Upgrade to Pro — share decks privately, control downloads, hide ads and more …

PRML第10章

Sponsored · Your Podcast. Everywhere. Effortlessly. Share. Educate. Inspire. Entertain. You do you. We'll handle the rest.
Avatar for gucchi gucchi
July 21, 2019

 PRML第10章

Avatar for gucchi

gucchi

July 21, 2019
Tweet

More Decks by gucchi

Other Decks in Science

Transcript

  1. ໨࣍ 1. ༧උ஌ࣝ (PRML 9.4) 2. ۙࣅਪ࿦๏ 2-1. ม෼ਪ࿦ (PRML

    10.1) 2-2. ྫɿม෼ࠞ߹Ψ΢ε෼෍ (PRML 10.2) 2-3. ہॴతม෼ਪ࿦๏ (PRML 10.5) 2-4. ม෼ϩδεςΟοΫճؼ (PRML 10.6) 3 / 51
  2. 1. ༧උ஌ࣝ EM ΞϧΰϦζϜ͸؍ଌର৅Ͱ͋Δ؍ଌม਺ X = (x1 , · ·

    · , xN )T ͱ؍ ଌର৅Ͱͳ͍જࡏม਺ Z = (z1 , · · · , zN )T ΛؚΉܥ (۩ମྫͱͯࠞ͠߹ Ψ΢ε෼෍͕͋Δ) ͷ࠷໬ਪఆΛߦ͏ࡍͷख๏ͷҰͭͰ͋ΓɺE εςο ϓͱ M εςοϓͱ͍͏ 2 ͭͷεςοϓΛ൓෮తʹ࣮ߦ͢Δ͜ͱͰ໬౓ ؔ਺Λ࠷େԽ͢Δɻ ͜͜Ͱ͸ɺҰൠతͳ EM ΞϧΰϦζϜʹ͍ͭͯ؆୯ʹઆ໌͢Δɻ (PRML 9.4 ʹରԠ) 4 / 51
  3. 1. ༧උ஌ࣝ ·ͣɺਪఆ͍ͨ͠ύϥϝʔλϕΫτϧΛ θ ͱ͠ɺN ݸͷ؍ଌม਺ X = (x1 ,

    · · · , xN )T ʹରԠ͢Δજࡏม਺ Z = (z1 , · · · , zN )T Λ֬཰ม਺ ͱ͢Δ೚ҙͷ֬཰෼෍ؔ਺ q(Z) Λಋೖ͢Δͱɺ؍ଌσʔλ X ͷର਺໬ ౓ؔ਺ (ෆ׬શσʔλͷର਺໬౓ؔ਺)ln p(X|θ) ͸ҎԼͷΑ͏ʹͳΔɻ ln p(X|θ) = { ∑ Z q(Z) } =1 ln p(X|θ) = ∑ Z q(Z) ln { p(X, Z|θ) p(Z|X, θ) } = ∑ Z q(Z) ln { p(X, Z|θ) q(Z) · q(Z) p(Z|X, θ) } = ∑ Z q(Z) ln { p(X, Z|θ) q(Z) } − ∑ Z q(Z) ln { p(Z|X, θ) q(Z) } (1.1) 5 / 51
  4. 1. ༧උ஌ࣝ ͜͜Ͱɺ৐๏ఆཧ p(X, Z|θ) = p(Z|X, θ)p(X|θ) (1.2) Λ༻͍ͨɻ

    ·ͨɺ L(q, θ) = ∑ Z q(Z) ln { p(X, Z|θ) q(Z) } (1.3) KL(q∥p) = − ∑ Z q(Z) ln { p(Z|X, θ) q(Z) } (1.4) ͱ͢Ε͹ɺ(1.1) ͸ ln p(X|θ) = L(q, θ) + KL(q∥p) (1.5) ͱͳΔɻ(KL(q∥p) ͸ KL μΠόʔδΣϯε) 6 / 51
  5. 1. ༧උ஌ࣝ ͜͜ͰɺPRML ͷ 1.6.1 ΑΓɺKL μΠόʔδΣϯε KL(q∥p) ͸ඇෛͰ ͋Δɻ(KL(q∥p)

    ≥ 0 Ͱ͋Γɺ౳߸͸ q(Z) = p(Z|X, θ) ͷͱ͖ͷΈ੒ཱ ͢Δɻ) Ҏ্ΑΓɺln p(X|θ) ≥ L(q, θ) ͱͳΓɺL(q, θ) ͸ ln p(X|θ) ͷԼݶͰ͋ Δɻ(Լਤ) 7 / 51
  6. 1. ༧උ஌ࣝ ෼ղ (1.5) Λར༻ͯ͠ EM ΞϧΰϦζϜΛఆٛ͠ɺͦΕ͕ର਺໬౓ ln p(X|θ) Λ࠷େԽ͢Δ͜ͱΛࣔ͢ɻ

    ͦͷͨΊʹ·ͣɺύϥϝʔλͷ஋Λ θold ʹॳظԽ͢Δɻ E εςοϓͰ͸ɺL(q, θold) Λ θold Λݻఆ͠ͳ͕Β q(Z) ʹ͍ͭͯ࠷େ Խ͢Δɻ(͜Ε͕ͷͪʹग़ͯ͘Δม෼๏ʹରԠ) ͜ͷ࠷େԽ͸؆୯Ͱɺର਺໬౓ ln p(X|θold) ͸ q(Z) ʹґଘ͠ͳ͍ͷͰɺ q(Z) ΛมԽͤͯ͞΋ ln p(X|θold) ͸มԽ͠ͳ͍ɻ ͜ΕΑΓɺKL(q∥p) = 0 ͭ·Γ q(Z) = p(Z|X, θold) ͷͱ͖ɺL(q, θold) ͸࠷େʹͳΔɻ ͜ͷͱ͖ɺԼਤͷΑ͏ʹ ln p(X|θold) = L(q, θold) ͱͳΔɻ 8 / 51
  7. 1. ༧උ஌ࣝ ࣍ͷ M εςοϓͰ͸ɺq(Z) = p(Z|X, θold) Ͱݻఆ͠ɺL(q, θ)

