Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
SSII2025 [SS2] 横浜DeNAベイスターズの躍進を支えたAIプロダクト
Search
Sponsored
·
Your Podcast. Everywhere. Effortlessly.
Share. Educate. Inspire. Entertain. You do you. We'll handle the rest.
→
画像センシングシンポジウム
PRO
May 26, 2025
Research
7
4.3k
SSII2025 [SS2] 横浜DeNAベイスターズの躍進を支えたAIプロダクト
画像センシングシンポジウム
PRO
May 26, 2025
Tweet
Share
More Decks by 画像センシングシンポジウム
See All by 画像センシングシンポジウム
SSII2025 [OS3] どの論文でもダメなんだけど! 〜実応用とその課題〜
ssii
PRO
2
1.6k
SSII2025 [OS3-01] End-to-End自動運転の実応用の現場から
ssii
PRO
6
3.2k
SSII2025 [OS3-02] 広告における画像生成技術の実応用の現状
ssii
PRO
6
1.4k
SSII2025 [OS3-03] 有機ミニトマト農場におけるロボット開発と基礎研究
ssii
PRO
0
1.1k
SSII2025 [OS2-01] 自動運転の性能と共に進化するセンシングデバイス
ssii
PRO
2
2k
SSII2025 [TS3] 医工連携における画像情報学研究
ssii
PRO
3
1.4k
SSII2025 [OS2] 新たなセンシングの潮流
ssii
PRO
1
680
SSII2025 [OS2-02] イベントカメラの研究紹介と可視光通信への応用
ssii
PRO
1
1.3k
SSII2025 [OS2-03] マルチ/ハイパースペクトル領域における高度な画像撮影および処理技術
ssii
PRO
2
1.4k
Other Decks in Research
See All in Research
ForestCast: Forecasting Deforestation Risk at Scale with Deep Learning
satai
3
380
ブレグマン距離最小化に基づくリース表現量推定:バイアス除去学習の統一理論
masakat0
0
130
Tiaccoon: Unified Access Control with Multiple Transports in Container Networks
hiroyaonoe
0
580
第66回コンピュータビジョン勉強会@関東 Epona: Autoregressive Diffusion World Model for Autonomous Driving
kentosasaki
0
300
都市交通マスタープランとその後への期待@熊本商工会議所・熊本経済同友会
trafficbrain
0
120
Self-Hosted WebAssembly Runtime for Runtime-Neutral Checkpoint/Restore in Edge–Cloud Continuum
chikuwait
0
320
Proposal of an Information Delivery Method for Electronic Paper Signage Using Human Mobility as the Communication Medium / ICCE-Asia 2025
yumulab
0
160
【NICOGRAPH2025】Photographic Conviviality: ボディペイント・ワークショップによる 同時的かつ共生的な写真体験
toremolo72
0
160
存立危機事態の再検討
jimboken
0
240
Earth AI: Unlocking Geospatial Insights with Foundation Models and Cross-Modal Reasoning
satai
3
470
Aurora Serverless からAurora Serverless v2への課題と知見を論文から読み解く/Understanding the challenges and insights of moving from Aurora Serverless to Aurora Serverless v2 from a paper
bootjp
6
1.5k
第二言語習得研究における 明示的・暗示的知識の再検討:この分類は何に役に立つか,何に役に立たないか
tam07pb915
0
1.1k
Featured
See All Featured
The State of eCommerce SEO: How to Win in Today's Products SERPs - #SEOweek
aleyda
2
9.5k
Embracing the Ebb and Flow
colly
88
5k
Responsive Adventures: Dirty Tricks From The Dark Corners of Front-End
smashingmag
254
22k
From π to Pie charts
rasagy
0
120
The Cost Of JavaScript in 2023
addyosmani
55
9.5k
BBQ
matthewcrist
89
10k
How GitHub (no longer) Works
holman
316
140k
Understanding Cognitive Biases in Performance Measurement
bluesmoon
32
