Upgrade to Pro — share decks privately, control downloads, hide ads and more …

PRMLセミナー

Sponsored · Your Podcast. Everywhere. Effortlessly. Share. Educate. Inspire. Entertain. You do you. We'll handle the rest.
Avatar for gucchi gucchi
February 25, 2019

 PRMLセミナー

Avatar for gucchi

gucchi

February 25, 2019
Tweet

More Decks by gucchi

Other Decks in Science

Transcript

  1. 0. ࠓճͷηϛφʔʹ͍ͭͯ ࠓճͷηϛφʔͰ͸ɺPRML ͷୈࡾষͷઢܗճؼϞσϧͱୈ࢛ষͷઢܗ ࣝผϞσϧ (ಛʹϩδεςΟοΫճؼ) Λத৺ʹ͓࿩͍ͨ͠͠ͱࢥ͍ ·͢ɻ ·ͨɺ͜ΕΒͷ࿩୊Λઆ໌͢ΔͨΊʹඞཁͳ༧උ஌ࣝΛղઆ͠·͢ɻ (PRML

    ͷୈҰষͱୈೋষʹରԠ) ͳͷͰɺ݁Ռతʹ PRML ্רͷ΋ͬͱ΋ॏཁͳ࿩୊Λղઆ͢Δ͜ͱʹ ͳΓ·͢ɻ ͳ͓஫ҙ఺ͱͯ͠ɺຊεϥΠυͷࣜ൪߸ͱ PRML ͷࣜ൪߸͸ҟͳΓ· ͢ͷͰɺ͝஫ҙ͍ͩ͘͞ɻ 2 / 74
  2. ໨࣍ 1. ༧උ஌ࣝ 1-1. ؆୯ͳճؼͷྫ 1-2. ֬཰࿦ͱ֬཰෼෍ 1-3. ࠷໬ਪఆͱϕΠζਪఆ 2.

    ճؼ໰୊ 2-1. ઢܗجఈؔ਺Ϟσϧ 2-2. ઢܗجఈؔ਺Ϟσϧͷ࠷໬ਪఆ 2-3. ϕΠζઢܗճؼ 3. ෼ྨ໰୊ 3-1. ϩδεςΟοΫճؼ 3-2. ϩδεςΟοΫճؼͷ࠷໬ਪఆ 3-3. ϕΠζϩδεςΟοΫճؼ 3 / 74
  3. 1. ༧උ஌ࣝ ػցֶशɺಛʹͦͷதͰ΋ڭࢣ͋ΓֶशͰ͸ɺ·ͣೖྗσʔλͷू߹ {x1 , x2 , · · ·

    , xN } ͱͦΕͧΕʹରԠ͢Δ໨ඪϕΫτϧͷू߹ {t1 , t2 , · · · , tN } Λ༻ҙ͢Δɻ(܇࿅σʔλɺ·ͨ͸ڭࢣσʔλ) ༻ҙͨ͠܇࿅σʔλΛ༻͍ͯɺೖྗσʔλ͔Β໨ඪϕΫτϧΛ༧ଌ͢Δ ؔ਺ y(x) Λ࡞Δɻ(ֶश) ֶशऴྃޙɺະ஌ͷσʔλ x ͷ໨ඪϕΫτϧΛ y(x) Ͱ༧ଌ͢Δ ֤ೖྗϕΫτϧΛ༗ݶݸͷ཭ࢄతͳΧςΰϦʹׂΓ౰ͯΔ৔߹ (ྫ͑ ͹ɺखॻ͖਺ࣈͷೝࣝ) ΛΫϥε෼ྨͱ͍͍ɺग़ྗ͕࿈ଓม਺ͷ৔߹ Λճؼͱ͍͏ɻ ·ͣ͸ճؼͷ؆୯ͳྫʹ͍ͭͯߟ͑Δ 4 / 74
  4. 1-1. ؆୯ͳճؼͷྫ ܇࿅σʔλͱͯ͠ɺN ݸͷೖྗ x = (x1 , x2 ,

    · · · , xN )T ͱͦΕͧΕʹର Ԡ͢Δ N ݸͷ໨ඪม਺ t = (t1 , t2 , · · · , tN )T Λ༻ҙ͢Δɻ(ճؼͳͷͰɺ ग़ྗ tn ͸࿈ଓతͳ஋ΛͱΔ) tn ͸ҎԼͷΑ͏ʹ sin(2πxn ) ʹΨ΢ε෼෍ (ޙ΄Ͳઆ໌͢Δ) ʹै͏ϥ ϯμϜϊΠζ ϵ ΛՃ͑ͨ΋ͷͱ͢Δɻ(෇࿥ A ࢀߟ) tn = sin(2πxn ) + ϵ (1.1) ճؼͷ໨త͸܇࿅σʔλ (x, t) Λ࢖ͬͯɺ৽ͨͳೖྗ ˆ x ͕༩͑ΒΕͨ࣌ ͷग़ྗ ˆ t ΛٻΊΔ͜ͱͰ͋Δɻ 5 / 74
  5. 1-1. ؆୯ͳճؼͷྫ Լͷਤ͸܇࿅σʔλͷ਺ N = 10 ͷ৔߹ͷྫͰ͋Δɻ(੨ؙ͕܇࿅ σʔλ) ·ͨɺ྘ͷۂઢ͸ sin(2πx)

    Ͱ͋Δɻ զʑͷ໨త͸܇࿅σʔλ͔ΒͰ͖Δ͚ͩਖ਼͘͠྘ͷۂઢΛ࠶ݱ͢Δࣄ Ͱ͋Δɻ 6 / 74
  6. 1-1. ؆୯ͳճؼͷྫ ͜Ε͔Β܇࿅σʔλΛ༻͍ͯɺະ஌ͷೖྗʹର͢Δग़ྗΛ༧ଌΛߦ͏ɻ ͔͠͠༗ݶݸ (N ݸ) Ͱ͋Δ͕Ώ͑ɺ༧ଌ஋ ˆ t ʹ͸ෆ࣮֬ੑ͕͋Γɺͦ

    ͷෆ࣮֬ੑͷఆྔతͳදݱΛ༩͑Δ࿮૊Έ͸ޙ΄Ͳಋೖ͢Δɻ ͱΓ͋͑ͣ͜ͷઅͰ͸ɺҎԼͷΑ͏ͳଟ߲ࣜΛ࢖ͬͯϑΟοςΟϯάΛ ߦ͍ɺ༧ଌΛߦ͏͜ͱΛߟ͑Δɻ y(x, w) = w0 + w1 x + w2 x2 + · · · + wM xM = M ∑ j=0 wj xj (1.2) ܇࿅σʔλ (x, t) Λ࢖ͬͯɺଟ߲ࣜͷύϥϝʔλ w = (w0 , w1 , · · · , wM )T Λద੾ʹνϡʔχϯά͢Δɻ ͦ͜ͰɺҎԼͷޡࠩؔ਺ E(w) Λ࠷খʹ͢ΔΑ͏ͳ w(= w⋆) ΛٻΊΔ ͜ͱΛߟ͑Δɻ(ޙ΄Ͳ֬཰࿦Λ༻͍Δ͜ͱͰɺޡࠩؔ਺ͷ࠷খԽ͸࠷ ໬ਪఆͷ݁ՌͰ͋Δ͜ͱΛݟΔ) E(w) = 1 2 N ∑ n=1 {y(xn , w) − tn }2 (1.3) 7 / 74
  7. 1-1. ؆୯ͳճؼͷྫ ্ͷਤ͸ଟ߲ࣜͷ࣍ݩ M = 0, 1, 3, 9 ͷϑΟοςΟϯά݁ՌͰ͋Δɻ(྘

    ͕ sin(2πx) Ͱɺ੺͕ y(x, w⋆)) ͜ͷதͰ͸ɺM = 3 ͕Ұ൪ sin(2πx) ʹ౰ͯ͸·͍ͬͯΔΑ͏ʹݟ͑Δɻ M = 9 Ͱ͸ɺE(w⋆) = 0 ͕ͩɺsin(2πx) ʹ͸౰ͯ͸·͍ͬͯͳ͍ɻ(ա ֶश) 8 / 74
  8. 1-1. ؆୯ͳճؼͷྫ ෳࡶͳϞσϧ (ͨͱ͑͹ M = 9) ΛݶΒΕͨ܇࿅σʔλ਺ (ྫ͑͹ N

    = 10) Λ༻͍ͯɺաֶश͕ى͖ͳ͍Α͏ʹ͢ΔͨΊʹਖ਼ଇԽΛߦ͏ɻ աֶश͕ى͖͍ͯΔ࣌͸ɺύϥϝʔλ w⋆ ͷ੒෼͕େ͖ͳਖ਼ෛͷ਺ʹͳ Δ܏޲͕͋ΔͨΊɺҎԼͷΑ͏ͳޡࠩؔ਺Λߟ͑Δɻ E(w) = 1 2 N ∑ n=1 {y(xn , w) − tn }2 + λ 2 ∥w∥2 (1.4) ͜͜ͰɺϊϧϜ ∥w∥2 = wT w = w2 0 + w2 1 + · · · w2 M ɺλ ͸ਖ਼ͷύϥϝʔ λɻ(ਖ਼ଇԽ߲ͱೋ৐ޡࠩͷ࿨ͷ߲ͷ૬ରతͳॏཁ౓Λௐઅ) ͜ͷޡࠩؔ਺Λ࢖༻͢Δͱɺύϥϝʔλͷઈର஋͕େ͖͘ͳΔͱଛࣦؔ ਺΋େ͖͘ͳΔͷͰɺύϥϝʔλͷઈର஋͕େ͖͘ͳΒͳ͍Α͏ʹ ϑΟοςΟϯά͞ΕΔɻ 9 / 74
  9. 1-1. ؆୯ͳճؼͷྫ ্ͷਤ͸ɺM = 9 Ͱ (1.4) ͷޡࠩؔ਺Λ༻͍ͯɺϑΟοςΟϯάͨ݁͠ ՌͰ͋Δɻ(λ =

