$30 off During Our Annual Pro Sale. View Details »

傾いたディラックコーンをもつ系における磁場中のエネルギー準位構造

 傾いたディラックコーンをもつ系における磁場中のエネルギー準位構造

卒論発表

Kazu Ghalamkari

March 09, 2016
Tweet

More Decks by Kazu Ghalamkari

Other Decks in Research

Transcript

  1. 2次元系における磁場中の議論 自由電子の分散関係 ディラックコーン = ℎ + 1 2 = ±ℎ

    = 0をみたす状態がある = 0をみたす状態がない = 0,1,2 ⋯ = 0,1,2 ⋯ 0 ⋯ ⋯ ⋯ 0 古典的にはサイクロトロン運動 →調和振動子の形に帰着 ゼロ点振動 ここに注目
  2. ディラックコーンを実現する系の例 例:α-(BEDT-TTF)2 I3 傾いたディラックコーン 例:グラフェン(六方格子上にC原子を並べたシート) ディラックコーン ky ky kx kx

    kx ky ky kx 傾いたディラックコーンに磁場を与えた時のゼロエネルギー準位を調べる J. Phys. Soc. Jpn. 78 (2009) 114711
  3. 傾いていないディラックコーン = 0 − + 0 = ± 2 +

    2 = ± ディラックコーンを実現するハミルトニアン ディラックコーンの分散関係 kx ky サブ格子A サブ格子B
  4. 傾いたディラックコーン = − + = ± 2 + 2 =

    ± 傾いたディラックコーンを実現するハミルトニアン 傾いたディラックコーンの分散関係 ∈ ℝ
  5. ディラックコーンに磁場をかける 一様な磁場B=(0,0,B)を与える。 = 0, , 0 = 0 − (

    +) + ( +) 0 = 2 0 † 0 0 = 0 0 が基底状態 0 = 2 0 † 0 0 0 = 0 エネルギー0の準位が存在することを確認した。 0 0 :調和振動子の基底状態 , † = 1 調和振動子の昇降演算子 = 1 2 ( − − )
  6. 傾いたディラックコーンに磁場をかける 一様な磁場B=(0,0,B)を印加。 = 0, , 0 = ( +) −

    ( +) + ( +) ( + ) = 2 − 2 († − ) † − 2 († − ) ゼロエネルギー状態が現れるかは分からない。 →傾いたディラックコーンを実現するモデルを考える →そこに磁場を与えた時のスペクトルを数値的に求める , † = 1
  7. 六角格子系のバンド構造 1 = 1, 2 = 0 六角格子系のハミルトニアン −22 [cos

    ⋅ 1 + cos(・2 )] ∑ [cos ⋅ − sin ⋅ ] ∑ [cos ⋅ + sin ⋅ ] −22 [cos ⋅ 1 + cos(・2 )] = ディラックポイント近傍でのバンド構造 1 = 1, 2 = 0.5 1 = 1, 2 = 0 1 : 2 = 1: 0.5でコーンが倒れ切る
  8. 六角格子系に一様磁場を与える とびうつりの経路に沿った の線積分 だけ位相がズレる。 Hopping 1 → exp ℎ ׬

    ・ 1 2 → exp ℎ ׬ ・ 2 = 0,0, サイト数 2N2 = 0, , 0 実空間でのハミルトニアンを書き下して数値計算 周期境界条件より = 2 ℏ ∈ ℤ フーリエ変換ができない。
  9. 対角化する7200次元行列 0 1 0 0 −1 0 1 0 0

    −1 0 1 0 0 −1 0 0 21 0 0 −21 0 21 0 0 −21 0 21 0 0 −21 0 1 3 2 2 0 0 − 3 2 2 1 3 2 2 0 0 − 3 2 2 1 1 2 2 0 0 − 3 22 1 1 3 22 0 0 − 3 2 2 1 3 2 2 0 0 − 3 2 2 1 3 2 2 0 0 − 3 21 1 ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ = = 1, ℏ = 1
  10. 六角格子系に磁場を与えた系のスペクトル 2 (傾き具合) E = 60, = 1, 1 =

    1 1 /2 連続したスペクトルに埋没 傾くとゼロエネルギー準位がなくなる 注目
  11. どのように数値計算したか (0,0) 格子点 , に粒子がある状態 | ۧ , 境界条件 |

    ۧ , = | ۧ + , | ۧ , = | ۧ , + = −1 ∑, | ۧ , ۦ + 1, | + | ۧ , ۦ − 1, | −2 ∑, | ۧ , ۦ − 1, + 1| + | ۧ , ۦ + 1, + 1| + H. c. Hopping 1 → exp ℎ ׬ ・ 1 2 → exp ℎ ׬ ・ 2 −1 ∑, | ۧ , ۦ, + 1| + | ۧ , ۦ, − 1| 偶奇が不一致のときのみ この系のハミルトニアン , の偶奇が一致のときのみ足す 質問用
  12. 傾いたコーンに磁場を与えた場合の解析解 傾いた2次元ディラックコーンに磁場をあたえた系 = sgn() 23|| < で解析的に解けた。 = 1 −

    2 ∈ ℤ コーンが倒れ切った時の準位の様子はわからない 質問用 傾いたコーンに一様な磁場B=(0,0,B)を印加。 = ( +) − ( +) + ( +) ( + ) → − = 0, , 0
  13. パイエルス位相について 質問用 = 2 2 + () 12 = න∗

    − 1 ( − ) − :Rに局在した電子の波動関数 = ( − )2 2 + () 12 = න − ℎ∗ − − 2 2 + ℎ( − 2 ) = ℏ ׬ ′ ・ න ∗ − 1 2 2 + ( − 2 ) 結晶格子中でベクトルポテンシャルは不変であることを用いた。 磁場がない場合 磁場がある場合 = න ・ 磁場がある時に1 に 局在した波動関数