinispan is not just a cache!
In-memory data grid It’s a Fast, Available, Distributed, Elastic data
store, not just a cache!
Invalidation won’t work for data grids!
Data distribution
Replication
Distribution • With number of copies = 2
How is data distributed??
Consistent Hashing
Solving unequal distribution
Virtual Nodes
Accessing Infinispan data grid
Remote Access •Via protocols : •REST •Hot Rod
Hot Rod clients
Infinispan as cloud data store
Traditional 3-tier App
Typical IaaS App
Traditional PaaS App
Where’s your data stored??
Clouds are ephemeral!!
State
Virtualizing Data Some public services exist (i.e. Amazon RDS), but
not all cloud deployments are public!
Build your own Data-as-a-Service!
Characteristics of DaaS Elastic, scalable and highly available!
DaaS with Infinispan
Architecture Manage and Monitor
Who uses Infinispan?
As a cache... Hibernate 2nd level cache, Torquebox Rails cache...
As a temporary store... Http session cache & EJB SFSB
cache, in JBoss AS7
As data grid... Real-time trading app of a well known
stock exchange
What’s next?
Towards EDG Solidifying Infinispan towards integration with Red Hat’s Enterprise
Data Grid
Plus more data grid... Enhancing Hot Rod protocol, Hibernate Object/Grid
Mapper ...etc
Summary Infinispan as fast powerful local cache that can be
clustered!
Summary But also a F.A.D.E. data grid, accessible in embedded
or remote fashion
Summary Build your own Infinispan based Data-as-a-Service in your private
cloud!
Questions infinispan.org - @infinispan ! speakerrate.com/galder ! More on data
grids at 5pm!