    e−18 ͱ λ = 1) λ = e−18 Ͱ͸ɺλ = 0 ͷ࣌ʹൺ΂ͯաֶश͕཈੍͞Ε͍ͯΔ͜ͱ͕Θ ͔Δɻ ·ͨɺλ = 1 Ͱ͸ (1.4) ͷӈล 2 ߲໨ͷॏཁ౓্͕͕Γ͗ͯ͢ɺύϥ ϝʔλ w⋆ ͷ੒෼͕ 0 ʹ͖͍ۙͮ͗ͯ͢Δɻ 10 / 74
  10. 1-2. ֬཰࿦ͱ֬཰෼෍ ύλʔϯೝࣝʹ͓͍ͯɺॏཁͳෆ࣮֬ੑΛఆྔతʹධՁ͢ΔͨΊʹ֬཰ ࿦Λಋೖ͢Δɻ ֬཰ม਺ X, Y Λߟ͑ɺ͜ΕΒ͸ X =

    xi (i = 1, 2, · · · , M)ɺ Y = yj (j = 1, 2, · · · , L) ΛͱΔͱ͠ɺX = xi , Y = yj ͱͳΔ֬཰ (ಉ࣌ ֬཰) Λ p(X = xi , Y = yj ) ͱ͔͘ɻ X = xi ͱͳΔ֬཰ p(X = xi ) ͸ɺp(X = xi , Y = yj ) Λ༻͍ͯҎԼͷ Α͏ʹ͔͚Δɻ(Ճ๏ఆཧ) p(X = xi ) = L ∑ j=1 p(X = xi , Y = yj ) (1.5) ·ͨɺX = xi ͕༩͑ΒΕ্ͨͰɺY = yj ͱͳΔ֬཰ (৚݅෇͖֬཰) Λ p(Y = yj |X = xi ) ͱ͢ΔͱɺҎԼͷΑ͏ͳؔ܎͕ࣜ੒ཱ͢Δɻ(৐๏ ఆཧ) p(X = xi , Y = yj ) = p(Y = yj |X = xi )p(X = xi ) (1.6) 12 / 74
  11. 1-2. ֬཰࿦ͱ֬཰෼෍ ৐๏ఆཧͱಉ࣌֬཰ͷରশੑ p(X, Y ) = p(Y, X) Λ༻͍ΔͱɺϕΠζͷ

    ఆཧ͕ಋ͚Δɻ p(Y |X) = p(X|Y )p(Y ) p(X) (1.7) ͜͜Ͱɺp(Y ) Λࣄલ֬཰ (X ͕༩͑ΒΕΔલͷ֬཰) ͱ͍͍ɺp(Y |X) Λࣄޙ֬཰ (X ͕༩͑ΒΕͨޙͷ֬཰) ͱ͍͏ɻ ϕΠζͷఆཧ͸ࣄલ֬཰ p(Y ) ʹ໬౓ p(X|Y ) Λ͔͚Δͱɺࣄޙ֬཰ p(X|Y ) ʹͳΔͱ͍͏͜ͱΛද͢ (p(X) ͸ p(Y |X) ͕ Y ʹରͯ͠ن֨ Խ͞Ε͍ͯΔ͜ͱΛอূ͢Δن֨Խఆ਺)ɻ ͞Βʹɺಉ࣌෼෍ p(X, Y ) ͕ҎԼͷΑ͏ʹपล෼෍ͷੵͰදͤΔ࣌ɺX ͱ Y ͸ಠཱͰ͋Δͱ͍͏ɻ p(X, Y ) = p(X) p(Y ) (1.8) 13 / 74
  12. 1-2. ֬཰࿦ͱ֬཰෼෍ ͜Ε·Ͱ͸཭ࢄతͳ֬཰ม਺ʹ͍ͭͯߟ͖͑ͯͨɻ࣍ʹ࿈ଓతͳ֬཰ ม਺ͷ෼෍ʹ͍ͭͯߟ͑Δɻ ֬཰ม਺ x ͕ (x, x +

    δx) ͷൣғʹೖΔ֬཰͕ δx → 0 ͷ࣌ʹ p(x) δx ͱ ༩͑ΒΕΔ࣌ɺp(x) Λ֬཰ີ౓ͱ͍͏ɻ ͜ͷ࣌ɺม਺ x ͕۠ؒ (a, b) ʹ͋Δ֬཰͸ҎԼͷࣜͰ༩͑ΒΕΔɻ p(x ∈ (a, b)) = ∫ b a p(x) dx (1.9) ·ͨɺ֬཰ͷඇෛੑͱن֨ԽΑΓɺp(x) ͸ҎԼͷੑ࣭Λ࣋ͭɻ p(x) ≥ 0 (1.10) ∫ ∞ −∞ p(x) dx = 1 (1.11) 14 / 74
  13. 1-2. ֬཰࿦ͱ֬཰෼෍ ֬཰࿦Ͱͷॏཁͳܭࢉͱͯ͠ɺॏΈ෇͖ฏۉ͕͋Δɻ ࿈ଓతͳ֬཰ม਺ x ʹରͯ͠ɺؔ਺ f(x) ͷ֬཰෼෍ p(x) ͷԼͰͷฏۉ

    ஋͸ҎԼͷΑ͏ʹͳΔɻ E[f] = ∫ p(x)f(x) dx (1.12) ͜͜Ͱه๏ͱͯ͠ɺͲͷม਺ʹ͍ͭͯ࿨ (΋͘͠͸ੵ෼) Λͱ͍ͬͯΔ ͷ͔ΛఴࣈͰද͢͜ͱʹ͢Δɻྫ͑͹ɺҎԼͷྔ͸ x ͍ͭͯ࿨ (΋͘͠ ͸ੵ෼) Λͱͬͨ΋ͷͰ͋Δɻ Ex [f(x, y)] (1.13) 15 / 74
  14. 1-2. ֬཰࿦ͱ֬཰෼෍ ҎԼ͕ؔ਺ f(x) ͷ֬཰෼෍ p(x) ͷԼͰͷ෼ࢄͰ͋Δɻ(ؔ਺ f(x) ͕ͦ ͷฏۉ஋

    E[f(x)] ͷपΓͰͲΕ͚ͩόϥ͍͍ͭͯΔͷ͔Λද͢) var[f] = E [ (f(x) − E[f(x)])2 ] (1.14) ಛʹ f(x) = x ͷ࣌͸ҎԼ͕੒ཱ͢Δɻ var[x] = E[x2] − E[x]2 (1.15) ·ͨɺ2 ͭͷ֬཰ม਺ x ͱ y ͷؒͷڞ෼ࢄ (2 ͭͷ֬཰ม਺ͷґଘੑΛ ද͢) ͸ҎԼͷΑ͏ʹఆٛ͞ΕΔɻ cov[x, y] = Ex,y [ {x − E[x]}{y − E[y]} ] = Ex,y [xy] − E[x]E[y] (1.16) 2 ͭͷ֬཰ม਺ x ͱ y ͕ಠཱͷ࣌ɺcov[x, y] = 0 ͱͳΔɻ 16 / 74
  15. 1-2. ֬཰࿦ͱ֬཰෼෍ Ψ΢ε෼෍ͷॏཁͳੑ࣭ͱͯ͠ɺx ͷฏۉ஋Λ෼ࢄ͕ͦΕͧΕ µ ͱ σ2 Ͱ༩͑ΒΕΔ͜ͱͰ͋Δɻ E[x] =

    ∫ ∞ −∞ N(x|µ, σ2)x dx = µ (1.18) var[x] = E[x2] − E[x]2 = σ2 (1.19) 18 / 74
  16. 1-2. ֬཰࿦ͱ֬཰෼෍ ࣍ʹɺҎԼͷ D ࣍ݩͷϕΫτϧ x ʹର͢ΔଟมྔΨ΢ε෼෍Λಋೖ ͢Δɻ N(x|µ, Σ)

    = 1 (2π)D/2 1 |Σ|1/2 exp { − 1 2 (x − µ)TΣ−1(x − µ) } (1.20) ͜͜Ͱɺµ Λ D ࣍ݩͷฏۉϕΫτϧͱ͠ɺΣ Λ D × D ͷڞ෼ࢄߦྻͱ ͢Δɻ ͜ͷ৔߹Ͱ΋ฏۉͱڞ෼ࢄ͸ҎԼͷੑ࣭Λຬͨ͢ɻ E[x] = ∫ N(x|µ, Σ)x dx = µ (1.21) cov[x] = E[(x − E[x])(x − E[x])T] = Σ (1.22) 19 / 74
  17. 1-2. ֬཰࿦ͱ֬཰෼෍ Ҏ߱ͷٞ࿦ͰΑ͘࢖͏Ψ΢ε෼෍ͷެࣜΛ঺հ͢Δɻ ҎԼͷपล֬཰ p(x) ͱ৚݅෇͖֬཰ p(y|x) ͕༩͑ΒΕ͍ͯΔͱ͢Δɻ p(x) =