2.8k
Keith and Marios Guide to Fast Websites
keithpitt
413
23k
sira's awesome portfolio website redesign presentation
elsirapls
0
150
A Soul's Torment
seathinner
5
2.2k
Hiding What from Whom? A Critical Review of the History of Programming languages for Music
tomoyanonymous
2
410
Transcript
横浜DeNAベイスターズの躍進を ⽀えたAIプロダクト 2025.5.29 ⼤⻄克典 (DeNA)
© DeNA Co., Ltd. 2 ⾃⼰紹介 • ⼤⻄克典 • 略歴
◦ 2014-2017: 東京⼤学原⽥牛久研でComputer Visionの研究 ▪ 修士時代: CVPR, ACMMM, AAAI ◦ 2017: DeNAに新卒で⼊社 ▪ 横浜DeNAベイスターズ×AIプロジェクトの新規⽴上&主導 • 現在のRole ◦ プロダクトマネージャー 1
© DeNA Co., Ltd. 3 アジェンダ • ベイスターズチーム強化 × AIプロジェクト:プロダクト具体例
◦ Catcher skill metric ◦ 投⼿コマンド ◦ スイング動作解析 • AIをユーザー価値に繋げるための⼯夫 ◦ プロダクトマネジメント ◦ アジャイル 2
© DeNA Co., Ltd. 4 プロダクト具体例 Catcher skill metric 投⼿コマンド
スイング動作解析
© DeNA Co., Ltd. 5 Catcher skill metric • キャッチャーの各スキルを定量的に評価できるように
1 Data Trackman / Hawkeye AI model Skill visualization
© DeNA Co., Ltd. 6 Catcher skill metric • 1球単位で捕逸確率を予測
◦ ブロッキングスキルをより正確に評価 1 Old stats 暴投 or 捕逸 10-0 or 0-10 ⽚⽅の責任 / 減点⽅式 / ⼀律評価 AI stats 捕球難易度を推定 2 : 8 責任割合の分解 / ⽌めたら加点 / 難易度で評価に濃淡
© DeNA Co., Ltd. 7 Catcher skill metric • 単にデータ提供だけでなく、可視化まで⼀貫して作成
◦ 詳細な分析や振り返りも可能に 1
© DeNA Co., Ltd. 8 Catcher skill metric • 現在地点と⽬標地点を明確にできるのが最も効果的だった
◦ 選⼿が漠然と練習から明確な⽬的意識を持って練習に ◦ コーチもデータがあることではっきりと選⼿に伝えやすくなる 1 もっとブロッキング 良くせんとあかんぞ 全然体⼊れられてないやん うーん…やっぱそうですか わかりました (あまりしっくりはきてない) コーチ 選⼿ ブロッキングで-4点分損してるぞ! 特に曲がり球逸らしまくってる (実際に映像⾒せながら) ほら!全然体⼊れられてないやん ほんとですね…! そこもっと重点的に勉強します コーチ 選⼿
© DeNA Co., Ltd. 9 投⼿コマンド • コマンドとは? 2 コントロール
枠の中に投げる能⼒ 四球% 今永選⼿ > ⼤貫選⼿ ≧ ⽯⽥健選⼿ コマンド 狙ったところに投げる能⼒ 実際の制球⼒ ⼤貫選⼿ ≧ 今永選⼿ > ⽯⽥健選⼿ [2023]
© DeNA Co., Ltd. 10 投⼿コマンド • コマンド能⼒を測定可能に 2 映像からミット構えた位置を推定
コマンドスコア化
© DeNA Co., Ltd. 11 投⼿コマンド • 単にデータ提供だけでなく、可視化まで⼀貫して作成 ◦ 詳細な分析や振り返りも可能に
2
© DeNA Co., Ltd. 12 投⼿コマンド • Pitcher skill metricの活⽤
◦ コマンドスキルの定量化によってPitcher版skill metricが作成可能に 2 コーチたちとデータを ⾒ながら議論する定例 選⼿へのFB
© DeNA Co., Ltd. 13 スイング動作解析 • 試合でのスイングを動作解析できるように 3 ハイスピードカメラ
600fps 4台 解析点を3D検出 関節 / バット / ボール 簡易分析ツールも作成 バイオメカニストによる動作解析
© DeNA Co., Ltd. 14 スイング動作解析 • バイオメカニストのFB件数を激増させることに成功 3
© DeNA Co., Ltd. 15 AIをユーザー価値に繋げるための⼯夫
© DeNA Co., Ltd. 16 AIをユーザー価値に繋げるための⼯夫 • キーワードはこの⼆つ ◦ プロダクトマネジメント
◦ アジャイル 1
© DeNA Co., Ltd. 17 AIをユーザー価値に繋げるための⼯夫: プロダクトマネジメント • プロダクトマネジメントって…? ◦
『⼈はドリルが欲しいのではなく⽳をあけたいのだ』 (セオドア・レビット) ◦ 『もし顧客に、彼らの望むものを聞いていたら彼らは「もっと速い⾺が欲しい」 と答えていただろう』(ヘンリー・フォード) • 投⼿コマンドの例で紹介 2
© DeNA Co., Ltd. 18 AIをユーザー価値に繋げるための⼯夫: プロダクトマネジメント • コマンドは計測できるようになったが… ◦
当初のリクエスト:1軍レベルの制球⼒を知りたい 2 2軍投⼿コーチ 制球⼒が測れなくて困ってる 1軍レベルのコマンドって どれくらい? AIチーム コマンドを計測可能にしました! でもここが1軍レベルって ライン特になかったです… いやいや! コマンド計測できるようになった だけでめっちゃありがたい ここで終わっていいのだろうか…?