    Λ θ ʹͭ ͍ͯ࠷େԽ͢Δɻ L(q, θ) Λ࠷େʹ͢ΔύϥϝʔλΛ θnew ͱ͢Δͱɺ͢Ͱʹ L(q, θ) ͕࠷ େ஋ʹୡ͍ͯ͠ͳ͍ݶΓ (θnew ̸= θold ͷͱ͖)ɺL(q, θ) ͸૿Ճ͠ɺ͞Β ʹ KL μΠόʔδΣϯε͸ҎԼͷΑ͏ʹਖ਼ʹͳΔɻ KL(q∥p) = − ∑ Z p(Z|X, θold) ln { p(Z|X, θnew) p(Z|X, θold) } > 0 (1.6) 9 / 51
  8. 1. ༧උ஌ࣝ ·ͨɺq(Z) = p(Z|X, θold) ͷͱ͖ͷ L(q, θ) ͸

    L(q, θ) = ∑ Z p(Z|X, θold) ln { p(X, Z|θ) p(Z|X, θold) } = ∑ Z p(Z|X, θold) ln p(X, Z|θ) − ∑ Z p(Z|X, θold) ln p(Z|X, θold) =Q(θ, θold) + const. (1.7) ͜͜ͰɺQ(θ, θold) ͸ҎԼͷΑ͏ʹఆٛͨ͠ɻ Q(θ, θold) = ∑ Z p(Z|X, θold) ln p(X, Z|θ) (1.8) ͜͜Ͱͷ const. ͱ͸ɺθ ʹґଘ͠ͳ͍߲Ͱ͋Δɻ ͜ΕΑΓɺM εςοϓͷ L(q, θ) ͷ࠷େԽ͸ Q(θ, θold) ͷ࠷େԽͱ౳Ձ Ͱ͋Δɻ 11 / 51
  9. 2. ۙࣅਪ࿦๏ EM ΞϧΰϦζϜͰ͸ɺ؍ଌม਺Λ X ͱ͠જࡏม਺Λ Z ͱ͠ύϥϝʔ λΛ θ

    ͢ΔͱɺE εςοϓͱͯ͠ࣄޙ෼෍ p(Z|X, θ) ΛٻΊɺM εςο ϓͱͯ͠׬શର਺໬౓ ln p(X, Z|θ) ͷࣄޙ෼෍ ln p(X, Z|θold) ʹΑΔظ ଴஋ Q(θ, θold) Λ࠷େʹ͢Δύϥϝʔλ θ ΛٻΊͨɻ ࠓޙͷٞ࿦ʹΑΓɺEM ΞϧΰϦζϜͷߟ͑ํΛϕΠζਪఆʹԠ༻Ͱ ͖ɺ͜ͷ࣌ࣄޙ෼෍͕ٻΊΔ͜ͱ͕Ͱ͖ͳ͍͕࣌͋Δɻ ͦͷΑ͏ͳ৔߹ʹۙࣅతʹظ଴஋ΛٻΊΔํ๏ͱͯ͠ɺ͜͜Ͱ͸ม෼ਪ ࿦๏Λಋೖ͢Δɻ(2-1) ͦͷม෼ਪ࿦๏Λࠞ߹Ψ΢εϞσϧʹదԠ͢Δɻ(2-2) ·ͨɺ෼෍ͷ෼ղͱ͸ผͷਪ࿦๏ͱͯ͠ɺہॴతม෼ਪ࿦๏Λಋೖ͠ (2-3)ɺͦͷਪ࿦๏ΛϩδεςΟοΫճؼʹద༻͢Δ (2-4)ɻ 12 / 51
  10. 2-1. ม෼ਪ࿦ ม෼ਪ࿦๏͸ม෼๏ͱ͍͏਺ֶతख๏Λىݯʹ࣋ͭɻ ม෼๏Ͱ͸ɺҎԼͷΑ͏ͳ൚ؔ਺ (ؔ਺ͷܗ͕ܾ·Ε͹஋͕ܾ·Δྔ) ʹ͓͍ͯɺՄೳͳ͢΂ͯͷؔ਺ͷதͰ൚ؔ਺Λ࠷େ΋͘͠͸࠷খʹ͢Δ Α͏ͳؔ਺Λ୳͢ํ๏Ͱ͋Δɻ(෇࿥ D ࢀর) H[p]

    = − ∫ p(x) ln p(x) dx (2.1) (2.1) ͸ΤϯτϩϐʔͰ͋Γɺ͜Εʹม෼๏Λద༻͢Δͱɺ p(x) = const. ͕ H[p] Λ࠷େʹ͢Δ෼෍Ͱ͋Δࣄ͕Θ͔Γɺ͔ͨ͠ʹΤ ϯτϩϐʔͷ௚ײͱҰக͢Δɻ ม෼๏ࣗମ͸ɺ൚ؔ਺Λ࠷େ΋͘͠͸࠷খʹ͢ΔΑ͏ͳؔ਺ΛՄೳͳ͢ ΂ͯͷؔ਺ͷத͔Β୳͢ख๏ͳͷͰɺۙࣅతͳख๏Ͱ͸ͳ͍ɻ ม෼ਪ࿦๏Ͱ͸ɺ࠷దԽΛߦ͏ؔ਺ͷΫϥεΛ੍ݶ͠ɺۙࣅతʹ൚ؔ਺ Λ࠷େ΋͘͠͸࠷খʹ͢ΔΑ͏ͳؔ਺ΛٻΊΔɻ 13 / 51
  11. 2-1. ม෼ਪ࿦ ͦΕͰ͸ɺม෼ਪ࿦๏ͷԠ༻ํ๏Λݟ͍ͯ͘ɻ ·ͣɺ͢΂ͯͷύϥϝʔλʹࣄલ෼෍͕༩͑ΒΕ͍ͯΔ׬શͳϕΠζϞ σϧ͕͋Δͱ͢Δɻ Ϟσϧʹ͸ύϥϝʔλͷଞʹજࡏม਺͕͋ΔՄೳੑ͕͋Γɺύϥϝʔλ ͱજࡏม਺Λ·ͱΊͯ Z ͱ͔͖ɺ͞Βʹ؍ଌม਺ͷू߹Λ X