    N(x|µ, Λ−1) (1.23) p(y|x) = N(y|Ax + b, L−1) (1.24) ͜͜Ͱɺµ, A, b ͸ฏۉʹؔ͢ΔύϥϝʔλͰɺΛ, L ͸ਫ਼౓ߦྻͰ ͋Δɻ ͜ͷ࣌ɺपล֬཰ p(y) ͱ৚݅෇͖֬཰ p(x|y) ͸ҎԼͷΑ͏ʹͳΔɻ p(y) = N(y|Aµ + b, L−1 + AΛ−1AT) (1.25) p(x|y) = N(x|Σ{ATL(y − b) + Λµ}, Σ) (1.26) ͜͜ͰɺΣ ͸ҎԼͰఆٛ͞ΕΔɻ Σ = (Λ + ATLA)−1 (1.27) (ৄ͍͠ಋग़͸ PRML ͷ 2.3.3 Λࢀߟ) 20 / 74
  18. 1-2. ֬཰࿦ͱ֬཰෼෍ ·ͨɺಉ࣌෼෍ p(xa , xb ) ͕ҎԼͰ༩͑ΒΕ͍ͯͨͱ͢Δɻ p(xa ,

    xb ) = N(x|µ, Σ) (1.28) ͜͜Ͱɺx = (xa , xb )T Ͱ͋Δɻ ͜ͷͱ͖ɺपล෼෍ p(xa ) ͸ҎԼͷΑ͏ͳΨ΢ε෼෍ʹͳΔ͜ͱ͕஌Β Ε͍ͯΔɻ(ৄ͍͠ಋग़͸ PRML ͷ 2.3.2 Λࢀߟ) p(xa ) = ∫ p(xa , xb ) dxb = N(xa |µa , Σaa ) (1.29) ͜͜Ͱɺµa ͱ Σaa ͸ҎԼͷΑ͏ʹఆٛ͞ΕΔɻ µ = ( µa µb ) , Σ = ( Σaa Σab Σba Σbb ) (1.30) 21 / 74
  19. 1-3. ࠷໬ਪఆͱϕΠζਪఆ ϕΠζਪఆΛଟ߲ࣜۂઢϑΟοςΟϯάΛྫʹઆ໌͢Δɻ ϕΠζతͳ֬཰ղऍͰ͸ɺ·ͣσʔλΛ؍ଌ͢Δલʹɺզʑͷύϥϝʔ λ w ΁ͷԾઆΛࣄલ֬཰ p(w) ͷܗͰऔΓࠐΜͰ͓͘ɻ ࣮ࡍʹೖྗσʔλ

    x = (x1 , x2 , · · · , xN )T ͱ໨ඪม਺ t = (t1 , t2 , · · · , tN )T Λ༻͍ͯɺ໬౓ؔ਺ p(t|x, w) ΛٻΊΔɻ ϕΠζͷఆཧΑΓɺࣄޙ֬཰ p(w|t, x) ΛٻΊΔɻ p(w|t, x) = p(t|x, w)p(w) p(t) (1.31) 22 / 74
  20. 1-3. ࠷໬ਪఆͱϕΠζਪఆ ϕΠζਪఆͰ͸ɺ܇࿅σʔλ x, t ͱະ஌ͷೖྗσʔλ x ͕༩͑ΒΕͨ ࣌ͷ༧ଌ t

    ͷ֬཰ p(t|x, t, x) ͕ҎԼͷΑ͏ʹٻ·Δɻ p(t|x, t, x) = ∫ p(t|x, w)p(w|t, x) dw (1.32) (͜ͷ༧ଌ෼෍ͷಋग़ํ๏͸ҎԼͷ Qiita هࣄͰ·ͱΊͯ·͢ɻ͝ཡ͘ ͍ͩ͞ɻ͍͍ͦͯ͠Ͷ͍ͩ͘͞ɻ) https://qiita.com/gucchi0403/items/bfffd2586272a4c05a73 23 / 74
  21. 1-3. ࠷໬ਪఆͱϕΠζਪఆ ස౓ओٛతͳ֬཰ղऍͱϕΠζతͳ֬཰ղऍͰɺ໬౓ؔ਺ p(D|w) ͷ໾ ׂ͕มΘΔɻ ස౓ओٛతͳ֬཰ղऍͰ͸ɺw ͸͋Δݻఆ͞Εͨύϥϝʔλͱͯ͠ଊ ͑ɺ໬౓ؔ਺ p(D|w)

    Λ࠷େʹ͢ΔΑ͏ͳ w Λਪఆྔͱͯ͠ఆΊΔɻ (w ͸ 1 ͭʹఆ·Δ) ϕΠζతͳ֬཰ղऍͰ͸ɺ໬౓ؔ਺͸ࣄલ෼෍Λ؍ଌσʔλ D ʹΑͬ ͯɺࣄޙ෼෍ʹߋ৽͢ΔͨΊʹ࢖͏ (ࣄޙ෼෍ p(w|D) ͸ w ͷ֬཰෼෍ Ͱ͋Γɺw ͸ෆ࣮֬ੑΛ΋ͭ) ޙऀͷ໬౓ؔ਺ͷ࢖༻ํ๏ͷ۩ମྫ͸ޙ΄Ͳ঺հ͢Δɻ 24 / 74
  22. 2-1. ઢܗجఈؔ਺Ϟσϧ ͸͡Ίʹઆ໌ͨ͠؆୯ͳճؼϞσϧ͸ɺग़ྗ y(x, w) ΛҎԼͷΑ͏ʹೖ ྗม਺ x ͷଟ߲ࣜͱ͢Δ΋ͷͰ͋ͬͨɻ y(x,

    w) = w0 + w1 x + w2 x2 + · · · + wM xM = M ∑ j=0 wj xj (2.1) ͜͜Ͱɺw = (w0 , w1 , · · · , wM )T ͸ύϥϝʔλϕΫτϧͰ͋Δɻ ͜ͷষͰ͸ɺҰൠԽͱͯ͠ೖྗΛϕΫτϧ x ͱ͠ɺඇઢܗͳجఈؔ਺ ϕj (x) (j = 1, · · · , M − 1) Ͱؔ਺ y(x, w) ΛҎԼͷΑ͏ʹల։͢Δ͜ͱ Λߟ͑Δɻ y(x, w) = w0 + M−1 ∑ j=1 wj ϕj (x) (2.2) 26 / 74
  23. 2-1. ઢܗجఈؔ਺Ϟσϧ ·ͨࣜΛ୹ॖ͢ΔͨΊɺϕ0 (x) = 1 ͱ͠ɺ ϕ(x) = (ϕ0

    (x), ϕ1 (x), · · · , ϕM−1 (x))T ͱఆٛ͢Δͱɺ(2.2) ͸ y(x, w) = M−1 ∑ j=0 wj ϕj (x) = wTϕ(x) (2.3) ͱॻ͚Δɻ ྫ͑͹ɺجఈؔ਺ ϕj (x) ͱͯ͠ҎԼͷΨ΢εجఈؔ਺͕͋Δɻ ϕj (x) = exp { − (x − µj )2 2s2 } (2.4) ͜ͷجఈؔ਺͸ x = µj Λத৺ʹͯ͠ɺ෼ࢄ s2 ʹΑͬͯࢧ഑͞ΕΔ޿͕ ΓΛ࣋ͭΨ΢εجఈؔ਺Ͱ͋Δɻ Ҏ߱͸Ұൠͷجఈؔ਺ ϕj (x) Λ༻͍ͯٞ࿦͢Δɻ 27 / 74
  24. 2-2. ઢܗجఈؔ਺Ϟσϧͷ࠷໬ਪఆ ॳΊͷষͰઆ໌ͨ͠ճؼ໰୊Ͱ͸ɺೋ৐࿨ޡࠩΛ࠷খʹ͢ΔΑ͏ʹσʔ λ఺Λଟ߲ࣜؔ਺ʹϑΟοςΟϯάͤͨ͞ɻ ࠓճ͸ɺ໨ඪม਺ t ͕ҎԼͷΑ͏ʹܾఆ࿦తͳؔ਺ y(x, w) ͱظ଴஋͕

    0 Ͱਫ਼౓͕ β > 0 ͷΨ΢ε෼෍ N(ϵ|0, β−1) ʹै͏ ϵ ͷ࿨Ͱॻ͚Δͱ ͢Δɻ t = y(x, w) + ϵ (2.5) ϵ = t − y(x, w) ΑΓɺҎԼͷΑ͏ʹ໨ඪม਺ t ΋Ψ΢ε෼෍ʹै͏ɻ p(t|x, w, β) = N(t − y(x, w)|0, β−1) = N(t|y(x, w), β−1) (2.6) 28 / 74
  25. 2-2. ઢܗجఈؔ਺Ϟσϧͷ࠷໬ਪఆ ͜͜Ͱɺೖྗσʔλͷू߹ X = {x1 , x2 , ·

    · · , xN } ͱͦΕͧΕʹରԠ͢ Δ໨ඪม਺ͷू߹ {t1 , t2 , · · · , tN } Λ༻ҙ͠ɺ໨ඪม਺Λॎʹฒ΂ͨϕ Ϋτϧ t = (t1 , t2 , · · · , tN )T Λఆٛ͢Δɻ ؍ଌ఺ {t1 , t2 , · · · , tN } ͕෼෍ (2.6) ͔Βಠཱʹੜ੒͞Εͨͱ͢Δͱɺ໬ ౓ؔ਺͸ҎԼͷΑ͏ʹݸʑͷσʔλ఺ͷ෼෍ͷੵͰॻ͚Δɻ p(t|X, w, β) = N ∏ n=1 N(tn |y(xn , w), β−1) (2.7) ͜͜ͰɺΨ΢ε෼෍ N(x|µ, σ2) ͸ N(x|µ, σ2) = 1 (2πσ2)1/2 exp { − 1 2σ2 (x − µ)2 } (2.8) Ͱ͋Δɻ 29 / 74
  26. 2-2. ઢܗجఈؔ਺Ϟσϧͷ࠷໬ਪఆ ໬౓ؔ਺ͷ (2.7) Λ࠷େԽ͢ΔΑ͏ͳύϥϝʔλΛٻΊΔ୅ΘΓʹ໬౓ ؔ਺ͷର਺Λ࠷େԽ͢ΔΑ͏ͳύϥϝʔλΛٻΊΔɻ ·ͣɺ ln { N(tn

    |y(xn , w), β−1) } = ln [ β1/2 (2π)1/2 exp { − β 2 (tn − y(xn , w))2 }] = 1 2 ln β − 1 2 ln (2π) − β 2 (tn − y(xn , w))2 (2.9) ΑΓɺln p(t|X, w, β) ͸ҎԼͷΑ͏ʹͳΔɻ ln p(t|X, w, β) = N ∑ n=1 ln N(tn |y(xn , w), β−1) = N ∑ n=1 [ 1 2 ln β − 1 2 ln (2π) − β 2 (tn − y(xn , w))2 ] = N 2 ln β − N 2 ln (2π) − β 2 N ∑ n=1 (tn − y(xn , w))2 (2.10) 30 / 74
  27. 2-2. ઢܗجఈؔ਺Ϟσϧͷ࠷໬ਪఆ ͜͜Ͱɺೋ৐࿨ޡࠩ ED (w) Λ ED (w) = 1