© DeNA Co., Ltd. 19 AIをユーザー価値に繋げるための⼯夫: プロダクトマネジメント プロダクトの4階層フレームワークで整理 • 2軍投⼿コーチはコマンドを知りたいのではない
◦ 1軍レベルに選⼿を引き上げたい 2
© DeNA Co., Ltd. 20 AIをユーザー価値に繋げるための⼯夫: プロダクトマネジメント • 開発⽅針をpivot ◦
1軍ラインとコマンドスコアのギャップを埋めるべき! • Pitcher版skill metricの発⾒ ◦ コマンド+他データで1軍ラインまでの距離がわかることを解明 2 コマンドスコア ??? ルーキー 1軍平均レベル 1軍レギュラー
© DeNA Co., Ltd. 21 AIをユーザー価値に繋げるための⼯夫: アジャイル • アジャイルとは? ◦
シンプルだが動くものを作って、ユーザー価値を検証しながら進めていくこと ◦ 例)⽔を貯めるバケツを作る 3 各部品をシーケンシャルに開発 • 完成系のイメージを基にそれぞれ作る • 各部品完成後に結合 最低限動くものを少しずつ作る(MVP) • スコープをギリギリまで絞る • バケツ:まずは⽔を掬える浅い桶
© DeNA Co., Ltd. 22 AIをユーザー価値に繋げるための⼯夫: アジャイル • ウォータフォールとアジャイルの違いの1例 3
メリット • 開発難易度が低い • スケールしやすい デメリット • 結合してみるまで動くかわからない • 仕様変更や障害への対応難易度⾼い デメリット • 開発難易度が⾼い • スケールしにくい メリット • 動かしてみての課題が常に把握できる • 変更や障害に柔軟に対応しやすい
© DeNA Co., Ltd. 23 AIをユーザー価値に繋げるための⼯夫: アジャイル • スイング動作解析 ◦
3D検出だが、実は皆さんが想像してるような⾼度なアルゴリズムは使ってない ◦ ベースは固定環境で2Dkeypoint検出を最後三⾓測量してるだけ • なぜか? ◦ 過去別プロダクトでの失敗を踏まえての開発プロセス ▪ 昔あれもこれも詰め込んでリリースしたが、実際にユーザーの価値にはつな がらない機能ばかりなプロダクトを作った失敗があった… ◦ なのでまずは最短でシンプルに作って、ユーザーに実際にぶつけてみた 3
© DeNA Co., Ltd. 24 AIをユーザー価値に繋げるための⼯夫: アジャイル • ユーザーの反応 ◦
関節点に関してはこれで既に精度⼗分 ▪ 600fps下では⼈の関節の移動量は⼩さい ▪ 移動平均取れば⼗⼆分な精度が出る ◦ ただバットの軌道だけは移動量が⼤きく、ここだけもっと精度欲しい ▪ バットの精度向上に注⼒することに! 3
© DeNA Co., Ltd. 25 AIをユーザー価値に繋げるための⼯夫:まとめ • プロダクトを作ることは、仮説を検証すること ◦ プロダクトマネジメント
▪ What/Howだけでなくその上のWhy/Visionまで常に考える • これを作ればいいはずはあくまで仮説 ◦ アジャイル ▪ シンプルに動くものを作ってユーザー価値を検証しながら進める • ユーザーが本当に欲しいものは誰も知らない(ユーザー⾃身含め) • 必要な精度は解決したい課題によって決まる 4
© DeNA Co., Ltd. 26