    ͱ͢Δɻ ·ͨɺ؍ଌม਺ͱજࡏม਺ͷಉ࣌෼෍ p(X, Z) ͸༩͑ΒΕ͍ͯΔͱ ͢Δɻ ͔͠͠ɺࣄޙ෼෍ p(Z|X) = p(X, Z) ∫ p(X, Z) dZ (2.2) ͸જࡏม਺ͷ࣍ݩ͕ߴ͗͢ΔͳͲͷཧ༝Ͱੵ෼ෆՄೳͳͨΊɺٻΊΒΕ ͳ͍ͱ͢Δɻ 14 / 51
  12. 2-1. ม෼ਪ࿦ ͜͜Ͱɺपล෼෍ p(X)(ϞσϧΤϏσϯε) ͷର਺͸ҎԼͷΑ͏ʹͳΔ ͜ͱΛ༻͍Δɻ ln p(X) = L[q]

    + KL(q∥p) (2.3) ͜͜Ͱɺ L[q] = ∫ q(Z) ln { p(X, Z) q(Z) } dZ (2.4) KL(q∥p) = − ∫ q(Z) ln { p(Z|X) q(Z) } dZ (2.5) Ͱ͋Δɻ KL μΠόʔδΣϯεͷੑ࣭ΑΓɺ࠷খʹͳΔͷ͸෼෍ q(Z) ͕ࣄޙ෼ ෍ p(Z|X) ʹҰக͢Δͱ͖Ͱ͋Δɻ ͦΕ͸ L[q] ͕࠷େʹͳΔͱ͖Ͱ͋ΓɺͦͷΑ͏ͳ෼෍ q(Z) ͸ࣄޙ෼෍ Ͱ͋Δɻ 15 / 51
  13. 2-1-1. ෼෍ͷ෼ղ ͜͜Ͱ͸ɺq(Z) ͕ҎԼͷΑ͏ͳܗΛऔ͍ͬͯΔ΋ͷʹ੍ݶ͢Δɻ q(Z) = M ∏ i=1 qi

    (Zi ) (2.6) ͜͜ͰɺZ = (z1 , z2 , · · · , zN )T Λഉ൓ͳ (ॏෳ͠ͳ͍) άϧʔϓ Zi ʹΘ ͚ͨɻ ͜͜Ͱɺqi (Zi ) ͷܗʹ͸੍ݶ͸ͳ͍ɻ (2.6) Λ (2.4) ͷӈลʹ୅ೖͯ͠ɺL[q] Λ֤ qi (Zi ) Ͱॱ൪ʹ࠷దԽ͢Δ ͜ͱΛߟ͑Δɻ ͦͷͨΊɺL[q] ͷ qj (Zj ) ʹґଘ͢Δ߲ͷΈΛऔΓग़͢ɻ 17 / 51
  14. 2-1-1. ෼෍ͷ෼ղ L[q] ͷ qj (Zj ) ʹґଘ͢Δ߲͸ҎԼͷΑ͏ʹͳΔɻ L[q] =

    ∫ q(Z) ln { p(X, Z) q(Z) } dZ = ∫ ( ln p(X, Z) − M ∑ l=1 ln ql(Zl) ) M ∏ i=1 qi(Zi) dZi = ∫ ln p(X, Z) M ∏ i=1 qi(Zi) dZi − M ∑ l=1 ∫ ln ql(Zl) M ∏ i=1 qi(Zi) dZi = ∫ qj (Zj ) { ∫ ln p(X, Z) ∏ i̸=j qi(Zi) dZi } dZj − M ∑ l=1 ∫ ql(Zl) ln ql(Zl) dZl = ∫ qj (Zj ) { ∫ ln p(X, Z) ∏ i̸=j qi(Zi) dZi } dZj − ∫ qj (Zj ) ln qj (Zj ) dZj + const. = ∫ qj (Zj ) ln p(X, Zj ) dZj − ∫ qj (Zj ) ln qj (Zj ) dZj + const. (2.7) 18 / 51
  15. 2-1-1. ෼෍ͷ෼ղ ͜͜Ͱɺ ln p(X, Zj ) = Ei̸=j [ln

    p(X, Z)] + const. (2.8) Ͱ͋Γɺ Ei̸=j [ln p(X, Z)] = ∫ ln p(X, Z) ∏ i̸=j qi (Zi ) dZi (2.9) ͱఆٛͨ͠ɻ 19 / 51
  16. 2-1-1. ෼෍ͷ෼ղ ࣍ʹɺ(2.7) ͷ L[q] Λ qj (Zj ) ʹ͍ͭͯ࠷େԽ͢Δ͜ͱΛߟ͑Δɻ

    ͜Ε͸؆୯Ͱɺ(2.7) ͸ KL μΠόʔδΣϯεΛ༻͍ͯ L[q] = ∫ qj (Zj ) ln ( p(X, Zj ) qj (Zj ) ) dZj + const. = − KL(qj ∥p) + const. (2.10) ͱॻ͚ΔͷͰɺKL μΠόʔδΣϯεͷੑ࣭Λ༻͍ΔͱɺL[q] Λ࠷େʹ ͢Δ qj (Zj ) ͸ ln q⋆ j (Zj ) = ln p(X, Zj ) = Ei̸=j [ln p(X, Z)] + const. (2.11) ͱͳΔɻ ͜͜Ͱɺ(2.11) ͷ࠶ӈล͸ qi (Zi ) (i ̸= j) Ͱͷظ଴஋ʹґଘ͍ͯ͠Δͷ Ͱɺղ q⋆(Z) ΛٻΊΔʹ͸ɺ͢΂ͯͷҼࢠ qj (Zj ) Λద౰ʹॳظԽ͠ɺ (2.11) Λ༻͍ͯ͋ΔҼࢠ qj (Zj ) ΛଞͷҼࢠͷݱࡏͷ஋Ͱߋ৽͍ͯ͘͠ ͜ͱͰٻΊΔɻ(ม෼ϕΠζ๏) 20 / 51
  17. 2-2. ྫɿม෼ࠞ߹Ψ΢ε෼෍ ͜ͷάϥϑΑΓɺ֤֬཰ม਺ͷ৚݅෇͖ಠཱੑΛՃຯ͢Δͱɺಉ࣌෼෍ p(X, Z, π, µ, Λ) ͸ҎԼͷΑ͏ʹ෼ղͰ͖Δɻ(PRML 8