    2 N ∑ n=1 (tn − y(xn , w))2 (2.11) ͱఆٛ͢Δͱɺln p(t|X, w, β) ͸ ln p(t|X, w, β) = N 2 ln β − N 2 ln (2π) − βED (w) (2.12) ͱͳΔɻ ࠷໬ਪఆղ wML , βML ΛٻΊΔͨΊʹର਺໬౓ ln p(t|X, w, β) ͷޯ഑ ΛٻΊΔɻ ର਺໬౓ͷ w ʹର͢Δޯ഑͸ β ʹґଘ͠ͳ͍ͷͰɺઌʹ wML ΛٻΊ ͯɺͦͷ͋ͱʹ ln p(t|X, wML , β) Λ༻͍ͯ βML ΛٻΊΔ͜ͱ͕Ͱ ͖Δɻ 31 / 74
  28. 2-2. ઢܗجఈؔ਺Ϟσϧͷ࠷໬ਪఆ ·ͣɺର਺໬౓ (2.12) Λ w ʹؔͯ͠࠷େԽ͢Δ͜ͱΛߟ͑Δͱɺ (2.12) ͷӈลͷ 1,

    2 ߲໨͸ w ʹґଘ͠ͳ͍ͷͰɺ3 ߲໨ͷ −βED (w) Λ࠷େԽ͢Δ͜ͱͱ౳ՁͰ͋Δɻ β > 0 ΑΓɺର਺໬౓ (2.12) Λ w ʹؔͯ͠࠷େԽ͢Δ͜ͱ͸ೋ৐࿨ޡ ࠩ ED (w)(2.11) Λ w ʹؔͯ͠࠷খʹ͢Δ͜ͱͱ౳ՁͰ͋Δɻ 1-1 Ͱൃݟ๏తʹೋ৐࿨ޡࠩ (1.3) Λ࠷খԽ͕ͨ͠ɺೋ৐࿨ޡࠩ (1.3) ͷ ࠷খԽ͸֬཰࿦Λ༻͍Δͱ໬౓ؔ਺ΛΨ΢ε෼෍ͱԾఆͨ͠ͱ͖ͷ࠷ ໬ਪఆͷ݁ՌͰ͋Δࣄ͕Θ͔Δɻ ͦΕͰ͸࣮ࡍʹର਺໬౓ͷ w ʹର͢Δޯ഑ΛٻΊΔɻ 32 / 74
  29. 2-2. ઢܗجఈؔ਺Ϟσϧͷ࠷໬ਪఆ ର਺໬౓ͷ w ʹର͢Δޯ഑͸ y(x, w) = wTϕ(x) ΑΓɺ

    ∂ ∂w ln p(t|X, w, β) = − β ∂ ∂w ED (w) = − β 2 N ∑ n=1 ∂ ∂w (tn − wTϕ(xn ))2 =β N ∑ n=1 (tn − wTϕ(xn ))ϕ(xn ) =β { N ∑ n=1 tn ϕ(xn ) − N ∑ n=1 ϕ(xn )ϕ(xn )Tw } (2.13) ͱͳΓɺ࠷໬ਪఆղ wML ͸ҎԼͷࣜΛຬͨ͢ɻ N ∑ n=1 tn ϕ(xn ) − N ∑ n=1 ϕ(xn )ϕ(xn )TwML = 0 (2.14) 33 / 74
  30. 2-2. ઢܗجఈؔ਺Ϟσϧͷ࠷໬ਪఆ ͜͜ͰɺҎԼͷܭըߦྻ Φ Λఆٛ͢Δɻ Φ =   

       ϕ0 (x1 ) ϕ1 (x1 ) · · · ϕM−1 (x1 ) ϕ0 (x2 ) ϕ1 (x2 ) · · · ϕM−1 (x2 ) . . . . . . ... . . . ϕ0 (xN ) ϕ1 (xN ) · · · ϕM−1 (xN )       =       ϕ(x1 )T ϕ(x2 )T . . . ϕ(xN )T       (2.15) ҎԼͷ͕ࣜ੒Γཱͭࣄ͕Θ͔Δɻ ΦTΦ = N ∑ n=1 ϕ(xn )ϕ(xn )T (2.16) ΦTt = N ∑ n=1 tn ϕ(xn ) (2.17) ͜ΕΑΓɺ(2.14) ͸ҎԼͷΑ͏ʹͳΔɻ ΦTt − ΦTΦwML = 0 (2.18) 34 / 74
  31. 2-2. ઢܗجఈؔ਺Ϟσϧͷ࠷໬ਪఆ Αͬͯɺ࠷໬ਪఆղ wML ͸ wML = (ΦTΦ)−1ΦTt (2.19) ͱͳΔɻ

    ࣍ʹɺ࠷໬ਪఆղ wML Λ୅ೖͨ͠ ln p(t|X, wML , β) ͷ β ͷඍ෼Λߟ ͑Δͱ ∂ ∂β ln p(t|X, wML , β) = N 2 1 β − ED (wML ) (2.20) ͱͳΔɻ ͜ΕΑΓɺ࠷໬ਪఆղ βML ͷٯ਺͸ҎԼͷΑ͏ʹͳΔɻ 1 βML = 2 N ED (wML ) = 1 N N ∑ n=1 (tn − wT ML ϕ(xn ))2 (2.21) 35 / 74
  32. 2-2. ઢܗجఈؔ਺Ϟσϧͷ࠷໬ਪఆ ͜ΕΑΓɺ৽ͨͳೖྗϕΫτϧ x ͕༩͑ΒΕͨ࣌ͷ໨ඪม਺ t ͷ༧ଌ෼ ෍ p(t|x, wML

    , βML ) ͸ҎԼͷΑ͏ʹͳΔɻ p(t|x, wML , βML ) = N(t|y(x, wML ), β−1 ML ) (2.22) ͜͜ͰɺwML , βML ͸ (2.19) ͱ (2.21) Ͱ༩͑ΒΕΔɻ 36 / 74
  33. 2-3. ϕΠζઢܗճؼ ࣍͸ઢܗճؼϞσϧΛϕΠζతʹѻ͏͜ͱΛߟ͑Δɻ ͦ͜Ͱɺฏۉ͕ m0 Ͱڞ෼ࢄ͕ S0 ͷҎԼͷࣄલ෼෍ΛԾఆ͢Δɻ p(w) =

    N(w|m0 , S0 ) (2.23) ·ͨɺ໬౓ؔ਺͸ p(t|X, w, β) = N ∏ n=1 N(tn |y(xn , w), β−1) (2.24) Ͱ͋ΔͷͰɺࣄޙ෼෍ p(w|t) ͸ϕΠζͷఆཧʹΑΓɺҎԼͷΑ͏ʹ ͳΔɻ p(w|t) ∝ p(t|X, w, β)p(w) ∝ exp ( − β 2 N ∑ n=1 (tn − wTϕ(xn ))2 ) × exp ( − 1 2 (w − m0 )TS−1 0 (w − m0 ) ) (2.25) 37 / 74
  34. 2-3. ϕΠζઢܗճؼ (2.25) ΑΓɺࢦ਺ͷݞ͕ w ͷ 2 ࣍Ͱ͋ΔͷͰ p(w|t) ͸Ψ΢ε෼෍Ͱ

    ͋Δɻ ۩ମతʹ͸ɺp(w|t) ͸ҎԼͷΑ͏ʹͳΔɻ(PRML ͷԋश 3.7 ࢀর) p(w|t) = N(w|mN , SN ) (2.26) ͜͜ͰɺmN ͱ SN ͸ҎԼͰ͋Δɻ mN =SN (S−1 0 m0 + βΦTt) (2.27) S−1 N =S−1 0 + βΦTΦ (2.28) 38 / 74
  35. 2-3. ϕΠζઢܗճؼ ͜͜Ͱɺ࠷໬ਪఆղ wML (2.19) ͱࣄޙ෼෍ p(w|t) ͷϞʔυ wMAP (Ϟʔυͱ͸ɺp(w|t)

    Λ࠷େʹ͢Δ w) ͱࣄޙ෼෍ͷฏۉ஋ mN ͷؔ܎ Λߟ࡯͢Δɻ ·ͣɺΨ΢ε෼෍ͷϞʔυ͸ฏۉ஋ʹ౳͍͠ͱ͍͏ੑ࣭ (PRML ͷԋश 1.9 ࢀর) ͕͋ΔͷͰɺwMAP = mN Ͱ͋Δ͜ͱ͕Θ͔Δɻ ͞Βʹɺແݶʹ޿͍ࣄલ෼෍ S0 = α−1I(α → 0) Λߟ͑Δͱ S−1 N = S−1 0 + βΦTΦ → βΦTΦ (2.29) ͱͳΓɺ mN = SN (S−1 0 m0 + βΦTt) → (ΦTΦ)−1ΦTt (2.30) ͱͳΔͷͰɺ͜ͷͱ͖ wMAP = mN = wML Ͱ͋Δ͜ͱ͕Θ͔Δɻ ͭ·ΓɺԿ΋৘ใΛ࣋ͨͳ͍ (ແݶʹ޿͍) ࣄલ෼෍Λ࢖༻ͨ͠ͱ͖ͷ ࣄޙ෼෍Λ࠷େʹ͢Δύϥϝʔλ͸໬౓ؔ਺Λ࠷େʹ͢Δύϥϝʔλ ͱҰக͢Δͱ͍͏͜ͱͰ͋Δɻ 39 / 74
  36. 2-3. ϕΠζઢܗճؼ લͷষͰɺϕΠζతͳѻ͍Ͱ͸ɺ໬౓ؔ਺͸ࣄޙ෼෍Λߋ৽͢Δ΋ͷͰ ͋Δͱઆ໌͕ͨ͠ɺͦͷߋ৽ͷ༷ࢠΛྫΛ࢖ͬͯݟ͍ͯ͘ɻ ·ͣɺઃఆͱͯ͠໬౓ؔ਺ͷฏۉ஋͸ y(x, w) = w0 +

    w1 x ͱ͢Δɻ ·ͨɺڭࢣσʔλʹ͍ͭͯ͸ɺೖྗσʔλ xn ͸ −1 ͔Β 1 ͷҰ༷෼෍ ͔ΒબͼɺରԠ͢Δ໨ඪ஋ tn ͸ɺඪ४ภࠩ 0.2 Ͱฏۉ 0 ͷΨ΢εϊΠ ζ ϵ Λ༻͍ͯ tn = f(xn , a0 = −0.3, a1 = 0.5) + ϵ (2.31) ͜͜Ͱɺ f(x, a0 , a1 ) = a0 + a1 x (2.32) Ͱ͋Δɻ ͭ·Γɺ͜͜Ͱͷ໨ඪ͸ڭࢣσʔλΛ༻͍ͯύϥϝʔλ w0 , w1 ͕ a0 = −0.3, a1 = 0.5 Λ෮ݩ͢Δ͜ͱͰ͋Δɻ 40 / 74
  37. 2-3. ϕΠζઢܗճؼ ·ͨɺ໬౓ؔ਺ͷਫ਼౓͸ط஌Ͱ β = (1/0.2)2 = 25 ͱ͠ɺࣄલ෼෍͸Ҏ ԼͷΑ͏ͳ౳ํతΨ΢ε෼෍Λ༻͍ͯɺύϥϝʔλ

    α ͷ஋͸ α = 2.0 ͱ ͢Δɻ p(w) = N(w|0, α−1I) (2.33) ͜ͷઃఆͰڭࢣσʔλ͕૿͍͑ͯ͘ͱ͖ͷࣄޙ෼෍ͷߋ৽ʹ͍ͭͯݟ ͍ͯ͘ɻ 41 / 74
  38. 2-3. ϕΠζઢܗճؼ ·ͣ͸ڭࢣσʔλ͕؍ଌ͞ΕΔલͷஈ֊ͷάϥϑͰ͋Δɻ ࠨͷάϥϑ͸ࣄલ෼෍ p(w) Ͱ͋Γɺӈͷάϥϑ͸ͦͷࣄલ෼෍͔Βϥ ϯμϜʹબͼग़͞Εͨύϥϝʔλ w0 , w1

    Λ༻͍ͯɺؔ਺ y(x, w) = w0 + w1 x Λඳ͘͜ͱΛ 6 ճߦ͍ͬͯΔɻ ౰વڭࢣσʔλ͕ͳ͍ͷͰɺ6 ݸͷؔ਺͸·ͱ·Γ͕ͳ͘ɺ f(x, a0 = −0.3, a1 = 0.5) = −0.3 + 0.5x ʹ͍ۙؔ਺͸ͳ͍ɻ 42 / 74
  39. 2-3. ϕΠζઢܗճؼ ࣍͸ڭࢣσʔλ͕Ұͭ؍ଌ͞Εͨ࣌ͷάϥϑͰ͋Δɻ ࠨͷάϥϑ͸͜ͷσʔλ఺ͷ໬౓ؔ਺ p(t|x, w) Λ w ͷؔ਺ͱͯ͠ϓ ϩοτͨ͠΋ͷͰ͋Δɻന͍ेࣈ͕

    a0 = −0.3, a1 = 0.5 ͷ఺Ͱ͋Δɻ ਅΜதͷάϥϑ͸ࣄޙ෼෍ɺͭ·Γࣄલ෼෍ p(w) ʹ໬౓ؔ਺ p(t|x, w) Λ͔͚ͯن֨Խͨ͠΋ͷͰ͋Γɺӈͷάϥϑ͸ͦͷࣄޙ෼෍͔Βϥϯμ Ϝʹબͼग़͞Εͨύϥϝʔλ w0 , w1 Λ༻͍ͯɺؔ਺ y(x, w) = w0 + w1 x Λඳ͘͜ͱΛ 6 ճߦ͍ͬͯΔɻ ·ͩڭࢣσʔλ͕গͳ͍ͷͰɺ6 ݸͷؔ਺͸·ͱ·Γ͕ͳ͘ɺ f(x, a0 = −0.3, a1 = 0.5) = −0.3 + 0.5x ʹ͍ۙؔ਺͸ͳ͍͕ɺ͢΂ͯ ͷઢ͕σʔλ఺ (੨ؙ) ͷۙ͘Λ௨͍ͬͯΔ͜ͱʹ஫ҙɻ 43 / 74
  40. 2-3. ϕΠζઢܗճؼ ࣍͸ೋͭ໨ͷڭࢣσʔλ͕؍ଌ͞Εͨ࣌ͷάϥϑͰ͋Δɻ ࠨͷάϥϑ͸ಉ͘͡ɺ͜ͷσʔλ఺ͷ໬౓ؔ਺ p(t|x, w) Ͱ͋Δɻ ਅΜதͷάϥϑ͸σʔλ఺͕Ұݸͩͬͨ࣌ͷࣄޙ෼෍Λࣄલ෼෍ͱ͠ ͯɺͦΕʹ໬౓ؔ਺Λ͔͚ͨ΋ͷͰ͋Γɺӈͷάϥϑ͸ͦͷࣄޙ෼෍͔ ΒϥϯμϜʹબͼग़͞Εͨύϥϝʔλ

    w0 , w1 Λ༻͍ͯɺؔ਺ y(x, w) = w0 + w1 x Λඳ͘͜ͱΛ 6 ճߦ͍ͬͯΔɻ ࣄޙ෼෍͕ a0 = −0.3, a1 = 0.5 ෇ۙʹ࠷େΛ࣋ͪɺ6 ݸͷؔ਺͕ f(x, a0 = −0.3, a1 = 0.5) = −0.3 + 0.5x ෇ۙʹ·ͱ·Γ࢝Ίɺ͢΂ͯ ͷઢ͕ 2 ͭͷσʔλ఺ (੨ؙ) ͷۙ͘Λ௨͍ͬͯΔɻ 44 / 74
  41. 2-3. ϕΠζઢܗճؼ ࠷ޙʹ 20 ݸͷσʔλ͕؍ଌ͞Εͨ࣌ͷάϥϑͰ͋Δɻ ࠨͷάϥϑ͸ɺ20 ݸ໨ͷσʔλ఺ͷ໬౓ؔ਺ p(t|x, w) Ͱ͋Δɻ

    ਅΜதͷάϥϑ͸ 20 ݸ໨ͷσʔλ͢΂ͯΛؚΜͩࣄޙ෼෍Ͱ͋Γɺӈ ͷάϥϑ͸ͦͷࣄޙ෼෍͔ΒϥϯμϜʹબͼग़͞Εͨύϥϝʔλ w0 , w1 Λ༻͍ͯɺؔ਺ y(x, w) = w0 + w1 x Λඳ͘͜ͱΛ 6 ճߦͬͯ ͍Δɻ ࣄޙ෼෍͕ a0 = −0.3, a1 = 0.5 ෇ۙʹӶ͍෼෍Λ࣋ͪɺ6 ݸͷؔ਺͕ f(x, a0 = −0.3, a1 = 0.5) = −0.3 + 0.5x ෇ۙʹ·ͱ·͍͍ͬͯͯΔ͜ ͱ͕Θ͔Δɻ 45 / 74
  42. 2-3. ϕΠζઢܗճؼ ࣍ʹࣄޙ෼෍ p(w|t, α, β) ͱ໬౓ؔ਺ p(t|x, w, β)

    Λ༻͍ͯɺະ஌ͷೖ ྗϕΫτϧ x ʹର͢Δ༧ଌ t ͷ֬཰෼෍ΛٻΊΔɻ(ࣄޙ෼෍ʹϋΠ ύʔύϥϝʔλ α, β ΛҾ਺ʹ෮׆ͤͨ͞ɻ) (1.32) ΑΓɺ༧ଌ෼෍ p(t|t, α, β) ͸ҎԼͷΑ͏ʹͳΔɻ p(t|t, α, β) = ∫ p(t|x, w, β)p(w|t, α, β) dw (2.34) (2.6) ͱ (2.26) ͱ (1.25) Λ༻͍Δͱɺp(t|t, α, β) ͸ҎԼͷΑ͏ʹͳΔɻ (PRML ͷԋश 3.10 ࢀর) p(t|t, α, β) = N(t|mT N ϕ(x), σ2 N (x)) (2.35) ͜͜Ͱɺ༧ଌ෼෍ͷ෼ࢄ σ2 N (x) ͸ҎԼͰ༩͑ΒΕΔɻ σ2 N (x) = 1 β + ϕ(x)TSN ϕ(x) (2.36) 46 / 74
  43. 2-3. ϕΠζઢܗճؼ σ2 N (x) ͷҰ߲໨ͷ 1/β ͸໬౓ؔ਺ͷ෼ࢄͰ͋Γɺೖྗσʔλʹର͢Δ ग़ྗͷόϥ͖ͭ (ϊΠζ)

    Ͱ͋Δɻ Ұํɺೋ߲໨ͷ ϕ(x)TSN ϕ(x) ͸ w ͷෆ࣮֬ੑ (ࣄޙ෼෍ͷ෼ࢄ) ͔Β ͘Δ߲Ͱ͋Δɻ(ύϥϝʔλΛ఺ਪఆ͠ͳ͍ϕΠζਪఆಛ༗ͷϊΠζ) ͜ͷೋ߲໨͸৽ͨͳڭࢣσʔλ͕௥Ճ͞ΕΔ (N → N + 1) ͱখ͘͞ͳ Δɺͭ·Γ σ2 N+1 (x) ≤ σ2 N (x) ͱͳΔɻ(PRML ͷԋश 3.11 ࢀর) ͜Ε͸ڭࢣσʔλ͕૿͑Δͱɺग़ྗͷ༧ଌͷ࣮͕֬͞૿͑Δͱ͍͏͜ͱ Λද͢ɻ ࠷ޙʹྫΛ༻͍ͯɺڭࢣσʔλ͕૿͑Δͱ༧ଌͷෆ͔͕֬͞ݮΔ༷ࢠΛ ݟΔɻ 47 / 74
  44. 2-3. ϕΠζઢܗճؼ ྫ͸؆୯ͳճؼͷͱ͖ʹ࢖༻ͨ͠ࡾ֯ؔ਺ͷྫͰ͋Δɻ ܇࿅σʔλͱͯ͠ɺN ݸͷೖྗ x = (x1 , x2