    ষΛࢀর) p(X, Z, π, µ, Λ) = p(X|Z, µ, Λ)p(Z|π)p(π)p(µ|Λ)p(Λ) (2.12) ͜ΕΒͷӈลͷ෼෍Λಛఆͷ෼෍ʹԾఆ͍ͯ͘͠ɻ ·ͣɺ෼෍ p(Z|π) ΛҎԼͷΑ͏ʹԾఆ͢Δɻ p(Z|π) = N ∏ n=1 K ∏ k=1 πznk k (2.13) ͜͜Ͱɺࣄલ෼෍ p(π) ͸ҎԼͷΑ͏ʹσΟϦΫϨ෼෍Λ༻͍Δͱɺ͜ ͷ෼෍͸ڞ໾ࣄલ෼෍ͱͳ͓ͬͯΓɺࣄޙ෼෍΋σΟϦΫϨ෼෍ͱ ͳΔɻ p(π) = Dir(π|α0 ) = C(α0 ) K ∏ k=1 πα0+1 k (2.14) ͜͜ͰɺC(α0 ) ͸σΟϦΫϨ෼෍ͷਖ਼نԽఆ਺ ((B.23) Ͱఆٛ͞Εͯ ͍Δ) 22 / 51
  18. 2-2. ྫɿม෼ࠞ߹Ψ΢ε෼෍ ࣍ʹɺ෼෍ p(X|Z, µ, Λ) ΛҎԼͷΑ͏ʹΨ΢ε෼෍ͰԾఆ͢Δɻ p(X|Z, µ, Λ)

    = N ∏ n=1 K ∏ k=1 N(xn |µk , Λ−1 k )znk (2.15) ͜͜ͰɺΨ΢ε෼෍ N(x|µ, Σ) ͸ҎԼͰఆٛ͞ΕΔɻ N(x|µ, Σ) = 1 (2π)D/2 1 |Σ|1/2 exp { − 1 2 (x − µ)TΣ−1(x − µ) } (2.16) ͞Βʹ (2.15) Λड͚ͯɺ෼෍ p(µ, Λ) = p(µ|Λ)p(Λ) ͸ڞ໾ࣄલ෼෍Ͱ ͋ΔΨ΢ε-΢Ογϟʔτࣄલ෼෍ (PRML 2.3.6 ͷ (2.157) ࢀর) ͱԾఆ ͢Δɻ p(µ, Λ) = K ∏ k=1 N(µk |m0 , (βΛk )−1) W(Λk |W0 , ν0 ) = K ∏ k=1 p(µk , Λk ) (2.17) ͜͜ͰɺW(Λ|W, ν) ͸΢Ογϟʔτ෼෍Ͱ͋Δɻ(PRML 2.3.6 ͷ (2.155), (2.156) ࢀর) 23 / 51
  19. 2-2. ྫɿม෼ࠞ߹Ψ΢ε෼෍ ͜Ε͕ࠞ߹Ψ΢ε෼෍Ͱ͋Δ͜ͱΛ͔֬ΊΔʹ͸ɺ(2.12) ͷ྆ลΛ p(π, µ, Λ) ͰׂΓɺજࡏม਺ Z Ͱ࿨ΛͱΔ͜ͱͰ

    p(X|π, µ, Λ) = ∑ Z p(X, Z|π, µ, Λ) = N ∏ n=1 { K ∑ k=1 πk N(xn |µk , Λ−1 k ) } (2.18) ͱͳΓɺ͔֬ʹ͜ͷϞσϧ͸ࠞ߹Ψ΢εϞσϧͰ͋Δɻ ͦΕͰ͸ɺ͜ͷઃఆͷԼͰ໬౓ؔ਺ͷ࠷େԽΛۙࣅతʹߦ͏ͨΊʹɺҎ ԼͷΑ͏ͳ෼෍ͷ෼ղ ((2.6) ʹରԠ) Λߦ͏ɻ q(Z, π, µ, Λ) = q(Z)q(π, µ, Λ) (2.19) 24 / 51
  20. 2-2. ྫɿม෼ࠞ߹Ψ΢ε෼෍ ͦΕͰ͸ɺ(2.11) Λ༻͍ͯҼࢠ q(Z) ͷߋ৽ࣜ͸ҎԼͷΑ͏ʹͳΔɻ ln q⋆(Z) = Eπ,µ,Λ

    [ln p(X, Z, π, µ, Λ)] + const. (2.20) (2.20) ͷӈลʹ (2.12) ͷӈลΛ୅ೖ͠ɺZ ʹґଘ͠ͳ͍߲͸ const. ʹ ٵऩͯ͠͠·͏ͱɺ ln q⋆(Z) = Eπ [ln p(Z|π)] + Eµ,Λ [ln p(X|Z, µ, Λ)] + const. (2.21) ͱͳΔɻ ͜͜Ͱɺ(2.13) Λ༻͍Δͱ Eπ [ln p(Z|π)] = Eπ [ N ∑ n=1 K ∑ k=1 znk ln πk ] = N ∑ n=1 K ∑ k=1 znk E [ ln πk ] (2.22) ͱͳΔɻ 25 / 51
  21. 2-2. ྫɿม෼ࠞ߹Ψ΢ε෼෍ ·ͨɺ(2.15) Λ༻͍Δͱ Eµ,Λ [ln p(X|Z, µ, Λ)] =

    N ∑ n=1 K ∑ k=1 znk Eµ,Λ [ ln N(xn |µk , Λ−1 k ) ] = N ∑ n=1 K ∑ k=1 znk ( 1 2 E [ ln |Λk | ] − D 2 ln (2π) − 1 2 Eµk,Λk [ (xn − µk )TΛk (xn − µk ) ] ) (2.23) ͱͳΔɻ ͜͜Ͱɺ࠷ޙͷΠίʔϧͰ͸Ψ΢ε෼෍ͷ͋ΒΘͳࣜ (2.16) Λ༻͍ͨɻ 26 / 51
  22. 2-2. ྫɿม෼ࠞ߹Ψ΢ε෼෍ (2.22) ͱ (2.23) Λ༻͍Δͱɺ(2.21) ͸ ln q⋆(Z) =

    N ∑ n=1 K ∑ k=1 znk ln ρnk + const. (2.24) ͱॻ͚Δɻ ͜͜Ͱɺ ln ρnk =E [ ln πk ] + 1 2 E [ ln |Λk | ] − D 2 ln (2π) − 1 2 Eµk,Λk [ (xn − µk )TΛk (xn − µk ) ] (2.25) ͱఆٛͨ͠ɻ 27 / 51
  23. 2-2. ྫɿม෼ࠞ߹Ψ΢ε෼෍ Ҏ্ΑΓɺ෼෍ q⋆(Z) ͸ q⋆(Z) ∝ N ∏ n=1

    K ∏ k=1 ρznk nk (2.26) ͱͳΔɻ ͜͜Ͱɺ(2.25) ʹ µ ΍ Λ ͷظ଴஋ؚ͕·ΕΔͷͰɺ෼෍ q⋆(Z) ͸෼ղ (2.19) ͷଞͷҼࢠ q(π, µ, Λ) ͷܗʹґଘ͢Δ͜ͱʹ஫ҙɻ ن֨Խ৚݅ΑΓɺq⋆(Z) ҎԼͷΑ͏ʹͳΔɻ(PRML ԋश 10.12) q⋆(Z) = N ∏ n=1 K ∏ k=1 rznk nk = N ∏ n=1 q⋆(zn ) (2.27) ͜͜Ͱ rnk ͸ҎԼͷΑ͏ʹఆٛ͞ΕΔɻ rnk = ρnk K ∑ j=1 ρnj (2.28) 28 / 51
  24. 2-2. ྫɿม෼ࠞ߹Ψ΢ε෼෍ ࣍ʹɺ(2.19) ͷҼࢠ q(π, µ, Λ) ͷߋ৽ࣜʹ͍ͭͯߟ͑Δɻ q(Z) ͷ࣌ͱಉ͡Α͏ʹɺߋ৽ࣜͷҰൠతͳࣜ

    (2.11) Λ༻͍Δͱɺ ln q⋆(π, µ, Λ) = EZ [ln p(X, Z, π, µ, Λ)] + const. (2.29) ͱͳΓɺ(2.29) ͷӈลʹ (2.12) ͷӈลΛ୅ೖ͢Δͱɺ ln q⋆(π, µ, Λ) =EZ [ln p(X|Z, µ, Λ)p(Z|π)p(π)p(µ|Λ)p(Λ)] + const. = ln p(π) + EZ [ln p(Z|π)] + ln p(µ, Λ) + EZ [ln p(X|Z, µ, Λ)] + const. (2.30) ͱͳΔɻ 29 / 51
  25. 2-2. ྫɿม෼ࠞ߹Ψ΢ε෼෍ ͜͜Ͱɺ(2.13) ͱ (2.14) ͱ (2.15) ͱ (2.17) Λ࢖͏ͱɺ(2.30)

    ͸ҎԼͷΑ ͏ʹͳΔɻ ln q⋆(π, µ, Λ) = K ∑ k=1 { (α0 + 1) ln πk + ln πk N ∑ n=1 E[znk ] + ln p(µk , Λk ) + N ∑ n=1 E[znk ] ln N(xn |µk , Λ−1 k ) } + const. (2.31) ͜ͷมܗͰΘ͔ͬͨ͜ͱ͸ɺ෼෍ q⋆(π, µ, Λ) ͸ҎԼͷΑ͏ʹ෼ղͰ͖ Δ͜ͱͰ͋Δɻ q⋆(π, µ, Λ) = K ∏ k=1 q⋆(πk )q⋆(µk , Λk ) (2.32) 30 / 51
  26. 2-2. ྫɿม෼ࠞ߹Ψ΢ε෼෍ ·ͨɺ(2.31) ͷӈลͷதʹݱΕ͍ͯΔظ଴஋ E[znk ] ͸જࡏม਺ znk ͷ ෼෍

    q⋆(Z) ͷԼͰͷظ଴஋ͳͷͰɺ(2.27) Λ༻͍Δͱ E[znk ] = ∑ Z znk q⋆(Z) = ∑ z1 · · · ∑ zN znk N ∏ n′=1 q⋆(zn′ ) = [ ∑ z1 q⋆(z1 ) ] =1 · · · [ ∑ zn znk q⋆(zn ) ] · · · [ ∑ zN q⋆(zN ) ] =1 = ∑ zn znk K ∏ k′=1 rznk′ nk′ = rnk (2.33) ͱͳΔɻ ࠷ޙͷΠίʔϧ͸ɺऔΓ͏Δ͢΂ͯͷ zn ͷ࿨ͷதͰɺznk = 1 ͱͳΔ ߲͔͠࢒Βͳ͍͜ͱΛ༻͍ͨɻ 31 / 51
  27. 2-2. ྫɿม෼ࠞ߹Ψ΢ε෼෍ ͜ΕΑΓ·ͣɺ(2.32) ͷҼࢠ q⋆(π) = K ∏ k=1 q⋆(πk

    ) ͷର਺͸ɺ(2.31) ΑΓ ln q⋆(π) = K ∑ k=1 ln πk { (α0 + 1) + N ∑ n=1 rnk } + const. (2.34) ͱͳΔͷͰɺq⋆(π) ͸ҎԼͷΑ͏ʹσΟϦΫϨ෼෍ʹͳΔɻ q⋆(π) = Dir(π|α) = C(α) K ∏ k=1 παk+1 k (2.35) ͜͜Ͱɺ αk = α0 + Nk (2.36) ͱఆٛ͠ɺNk ͸ҎԼͰఆٛ͞ΕΔɻ Nk = N ∑ n=1 rnk (2.37) 32 / 51
  28. 2-2. ྫɿม෼ࠞ߹Ψ΢ε෼෍ ࣍ʹɺ(2.31) ΑΓ (2.32) ͷҼࢠ q⋆(µk , Λk )