    , · · · , xN )T ͱͦΕͧΕʹର Ԡ͢Δ N ݸͷ໨ඪม਺ t = (t1 , t2 , · · · , tN )T Λ༻ҙ͢Δɻ tn ͸ҎԼͷΑ͏ʹ sin(2πxn ) ʹΨ΢ε෼෍ʹै͏ϥϯμϜϊΠζ ϵ Λ Ճ͑ͨ΋ͷͱ͢Δɻ tn = sin(2πxn ) + ϵ (2.37) ໬౓ؔ਺ͷฏۉ஋Ͱ͋Δ y(x, w) ͸Ψ΢εجఈؔ਺ (2.4) Ͱల։͢Δɻ ͜ͷઃఆͰڭࢣσʔλͷ਺͕ N = 1, 2, 4, 25 ͷͱ͖ͷάϥϑ͸ҎԼͷΑ ͏ʹͳΔɻ 48 / 74
  45. 2-3. ϕΠζઢܗճؼ ੨ؙ͕ڭࢣσʔλɺԫ྘ͷઢ͕ਖ਼ղͰ͋ΔαΠϯؔ਺ɺ੺͍ઢ͕༧ଌ෼ ෍ͷฏۉ mT N ϕ(x)ɺബ͍੺ͷྖҬ͕༧ଌ ±σN (x) ͷྖҬͰ͋Δɻ

    ڭࢣσʔλ͕૿͑Ε͹૿͑Δ΄Ͳɺ੺͍ઢ͕ԫ྘ͷઢʹۙ෇͖ɺബ͍੺ ͷྖҬ͕ݮ͍༷ͬͯ͘ࢠ͕ݟͯऔΕΔɻ 49 / 74
  46. 3. ෼ྨ໰୊ ͜Ε·Ͱ͸ճؼ໰୊ΛऔΓѻ͖͕ͬͯͨɺ͔͜͜Β͸෼ྨ໰୊ΛऔΓ ѻ͏ɻ ճؼͱಉ͡Α͏ʹɺ܇࿅σʔλͱͯ͠ೖྗσʔλͷू߹ {x1 , x2 , ·

    · · , xN } ͱͦΕͧΕʹରԠ͢Δ໨ඪม਺ͷू߹ {t1 , t2 , · · · , tN } Λ༻ҙ͢Δ͕ɺ෼ྨͷ৔߹ (ਖ਼͘͠͸ೋ஋෼ྨ) ͸໨తม਺ tn ͸ 0 ͔ 1 ͷ཭ࢄతͳ஋ΛͱΔɻ ࣮༻తͳྫͱͯ͠ɺೖྗσʔλ x Λը૾ͱͯ͠ɺt = 0 ͳΒݘͷը૾ɺ t = 1 ͳΒೣͷը૾ͱ͔ɻ ࠓճ͸෼ྨͷϞσϧͱͯ͠ɺϩδεςΟοΫճؼϞσϧΛ঺հ͢Δɻ (ʮճؼʯͱ෇͍͍ͯΔ͕ɺ෼ྨͷϞσϧͰ͋Δɻ) 50 / 74
  47. 3-1. ϩδεςΟοΫճؼ ·ͣɺه߸ͱͯ͠ t = 1 ͷΫϥεΛ C1 ͱ͠ɺt =

    0 ͷΫϥεΛ C2 ͱ ͢Δɻ ·ͨɺճؼͷ࣌ͱಉ͡Α͏ʹҎԼͷΑ͏ͳɺೖྗ x ͱύϥϝʔλ w ͷ ؔ਺ y(x, w) Λߟ͑Δɻ y(x, w) = M−1 ∑ j=0 wj ϕj (x) = wTϕ(x) (3.1) ϕ(x) ͸ಛ௃ϕΫτϧͰ͋Δɻ ճؼͰ͸ɺ໬౓ؔ਺ p(t|x, w, β) ͱͯ͠ɺ(2.6) ͷΑ͏ʹฏۉ͕ y(x, w) Ͱ෼ࢄ͕ β ͷΨ΢ε෼෍Λߟ͑ͯɺ࠷໬ਪఆΛߦͳͬͨɻ ࣮ࡍʹ෼ྨ໰୊ʹରͯ͠΋ͦͷΑ͏ͳϞσϧઃఆͰٞ࿦͢Δ৔߹΋͋ Δɻ(PRML ͷ 4.1.3 ࢀর) ͨͩ͠ࠓճ͸ϩδεςΟοΫճؼΛߦ͏ɻ 51 / 74
  48. 3-1. ϩδεςΟοΫճؼ ͜ͷϩδεςΟοΫγάϞΠυؔ਺Λར༻ͯ͠ɺ֬཰ p(C1 |x, w)(໬౓ ؔ਺ p(t|x, w) Ͱ

    t = 1 ͱͨ͠΋ͷ) ΛҎԼͷΑ͏ʹఆٛ͢Δɻ p(C1 |x, w) = σ(y(x, w)) (3.3) ͜͜Ͱೋ஋෼ྨͳͷͰɺن֨Խ৚݅ΑΓ p(C2 |x, w) ͸ p(C1 |x, w) Λ༻ ͍ͯҎԼͷΑ͏ʹٻ·Δɻ p(C2 |x, w) = 1 − p(C1 |x, w) (3.4) t = 1 ͷΫϥεΛ C1 ͱ͠ɺt = 0 ͷΫϥεΛ C2 ͱ͍ͯ͠ΔͷͰɺ໬౓ؔ ਺ p(t|x, w) ͸ p(t|x, w) = σ(y(x, w))t(1 − σ(y(x, w)))1−t (3.5) ͱͳΔɻ (͜ͷΑ͏ͳ෼෍ΛϕϧψʔΠ෼෍ͱ͍͏) 53 / 74
  49. 3-2. ϩδεςΟοΫճؼͷ࠷໬ਪఆ ࣍ʹ࠷໬ਪఆΛߦ͏͜ͱΛߟ͑Δɻ ͍ͭ΋ͷΑ͏ʹɺ܇࿅σʔλͱͯ͠ೖྗσʔλͷू߹ X = {x1 , x2 ,

    · · · , xN } ͱͦΕͧΕʹରԠ͢Δ໨ඪม਺ͷू߹ {t1 , t2 , · · · , tN } Λ༻ҙ͢Δɻ ڭࢣσʔλҰͭҰ͕ͭ෼෍ (3.5) ͔Βಠཱʹੜ੒͞Ε͍ͯΔͱ͢Δͱɺ ໬౓ؔ਺ p(t|X, w) ͸ҎԼͷΑ͏ʹͳΔɻ p(t|X, w) = N ∏ n=1 ytn n (1 − yn )1−tn (3.6) ͱͳΔɻ ͜͜Ͱ yn ͸ҎԼͰఆٛ͞ΕΔɻ yn = σ(y(xn , w)) (3.7) 54 / 74
  50. 3-2. ϩδεςΟοΫճؼͷ࠷໬ਪఆ ໬౓ؔ਺ (3.6) Λ࠷େʹ͢Δ w ΛٻΊΔ͜ͱ͸ҎԼͷෛͷର਺໬౓Λ ࠷খʹ͢Δ w ΛٻΊΔ͜ͱͱ౳ՁͰ͋Δɻ

    E(w) = − ln p(t|X, w) = − N ∑ n=1 ln { ytn n (1 − yn )1−tn } = − N ∑ n=1 { tn ln yn + (1 − tn ) ln (1 − yn ) } (3.8) ͜Ε͸ަࠩΤϯτϩϐʔޡࠩͱݺ͹ΕΔޡࠩؔ਺Ͱɺ෼ྨ໰୊ͰΑ͘࢖ ΘΕΔޡࠩؔ਺Ͱ͋Δɻ ճؼͷͱ͖ͷೋ৐࿨ޡࠩͷٞ࿦ͱಉ͡Α͏ʹɺ෼ྨ໰୊ʹ͓͚ΔަࠩΤ ϯτϩϐʔޡࠩͷ࠷খԽ͸ɺ֬཰࿦Λ༻͍Δͱ໬౓ؔ਺ΛϕϧψʔΠ෼ ෍ (3.5) ͱԾఆͨ͠ͱ͖ͷ࠷໬ਪఆͷ݁ՌͰ͋Δࣄ͕Θ͔Δɻ 55 / 74
  51. 3-2. ϩδεςΟοΫճؼͷ࠷໬ਪఆ ࣍ʹෛͷର਺໬౓ (3.8) Λ࠷খʹ͢Δ w ΛٻΊΔͨΊʹ (3.8) ͷ w

    ʹ ର͢Δޯ഑ΛٻΊΔͱҎԼͷΑ͏ʹͳΔɻ(PRML ͷԋश 4.13 ࢀর) ∇E(w) = N ∑ n=1 (yn − tn )ϕ(xn ) (3.9) ͜ͷޯ഑ͷܗ͸ਖ਼ղϥϕϧ tn ͱ༧ଌ஋ yn ͷࠩ (ͭ·Γޡࠩ) ͱجఈؔ ਺ϕΫτϧ ϕ(xn ) ͷ࿨ͷܗΛ͍ͯ͠Δɻ ͜ͷܗ͸લষͷճؼͰͷର਺໬౓ͷޯ഑ (2.13) ͱಉ͡ܗΛ͍ͯ͠Δɻ (PRML ͷ 4.3.6 ࢀর) 56 / 74
  52. 3-2. ϩδεςΟοΫճؼͷ࠷໬ਪఆ ͜ͷޯ഑ ∇E(w) Λθϩʹ͢Δ w ΛղੳతʹٻΊΔ͜ͱ͸Ͱ͖ͳ͍ɻ ͦͷཧ༝͸༧ଌ஋ y =