    ͷର਺͸ҎԼͷΑ͏ʹΨ΢ ε-΢Ογϟʔτ෼෍ʹͳΔɻ(PRML ԋश 10.13 ࢀর) q⋆(µk , Λk ) = N(µk |mk , (βk Λk )−1) W(Λk |Wk , νk ) (2.38) ͜͜ͰɺҎԼͷΑ͏ʹఆٛͨ͠ɻ βk = β0 + Nk (2.39) mk = 1 βk (β0 m0 + Nk xk ) (2.40) W−1 k = W−1 0 + Nk Sk + β0 Nk β0 + Nk (xk − m0 )(xk − m0 )T (2.41) νk = ν0 + Nk (2.42) xk = 1 Nk N ∑ n=1 rnk xn (2.43) Sk = 1 Nk N ∑ n=1 rnk (xn − xk )(xn − xk )T (2.44) 33 / 51
  29. 2-2. ྫɿม෼ࠞ߹Ψ΢ε෼෍ ·ͨɺྔ Nk , xk , Sk ΛٻΊΔʹ͸ɺ(2.37), (2.43),

    (2.44) ΑΓɺrnk Λ ٻΊΔඞཁ͕͋Δɻ (2.28) ͱ (2.25) ΑΓɺҎԼͷظ଴஋ΛٻΊΕ͹Α͍͜ͱ͕Θ͔Δɻ (PRML ԋश 10.14) Eµk,Λk [ (xn −µk )TΛk (xn − µk ) ] =Dβ−1 k + νk (xn − mk )TWk (xn − mk ) (2.45) E [ ln |Λk | ] = D ∑ i=1 ψ ( νk + 1 − i 2 ) + D ln 2 + ln |Wk | (2.46) E [ ln πk ] =ψ(αk ) − ψ(ˆ α) (2.47) ͜͜Ͱɺψ(·) ͸ PRML ͷ෇࿥ B Ͱఆٛ͞Ε͍ͯΔσΟΨϯϚؔ਺Ͱ͋ Γɺˆ α = ∑ k αk Ͱ͋Δɻ 34 / 51
  30. 2-2. ྫɿม෼ࠞ߹Ψ΢ε෼෍ Ҏ্Λ·ͱΊΔͱɺࠞ߹Ψ΢εϞσϧͷม෼ਪ࿦๏͸ɺҎԼͷΑ͏ʹ EM ΞϧΰϦζϜͷ E εςοϓͱ M εςοϓʹࣅͨม෼ E

    εςοϓͱ ม෼ M εςοϓͷ൓෮Ͱ͋Δɻ 1. (ม෼ E εςοϓ) ύϥϝʔλͷݱࡏͷࣄޙ෼෍Λ༻͍ͯɺظ଴஋ (2.45), (2.46), (2.47) Λܭࢉ͠ɺෛ୲཰ rnk ΛٻΊΔɻ 2. (ม෼ M εςοϓ) ٻΊͨෛ୲཰Λ༻͍ͯɺࣄޙ෼෍ q⋆(π) ͱ q⋆(µk , Λk ) ΛͦΕͧΕ (2.35) ͱ (2.38) ͔Βܭࢉ͢Δɻ 35 / 51
  31. 2-3. ہॴతม෼ਪ࿦๏ ͜͜·Ͱٞ࿦͖ͯͨ͠ਪ࿦๏ (෼෍ͷ෼ղ) Λ·ͱΊΔɻ ಉ࣌෼෍ p(X, Z) ͕༩͑ΒΕ͍ͯΔ࣌ɺ p(Z|X)

    = p(X, Z) ∫ p(X, Z) dZ (2.48) ্ͷΑ͏ʹࣄޙ෼෍ p(Z|X) ʹͯ͠ٻΊ͍͕ͨɺ෼฼ͷ Z(ύϥϝʔλ ͱજࡏม਺) ͷੵ෼͕Ͱ͖ͳ͍ͱ͢Δɻ ҰํͰɺࣄޙ෼෍ p(Z|X) ͸൚ؔ਺ L[q] L[q] = ∫ q(Z) ln { p(X, Z) q(Z) } dZ (2.49) Λ࠷େʹ͢Δ q(Z) Ͱ͋Δɻ 36 / 51
  32. 2-3. ہॴతม෼ਪ࿦๏ ͦ͜Ͱɺq(Z) ΛҎԼͷΑ͏ʹ q(Z) = M ∏ i=1 qi

    (Zi ) (2.50) ෼ղ͠ɺ(2.49) ʹ୅ೖ͢Δͱ൚ؔ਺ L[q] ͸ҎԼͷΑ͏ʹͳΔɻ L[qi ] = ∫ M ∏ i=1 qi (Zi ) ln { p(X, Z) ∏ M i=1 qi (Zi ) } dZ (2.51) ͦͯ͠ɺL[qi ] ʹ͢Δ෼෍ͷू߹ {q⋆ i (Zi )} ΛٻΊͯɺҎԼͷ෼෍ q⋆(Z) q⋆(Z) = M ∏ i=1 q⋆ i (Zi ) (2.52) Λࣄޙ෼෍Λۙࣅ͢Δ෼෍ͱ͢Δ΋ͷͰ͋ͬͨɻ 37 / 51
  33. 2-3. ہॴతม෼ਪ࿦๏ ͭ·Γɺ͜ͷ෼෍ͷ෼ղ͸ࣄޙ෼෍ p(Z|X) Λ͢΂ͯͷ֬཰ม਺ͷ׬શ ͳࣄޙ෼෍ͷۙࣅ q⋆(Z) ΛٻΊΔͱ͍͏ҙຯͰɺେҬతม෼ਪ࿦๏ͷҰ छͰ͋Δɻ ࣍ʹ঺հ͢Δਪ࿦๏͸ہॴతม෼ਪ࿦๏Ͱ͋Δɻ