    σ(wTϕ(x)) ͕ϩδεςΟοΫؔ਺Λ׆ੑԽؔ਺ ʹ͔࣋ͭΒͰ͋Δɻ ճؼͷͱ͖͸༧ଌ஋ y = wTϕ(x) ͸߃౳ؔ਺Λ׆ੑԽؔ਺ʹ͔࣋ͭΒ (2.13) ͸ղੳతʹղ͚ͨΘ͚Ͱ͋Δɻ ͜ͷΑ͏ʹޯ഑ ∇E(w) Λθϩʹ͢Δ w ΛղੳతʹٻΊΔ͜ͱ͕Ͱ͖ ͳ͍࣌͸ޯ഑߱Լ๏Λ༻͍Δ͜ͱ͕͋Δɻ(χϡʔϥϧωοτͰ΋͜ͷ ํ๏͕Α͘༻͍ΒΕΔɻ) ޯ഑߱Լ๏Ͱ͸ɺ·ͣϥϯμϜʹܾΊͨύϥϝʔλͷॳظ஋Λ w(0) ͱ ͠ɺޡࠩؔ਺ͷޯ഑Λ༻͍ͯύϥϝʔλΛҎԼͷΑ͏ʹߋ৽͢Δɻ w(1) = w(0) − η∇E(w(0)) (3.10) ͜͜Ͱ η > 0 ͸ֶशύϥϝʔλͱݺͿɻ ͜ΕΛ܁Γฦ͢͜ͱͰύϥϝʔλ͕ޯ഑ ∇E(w) ͕খ͘͞ͳΔํ޲ʹߋ ৽͞ΕɺE(w) Λ࠷খʹ͢Δύϥϝʔλʹऩଋ͢Δɻ 57 / 74
  53. 3-3. ϕΠζϩδεςΟοΫճؼ ࣍͸ϩδεςΟοΫճؼΛϕΠζతʹѻ͏͜ͱΛߟ͑Δɻ ճؼͰ΋ٞ࿦ͨ͠ͱ͓ΓɺϕΠζਪఆͰ͸ະ஌ͷೖྗ x ʹର͢Δग़ྗ t ͷ༧ଌ෼෍ p(t|x, t,

    X) ΛٻΊΔ͜ͱ͕໨తͱͳΔɻ (1.32) ΑΓɺͦͷ༧ଌ෼෍ p(t|x, t, X) ͸ॏΈ w ͷੵ෼ͰҎԼͷΑ͏ʹ ͔͚Δɻ p(t|x, t, X) = ∫ p(t|x, w)p(w|t, X) dw (3.11) ͜͜Ͱɺp(t|x, w) ͸໬౓ؔ਺Ͱ͋Γɺp(w|t, X) ͸ύϥϝʔλͷࣄޙ෼ ෍Ͱ͋Δɻ ಛʹࠓճ͸ೋ஋෼ྨΛߟ͍͑ͯΔͷͰɺ֬཰ p(C1 |x, t, X) = ∫ p(C1 |x, w)p(w|t, X) dw (3.12) ͚ͩΛੵ෼ͯ͠ٻΊͯɺp(C2 |x, t, X) ͸ p(C2 |x, t, X) = 1 − p(C1 |x, t, X) (3.13) ͷΑ͏ʹن֨Խ৚͔݅ΒٻΊΔ͜ͱΛߟ͑Δɻ 58 / 74
  54. 3-3. ϕΠζϩδεςΟοΫճؼ ͨͩ͠ճؼͷ࣌ͱ͸ҧ͍ɺੵ෼ (3.12) Λղੳతʹղ͘ͷ͸ෆՄೳͰ͋ Δɻ(͜Ε΋ϩδεςΟοΫγάϞΠυؔ਺ͷӨڹͰ͋Δ) ͕ͨͬͯ͠ɺੵ෼ΛۙࣅతʹٻΊΔ͜ͱΛߟ͑Δɻ ࠓճ͸ (PRML Ͱ͸)

    ϥϓϥεۙࣅΛ༻͍ͯੵ෼ΛۙࣅతʹٻΊ͍ͯΔɻ ۩ମతʹ͸ (3.12) ͷύϥϝʔλͷࣄޙ෼෍ p(w|t, X) ʹϥϓϥεۙࣅ Λద༻ͯ͠ɺΨ΢ε෼෍ʹۙࣅ͢Δɻ ͜͜Ͱϥϓϥεۙࣅͷઆ໌Λগ͠ߦ͏ɻ 59 / 74
  55. 3-3. ϕΠζϩδεςΟοΫճؼ ·ͣ͸֬཰ม਺͕Ұ࣍ݩͷม਺ z ͷ৔߹Λߟ͑ɺҎԼͷΑ͏ͳ֬཰෼෍ p(z) Λߟ͑Δɻ p(z) = 1

    Z f(z) (3.14) ͜͜ͰɺZ ͸ҎԼͰఆٛ͞ΕΔن֨Խఆ਺Ͱ͋Δɻ Z = ∫ f(z) dz (3.15) ϥϓϥεۙࣅͷ໨త͸෼෍ p(z) ΛϞʔυ (dp(z)/dz = 0 ͱͳΔ z) Λத ৺ͱ͢ΔΨ΢ε෼෍ʹۙࣅ͢Δ͜ͱͰ͋Δɻ ·ͣ͸Ϟʔυ z = z0 Λݟ͚ͭΔɻϞʔυ͸ (3.14) ΑΓ df(z) dz z=z0 = 0 (3.16) ͳΔ z0 Ͱ͋Δɻ 60 / 74
  56. 3-3. ϕΠζϩδεςΟοΫճؼ Ϟʔυ͕ٻ·ͬͨΒɺؔ਺ ln f(z) Λ z = z0 पΓͰҎԼͷΑ͏ʹςΠ

    ϥʔల։ͷ 2 ࣍·ͰͰۙࣅ͢Δɻ ln f(z) ∼ ln f(z0 ) − 1 2 A(z − z0 )2 (3.17) ͜͜Ͱɺ A = − d2 dz2 ln f(z) z=z0 (3.18) Ͱ͋Δɻ ͜͜Ͱɺ(3.16) ʹΑΓ (3.17) ͷӈลͰҰ࣍ͷ߲͕ଘࡏ͠ͳ͍ɻ (3.17) ͷ྆ลͷࢦ਺ΛͱΔͱ f(z) ∼ f(z0 ) exp { − 1 2 A(z − z0 )2 } (3.19) ͱͳΔɻ 61 / 74
  57. 3-3. ϕΠζϩδεςΟοΫճؼ ن֨ԽΛ͢Δͱɺ෼෍ p(z) ͸ p(z) ∼ ( A 2π

    )1/2 exp { − 1 2 A(z − z0 )2 } (3.20) ͱۙࣅͰ͖Δɻ͜Ε͕ϥϓϥεۙࣅͰ͋Δɻ ͨͩ͠஫ҙ఺ͱͯ͠ɺA > 0 Ͱͳ͍ͱΨ΢ε෼෍͕ఆٛͰ͖ͳ͍ɻ 62 / 74
  58. 3-3. ϕΠζϩδεςΟοΫճؼ ࣍͸Ұ࣍ݩͷ֬཰ม਺͔ΒɺϕΫτϧʹ֦ு͠Α͏ɻ ͭ·ΓɺҎԼͷ֬཰෼෍ p(z) Λఆٛ͢Δɻ p(z) = 1 Z

    f(z) (3.21) ͜͜Ͱɺ Z = ∫ f(z) dz (3.22) Ͱ͋Δɻ Ұ࣍ݩͷ֬཰ม਺ͱಉ͡Α͏ʹޯ഑ ∇f(z) ͕θϩʹͳΔ఺ z0 Λٻ ΊΔɻ 63 / 74
  59. 3-3. ϕΠζϩδεςΟοΫճؼ Ϟʔυ͕ٻ·ͬͨΒɺln f(z) Λ z0 पΓͰςΠϥʔల։Ͱۙࣅ͢Δɻ ln f(z) ∼

    ln f(z0 ) − 1 2 (z − z0 )TA(z − z0 ) (3.23) ͜͜ͰɺA ͸ҎԼͰఆٛ͞ΕΔ M × M ͷϔοηߦྻͰ͋Δɻ A = −∇∇ ln f(z) z=z0 (3.24) ࣍ʹ (3.23) ͷ྆ลͷࢦ਺ΛͱΔͱҎԼͷΑ͏ʹͳΔɻ f(z) ∼ f(z0 ) exp { − 1 2 (z − z0 )TA(z − z0 ) } (3.25) ͜ΕΑΓن֨ԽΛ͢Δͱɺ෼෍ p(z) ͸ p(z) ∼ |A|1/2 (2π)M/2 exp { − 1 2 (z − z0 )TA(z − z0 ) } = N(z|z0 , A−1) (3.26) ͱΨ΢ε෼෍ʹۙࣅͰ͖Δɻ 64 / 74
  60. 3-3. ϕΠζϩδεςΟοΫճؼ Ҏ্Ͱઆ໌ͨ͠ϥϓϥεۙࣅΛ༻͍ͯҎԼͷੵ෼ (3.12) Λۙࣅ͍ͨ͠ɻ p(C1 |x, t, X) =

    ∫ p(C1 |x, w)p(w|t, X) dw (3.27) ·ͣɺࣄޙ෼෍ p(w|t, X) ΛٻΊΔͨΊʹࣄલ෼෍Λಋೖ͢Δɻ p(w) = N(w|m0 , S0 ) (3.28) (3.14) ΑΓɺ໬౓ؔ਺͸ p(t|X, w) ͸ p(t|X, w) = N ∏ n=1 ytn n (1 − yn )1−tn (3.29) Ͱ͋ͬͨɻ 65 / 74
  61. 3-3. ϕΠζϩδεςΟοΫճؼ ͜ΕΑΓɺࣄޙ෼෍ p(w|t, X) ͸ϕΠζͷఆཧΑΓɺҎԼͰ͋Δɻ p(w|t, X) ∝ p(w)p(t|X,

    w) (3.30) ͱͳΔͷͰɺln p(w|t, X) ͸ҎԼͱͳΔɻ ln p(w|t, X) = − 1 2 (w − m0 )TS−1 0 (w − m0 ) + N ∑ n=1 { tn ln yn + (1 − tn ) ln (1 − yn ) } + const. (3.31) ͜ͷࣄޙ෼෍ͷର਺ ln p(w|t, X) Λ࠷େʹ͢Δύϥϝʔλ wMAP Λ (ͨ ͱ͑͹ޯ഑߱Լ๏ͳͲͰ) ٻΊͯɺͦͷ఺ wMAP ͰͷϔοηߦྻΛٻΊ ΔͱɺҎԼͷΑ͏ʹͳΔɻ S−1 N = − ∇∇ ln p(w|t, X) w=wMAP =S−1 0 + N ∑ n=1 yn (1 − yn )ϕn ϕT n w=wMAP (3.32) 66 / 74
  62. 3-3. ϕΠζϩδεςΟοΫճؼ ΑͬͯɺϥϓϥεۙࣅΛ༻͍Δͱࣄޙ෼෍ p(w|t, X) ͸ҎԼͷΑ͏ʹۙ ࣅͰ͖Δɻ p(w|t, X) ∼

    N(w|wMAP , SN ) (3.33) ͜ΕΑΓɺ(3.27) ͷੵ෼͸ҎԼͷΑ͏ʹۙࣅͰ͖Δɻ p(C1 |x, t, X) ∼ ∫ σ(wTϕ) N(w|wMAP , SN ) dw (3.34) ͜͜Ͱɺp(C1 |x, w) = σ(wTϕ) Λར༻ͨ͠ɻ ࣍ʹɺϩδεςΟοΫγάϞΠυؔ਺ΛҎԼͷΑ͏ʹॻ͖௚͢ɻ σ(wTϕ) = ∫ δ(a − wTϕ)σ(a) da (3.35) ͜͜Ͱɺδ(·) ͸σϡϥοΫͷσϧλؔ਺Ͱ͋Δɻ 67 / 74
  63. 3-3. ϕΠζϩδεςΟοΫճؼ ͜ΕΑΓɺ(3.34) ͸ҎԼͷΑ͏ʹॻ͖௚ͤΔɻ ∫ σ(wTϕ) N(w|wMAP , SN )

    dw = ∫ ∫ δ(a − wTϕ)σ(a) N(w|wMAP , SN ) da dw = ∫ ∫ δ(a − wTϕ) N(w|wMAP , SN ) dw σ(a) da = ∫ p(a) σ(a) da (3.36) ͜͜Ͱɺ p(a) = ∫ δ(a − wTϕ) N(w|wMAP , SN ) dw (3.37) Ͱ͋Δɻ 68 / 74
  64. 3-3. ϕΠζϩδεςΟοΫճؼ ੵ෼ (3.37) ʹ͓͍ͯɺϕ ʹฏߦͳ͢΂ͯͷํ޲ͷ w ੵ෼͸ͦΕΒͷύ ϥϝʔλʹઢܗ੍໿Λ༩͑ɺ·ͨ ϕ

    ʹ௚ߦ͢Δ͢΂ͯͷํ޲ͷ w ੵ෼ ͸Ψ΢ε෼෍ N(w|wMAP , SN ) ͷपลԽΛ༩͑Δɻ ͨͱ͑͹ɺw = (w1 , w2 )T ͱ͠ɺϕ = (ϕ, 0)T Ͱ͋Δͱ͖Λߟ͑Δͱɺ ੵ෼ (3.37) ͸ҎԼͷΑ͏ʹ͔͚Δɻ p(a) = ∫ ∫ δ(a − w1 ϕ) N(w|wMAP , SN ) dw1 dw2 = ∫ δ(a − w1 ϕ) [ ∫ N(w|wMAP , SN ) dw2 ] dw1 (3.38) (1.29) ΑΓɺΨ΢ε෼෍ΛपลԽͨ͠पล෼෍͸࠶ͼΨ΢ε෼෍Ͱ͋Δ ͜ͱ͕Θ͔͍ͬͯΔͷͰɺϕ ʹ௚ߦ͢Δ w2 ํ޲ͷੵ෼͸Ψ΢ε෼෍ͷ पลԽΛ༩͑ɺͦͷपลԽ͞ΕͨΨ΢ε෼෍͸ N(w1 |(wMAP )1 , (SN )11 ) ͱͳΔɻ 69 / 74
  65. 3-3. ϕΠζϩδεςΟοΫճؼ ·ͨɺw1 ͷੵ෼Λ͢Δͱɺੵ෼ (3.37) ͸ҎԼͷΑ͏ʹͳΔɻ p(a) = ∫ δ(a

    − w1 ϕ) N(w1 |(wMAP )1 , (SN )11 ) dw1 = 1 |ϕ| N(a/ϕ|(wMAP )1 , (SN )11 ) =N(a|(ϕwMAP )1 , (ϕ2SN )11 ) (3.39) ͭ·Γɺϕ ʹฏߦͳ w1 ͷํ޲ͷੵ෼͸ w1 ʹ w1 = a/ϕ ͳΔઢܗ੍໿ Λ༩͑Δ͜ͱ͕Θ͔Δɻ ͜ΕΑΓɺp(a) ͸֬཰ม਺͕ a ͷΨ΢ε෼෍ʹͳΔ͜ͱ͕Θ͔Δɻ 70 / 74
  66. 3-3. ϕΠζϩδεςΟοΫճؼ Ψ΢ε෼෍͸ฏۉͱ෼ࢄ͕ܾ·Ε͹ɺܗ͕Ұҙʹఆ·Γɺฏۉ µa ͱ෼ ࢄ σ2 a ͸ҎԼͷΑ͏ʹͳΔɻ µa

    = ∫ p(a)a da = ∫ ∫ aδ(a − wTϕ) N(w|wMAP , SN ) dwda = ∫ wTϕ N(w|wMAP , SN ) dw = wT MAP ϕ (3.40) σ2 a = ∫ p(a)(a2 − µ2 a ) da = ∫ ∫ (a2 − µ2 a )δ(a − wTϕ) N(w|wMAP , SN ) dwda = ∫ ((wTϕ)2 − (wT MAP ϕ)2) N(w|wMAP , SN ) dw =ϕT [ ∫ (wwT − wMAP wT MAP ) N(w|wMAP , SN ) dw ] ϕ =ϕTSN ϕ (3.41) 71 / 74
  67. 3-3. ϕΠζϩδεςΟοΫճؼ ͢Δͱɺ༧ଌ෼෍ p(C1 |x, t, X) ͸ (3.36) ΑΓɺҎԼͷΑ͏ʹͳΔ͜ͱ

    ͕Θ͔Δɻ p(C1 |x, t, X) ∼ ∫ σ(a)N(a|µa , σ2 a ) da (3.42) ͜͜Ͱɺµa ͱ σ2 a ͸ (3.40) ͱ (3.41) Ͱܭࢉͨ͠ฏۉͱ෼ࢄͷύϥϝʔ λͰ͋Δɻ ͜ͷੵ෼ (3.42) ΋·ͨղੳతʹੵ෼Ͱ͖ͳ͍ɻ ͦ͜ͰҎԼͷϓϩϏοτؔ਺ͷٯؔ਺ Φ(a) Λಋೖ͢Δɻ Φ(a) = 1 2 { 1 + erf ( a √ 2 )} (3.43) ͜͜Ͱɺޡࠩؔ਺ erf(a) ͸ҎԼͰఆٛ͞ΕΔɻ erf(a) = 2 √ π ∫ a 0 exp (−θ2) dθ (3.44) 72 / 74
  68. 3-3. ϕΠζϩδεςΟοΫճؼ ϓϩϏοτؔ਺ͷٯؔ਺ Φ (√ π 8 a ) ʹΑͬͯϩδεςΟοΫγάϞΠ

    υؔ਺ σ(a) Λۙࣅ͢Δ͜ͱ͕Ͱ͖Δɻ ҎԼ͸ϩδεςΟοΫγάϞΠυؔ਺ σ(a)(੺ͷ࣮ઢ) ͱϓϩϏοτؔ ਺ͷٯؔ਺ Φ (√ π 8 a ) (੨ͷ఺ઢ) Λൺֱͨ͠ਤͰ͋Δɻ 73 / 74
  69. 3-3. ϕΠζϩδεςΟοΫճؼ ͞ΒʹϓϩϏοτؔ਺ͷٯؔ਺ʹ͸ҎԼͷੑ࣭͕͋Δɻ(PRML ͷԋश 4.26 ࢀর) ∫ Φ(λa)N(a|µ, σ2) da

    = Φ ( µ (λ−2 + σ2)1/2 ) (3.45) ͜ΕΒͷੑ࣭Λ༻͍ͯɺੵ෼ (3.42) ΛҎԼͷΑ͏ʹۙࣅͯ͠ٻΊΔɻ p(C1 |x, t, X) ∼ ∫ σ(a)N(a|µa , σ2 a ) da ∼ ∫ Φ (√ π 8 a ) N(a|µa , σ2 a ) da =Φ ( µa (8/π + σ2 a )1/2 ) ∼ σ (√ 8 π µa (8/π + σ2 a )1/2 ) =σ ( µa (1 + πσ2 a /8)1/2 ) (3.46) ͜͜Ͱɺµa ͱ σ2 a ͸ (3.40) ͱ (3.41) Ͱ͋Δɻ 74 / 74