    ۩ମతʹ͸ɺಉ࣌෼෍ p(X, Z) ͷԼքͱͳΔؔ਺Λ h(X, Z, ξ) ͱ͢Δɻ ͭ·ΓɺҎԼͷΑ͏ͳؔ਺ h(X, Z, ξ) Ͱ͋Δɻ p(X, Z) ≥ h(X, Z, ξ) (2.53) ͜ͷ h(X, Z, ξ) ͸ Z ͷੵ෼͕Ͱ͖Δ͘Β͍γϯϓϧͳؔ਺Ͱ͋Δɻ ͋ͱͰ۩ମྫͰઆ໌͢Δ͕ɺh(X, Z, ξ) ͸ ξ ʹґଘ͢ΔܗͰॻ͚ͯɺ (2.53) ʹ͓͍ͯɺ͋Δ Z⋆ ͰΠίʔϧ͕੒ཱ͢Δͱ͖ͷ ξ Λ ξ⋆ ͱ͢Δɻ 38 / 51
  34. 2-3. ہॴతม෼ਪ࿦๏ (2.48) ΑΓɺࣄޙ෼෍ p(Z|X) Λؔ਺ h(X, Z, ξ⋆) Λ༻͍ͯ

    p(Z|X) ∼ p(X, Z) ∫ h(X, Z, ξ⋆) dZ (2.54) ͱۙࣅ͢Δํ๏Ͱ͋Δɻ ξ = ξ⋆ ͷͱ͖ɺෆ౳ࣜ (2.53) ͸ɺ͋Δ Z⋆ Ͱ͸౳ࣜʹͳΔ͕ɺଞͷ Z Ͱ͸Ұൠతʹ౳ࣜʹͳΒͳ͍ɻ ͭ·ΓɺݶΒΕͨ (ہॴతͳ)Z ͰҰக͢ΔΑ͏ͳؔ਺ h(X, Z, ξ⋆) Λ༻ ͍ͯࣄޙ෼෍Λۙࣅ͢ΔͷͰɺہॴతม෼ਪ࿦๏Ͱ͋Δɻ Ͱ͸ɺؔ਺ h(X, Z, ξ⋆) ͷٻΊํΛઆ໌͢Δɻ 39 / 51
  35. 2-3. ہॴతม෼ਪ࿦๏ ·ͣɺҎԼͷը૾ͷΑ͏ͳತؔ਺ f(x) Λߟ͑Δɻ ·ͨɺݪ఺Λ௨Δ௚ઢ ηx Λߟ͑Δɻ(ը૾ͷ λ ͸ϛε)

    ͜ͷ௚ઢ ηx ͸ؔ਺ f(x) ͷԼքʹ͸ͳ͍ͬͯΔ͕ɺ܏͖͕ η ͷ࠷ྑͷ Լք (f(x) ͱͷ͕ࠩ࠷΋খ͍͞) Ͱ͸ͳ͍ɻ 40 / 51
  36. 2-3. ہॴతม෼ਪ࿦๏ ࠷ྑͷԼք͸ҎԼͷΑ͏ʹɺf(x) ͷ઀ઢͰ͋Δɻ ͜ͷ઀ઢͷ੾ยΛ −g(η) ͱ͢Δͱɺ઀ઢͷํఔࣜ͸ ηx − g(η)

    Ͱ͋Δɻ ͜ͷ੾ย −g(η) ͸ҎԼͷΑ͏ʹͯ͠ٻΊΔ͜ͱ͕Ͱ͖Δɻ −g(η) = min x {f(x) − ηx} → g(η) = max x {ηx − f(x)} (2.55) ηx − f(x) Λ࠷େʹ͢Δ x ͸઀఺ͷ x ࠲ඪͰ͋Δɻ 41 / 51
  37. 2-3. ہॴతม෼ਪ࿦๏ ࣍ʹɺf(x) Λ g(η) Ͱදݱ͢Δ͜ͱΛߟ͑Δɻ f(x) ͷತؔ਺ੑʹΑΓɺ͋Δ x ʹ͓͍ͯɺ

    max η {ηx − g(η)} (2.56) ͸ f(x) ͷ x ʹ͓͚Δ઀఺ͷ y ࠲ඪͰ͋Γɺf(x) Ͱ͋Δɻ ͭ·Γɺ f(x) = max η {ηx − g(η)} (2.57) Ͱ͋Δɻ 42 / 51
  38. 2-3. ہॴతม෼ਪ࿦๏ (2.55) ͱ (2.56) ΑΓɺؔ਺ f(x) ͱԼքͱͳΔ௚ઢͷ੾ย −g(η) ʹ͸Ҏ

    ԼͷΑ͏ʹ૒ରؔ܎͕͋Δ͜ͱ͕Θ͔Δɻ f(x) = max η {ηx − g(η)} (2.58) g(η) = max x {ηx − f(x)} (2.59) ͦΕͰ͸ɺ͜ͷςΫχοΫΛ༻͍ͯɺϩδεςΟοΫγάϞΠυ σ(x) σ(x) = 1 1 + e−x (2.60) ͷԼքΛٻΊΔɻ 43 / 51
  39. 2-3. ہॴతม෼ਪ࿦๏ ͨͩ͠ɺϩδεςΟοΫγάϞΠυ͕ತؔ਺Ͱͳ͍ͷͰɺϩδεςΟο ΫγάϞΠυͷର਺ΛҎԼͷΑ͏ʹมܗ͢Δɻ ln σ(x) = − ln (1

    + e−x) = − ln {e−x/2(ex/2 + e−x/2)} = x 2 − ln (ex/2 + e−x/2) (2.61) ͜͜Ͱɺؔ਺ f(x) = − ln (ex/2 + e−x/2) ͸ x2 ͷತؔ਺Ͱ͋Δɻ (PRML ԋश 10.31) ͜Ε͔Βɺؔ਺ f(x) = − ln (ex/2 + e−x/2) ͷԼքΛ΋ͱΊΔɻ ·ͣɺx2 ͷತؔ਺Ͱ͋ΔͷͰɺ(2.59) ΑΓؔ਺ g(η) ͸ g(η) = max x2 {ηx2 − f(x)} (2.62) ͱͳΔɻ 44 / 51
  40. 2-3. ہॴతม෼ਪ࿦๏ ͜͜Ͱɺηx2 − f(x) Λ x2 Ͱඍ෼͢Δͱ d dx2

    [ ηx2 − f(x) ] = η − dx dx2 · d dx f(x) (2.63) ͱͳΓɺ dx dx2 = 1 2x (2.64) d dx f(x) = − d dx [ ln (ex/2 + e−x/2) ] = − 1 2 tanh x 2 (2.65) ΑΓɺ d dx2 [ ηx2 − f(x) ] = η + 1 4x tanh x 2 (2.66) ͱͳΔɻ 45 / 51
  41. 2-3. ہॴతม෼ਪ࿦๏ (2.66) ͷӈล͕ 0 ͱͳΔ x Λ ξ ͱ͢Δͱɺξ

    ͱ η ͸ η = − 1 4ξ tanh ξ 2 = − 1 2ξ [ σ(ξ) − 1 2 ] = −λ(ξ) (2.67) ͱ͍͏ؔ܎ʹ͋Δ͜ͱ͕Θ͔Δɻ (2.62) ΑΓɺg(η) ͸ g(η) = [ ηx2 − f(x) ] x=ξ,η=−λ(ξ) = −λ(ξ)ξ2 − f(ξ) = −λ(ξ)ξ2 + ln (eξ/2 + e−ξ/2) (2.68) ͱͳΔɻ 46 / 51
  42. 2-3. ہॴతม෼ਪ࿦๏ ͜ΕΑΓɺ(2.58) ͱ (2.61) ͱ (2.68) ΑΓ ln σ(x)

    = x 2 + max η {ηx2 − g(η)} ≥ x 2 − λ(ξ)x2 + λ(ξ)ξ2 − ln (eξ/2 + e−ξ/2) = x 2 − λ(ξ)x2 + λ(ξ)ξ2 − ξ 2 + ln σ(ξ) = 1 2 (x − ξ) − λ(ξ)(x2 − ξ2) + ln σ(ξ) (2.69) ͱͳΓɺର਺ͷ୯ௐ૿ՃੑΑΓɺσ(x) ͷԼք͸ σ(x) ≥ σ(ξ) exp { 1 2 (x − ξ) − λ(ξ)(x2 − ξ2) } (2.70) ͱͳΔɻ 47 / 51
  43. 2-4. ม෼ϩδεςΟοΫճؼ ͦΕͰ͸ɺ(2.70) Λ༻͍ͯϩδεςΟοΫճؼͷม෼ਪ࿦Λߦ͏ɻ ·ͣɺϩδεςΟοΫճؼͷ໬౓ؔ਺ p(t|x, w) ͸ p(t|x, w)

    =σ(a)t{1 − σ(a)}1−t = ( 1 1 + e−a )t ( 1 − 1 1 + e−a )1−t = 1 (1 + e−a)t e−a(1−t) (1 + e−a)1−t =eat e−a 1 + e−a = eat 1 1 + e−(−a) = eatσ(−a) (2.71) ͱͳΔɻ ͜͜Ͱɺa = wTϕ Ͱ͋Δɻ ·ͨɺύϥϝʔλ w ͷࣄલ෼෍ΛҎԼͷΑ͏ʹΨ΢ε෼෍ͰԾఆ͢Δɻ p(w) = N(w|m0 , S0 ) (2.72) ͜͜Ͱɺm0 , S0 ͸ϋΠύʔύϥϝʔλɻ 48 / 51
  44. 2-4. ม෼ϩδεςΟοΫճؼ ೖྗσʔλͷू߹ X = {x1 , x2 , ·

    · · , xN } ͱͦΕͧΕʹରԠ͢Δ໨ඪม ਺ͷू߹ t = {t1 , t2 , · · · , tN } Λ༻ҙ͢Δɻ ڭࢣσʔλҰͭҰ͕ͭ෼෍ (2.71) ͔Βಠཱʹੜ੒͞Ε͍ͯΔͱ͢Δͱɺ ໬౓ؔ਺ p(t|X, w) ͸ҎԼͷΑ͏ʹͳΔɻ p(t|X, w) = N ∏ n=1 p(tn |xn , w) (2.73) ࠓճٻΊ͍ͨͷ͸ɺࣄޙ෼෍ p(w|t, X) Ͱ͋ΓɺҎԼͷࣜͰදͤΔɻ p(w|t, X) = p(w)p(t|X, w) ∫ p(w)p(t|X, w) dw (2.74) ͜ͷ (2.74) ͷӈลͷ෼฼͸໬౓ؔ਺͕ϩδεςΟοΫγάϞΠυͷੵ ʹͳ͍ͬͯΔͷͰɺੵ෼Ͱ͖ͳ͍ɻ 49 / 51
  45. 2-4. ม෼ϩδεςΟοΫճؼ ͦ͜Ͱɺෆ౳ࣜ (2.70) Λ࢖͏ͱҎԼͷΑ͏ʹͳΔɻ p(w)p(t|X, w) =p(w) N ∏

    n=1 eantn σ(−an ) ≥p(w) N ∏ n=1 eantn σ(ξn ) exp {(−an − ξn )/2 − λ(ξn )(a2 n − ξ2 n )} =p(w) N ∏ n=1 σ(ξn ) exp {an tn − (an + ξn )/2 − λ(ξn )(a2 n − ξ2 n )} (2.75) ͜͜Ͱɺan = wTϕn Ͱ͋Δɻ 50 / 51
  46. 2-4. ม෼ϩδεςΟοΫճؼ ͜͜Ͱɺ(2.75) ͷ྆ลͷର਺ΛऔΔͱ ln {p(w)p(t|X, w)} ≥ ln p(w)

    + N ∑ n=1 [ ln σ(ξn ) + wTϕn tn − (wTϕn + ξn )/2 − λ(ξn )([wTϕn ]2 − ξ2 n ) ] (2.76) ͱͳΓɺ(2.76) ͷӈล͸ w ͷ 2 ࣍ࣜʹͳ͍ͬͯΔͷͰɺp(w)p(t|X, w) ͷԼք͸Ψ΢ε෼෍ͱͳΔɻ ln {p(w)p(t|X, w)} ≥ q(w) = N(w|mN , SN ) (2.77) ͜͜ͰɺmN , SN ͸ҎԼͰఆٛ͞ΕΔɻ mN = SN ( S−1 0 m0 + N ∑ n=1 (tn − 1/2)ϕn ) (2.78) S−1 N = S−1 0 + 2 N ∑ n=1 λ(ξn )ϕn ϕT n (2.79) Ψ΢ε෼෍ʹۙࣅͰ͖ͨͷͰɺ(2.74) ͷ෼฼͸ੵ෼͕ՄೳʹͳΓɺࣄޙ ෼෍͕ٻ·Δɻ 51 / 51