Upgrade to Pro — share decks privately, control downloads, hide ads and more …

PRML第11章

Sponsored · Your Podcast. Everywhere. Effortlessly. Share. Educate. Inspire. Entertain. You do you. We'll handle the rest.
Avatar for gucchi gucchi
March 30, 2019

 PRML第11章

Avatar for gucchi

gucchi

March 30, 2019
Tweet

More Decks by gucchi

Other Decks in Science

Transcript

  1. Ұൠతͳ֬཰Ϟσϧʹ͓͍ͯɺ࿈ଓతͳ֬཰ม਺Λ z ͱͨ͠ͱ͖ͷ͋Δ ؔ਺ f(z) ͷ֬཰෼෍ p(z) ͷԼͰͷظ଴஋ E[f] =

    ∫ f(z)p(z) dz (11.1) Λܭࢉ͍ͨ͠γνϡΤʔγϣϯ͕ଟ͘ൃੜ͢Δɻ(ྫ͑͹ɺPRML ͷ 4 ষͷࣜ (4.145) ͳͲ) ଟ͘ͷ৔߹ɺ͜ͷੵ෼ (11.1) ͸ղੳతʹܭࢉͰ͖ͳ͍ɻ αϯϓϦϯά๏ͷҰൠతͳΞΠσΞ͸ɺ෼෍ p(z) ͔Βಠཱʹநग़͞Ε ͨαϯϓϧ z(l) (l = 1, · · · , L) Λಘͯɺ(11.1) ΛҎԼͷΑ͏ʹۙࣅ͢Δɻ f = 1 L L ∑ l=1 f(z(l)) (11.2) ͔͜͠͠ͷํ๏ͩͱɺ΋͠ p(z) ͕খ͍͞ྖҬͰ f(z) ͕େ͖͘ɺp(z) ͕ େ͖͍ྖҬͰ f(z) ͕খ͔ͬͨ͞Βɺαϯϓϧ਺͕গͳ͍࣌͸ͦͷαϯ ϓϧͷதʹ p(z) ͕খ͍͞ྖҬ͔Βαϯϓϧ͕͋ͬͨΒɺ(11.2) ͸ p(z) ͕খ͍͞ྖҬ͔ΒαϯϓϧʹӨڹΛड͚͗͢Δͱ͍͏໰୊͕͋Δɻ 2 / 56
  2. 11.1.1 ඪ४తͳ෼෍ ·ͣɺz ͕۠ؒ (0, 1) ͰҰ༷ʹ෼෍͓ͯ͠Γɺͦͷม਺ z Λ y

    = f(z) Ͱ ඇҰ༷ͳ֬཰ม਺ y ʹม׵͢Δ͜ͱΛߟ͑Δɻ ͜ͷͱ͖ɺPRML ͷࣜ (1.27) ΑΓɺy ͷ֬཰෼෍͸ҎԼͷΑ͏ʹͳΔɻ p(y) = p(z) dz dy (11.5) ͜͜Ͱɺp(z) ͸۠ؒ (0, 1) ͷҰ༷෼෍ͳͷͰɺp(z) = 1 ͱͳΔɻ (p(z) = c = const. ͱͯ͠ɺن֨Խ৚݅Λ՝ͤ͹ɺc = 1 ͱͳΔɻ) ͜͜Ͱɺy Λ z ʹม׵͢ΔҎԼͷؔ਺ h(y) Λߟ͑Δɻ z = h(y) ≡ ∫ y −∞ p(ˆ y) dˆ y (11.6) ͜ͷΑ͏ͳؔ਺ h(y) Ͱ z ʹม׵͢Ε͹ɺp(z) = 1 ͱ h(y)′ = p(y) ≥ 0 Λ༻͍ͯ p(z) dz dy = |h(y)′| = p(y) ͱͳΓɺ֬཰ม਺ y ͸ p(y) ʹै͏͜ͱ͕Θ͔Δɻ 4 / 56
  3. 11.1.1 ඪ४తͳ෼෍ ͜ΕΑΓɺp(y) ʹै͏ y Λ z ͔ΒٻΊΔʹ͸ɺ(11.6) Ͱఆٛ͞Εͨؔ਺ h

    ͷٯؔ਺Λ༻͍ͯɺy = h−1(z) ͱͯ͠ม׵͢Ε͹ྑ͍ɻ ͳͷͰɺҰ༷෼෍͔ΒಘΒΕͨαϯϓϧ zi ͔Βɺ͋ΔඇҰ༷෼෍ p(y) ͔Β༩͑ΒΕΔαϯϓϧ yi ΛಘΔͨΊͷखॱ͸ҎԼͷΑ͏ʹͳΔɻ 1. (11.6) ΑΓɺp(y) Λੵ෼ͯ͠ h(y) ΛಘΔɻ 2. h(y) ͷٯؔ਺ h−1(z) ΛٻΊΔɻ 3. h−1 Λ༻͍ͯɺyi = h−1(zi ) Ͱαϯϓϧ yi ΛಘΔɻ ͜ͷखॱͰͷαϯϓϦϯά๏Λٯؔ਺๏ͱ͍͏ɻ 5 / 56
  4. 11.1.1 ඪ४తͳ෼෍ ྫͱͯ͠ɺαϯϓϧΛҎԼͷࢦ਺෼෍͔Βಘ͍ͨͱ͢Δɻ p(y) = λ exp (−λy) (11.7) ͜͜Ͱɺλ

    ͸ਖ਼ͷύϥϝʔλͰɺ0 ≤ y < ∞ Ͱ͋Δɻ ·ͣ (11.6) ΑΓɺ0 ≤ y < ∞ Ͱ͋Δ͜ͱʹ஫ҙͯ͠ɺ h(y) = ∫ y 0 λ exp (−λˆ y) dˆ y = − [ exp (−λˆ y) ]ˆ y=y ˆ y=0 = 1 − exp (−λy) ͱͳΓɺh(y) = z ͱ͢Δͱɺy ͸ (−λy ≤ 0 ΑΓɺ1 − exp (−λy) < 1 Ͱ ͋Δ͜ͱʹ஫ҙ͢Δͱ) z = 1 − exp (−λy) → − λy = ln (1 − z) →y = −λ−1 ln (1 − z) ͱͳΔɻ 6 / 56
  5. 11.1.1 ඪ४తͳ෼෍ ͜ΕΑΓɺҰ༷෼෍͔Β zi ΛಘΔͱɺyi = −λ−1 ln (1 −

    zi ) ͱͯ͠ಘͨ yi ͸ࢦ਺෼෍ (11.7) ͔Βͷαϯϓϧʹͳ͍ͬͯΔɻ ͜ͷํ๏͕͏·͍͘͘ʹ͸ɺੵ෼ (11.6) ͕࣮ߦͰ͖ɺٯؔ਺ h−1 ͕ٻ ·Δඞཁ͕͋Δɻ ্ͷྫͷࢦ਺෼෍ͷΑ͏ͳ୯७ͳ෼෍Ͱ͋Ε͹ՄೳͰ͋Δ͕ɺҰൠతʹ ͸ෆՄೳͰ͋Δɻ ͦͷΑ͏ͳෳࡶͳ෼෍ʹ͍ͭͯ͸ผͷΞϓϩʔν͕ඞཁͰɺ࣍ʹड़΂ Δغ٫αϯϓϦϯά΍ॏ఺αϯϓϦϯά͕༗ޮͰ͋Δɻ 7 / 56
  6. 11.1.2 غ٫αϯϓϦϯά ࣍ͷغ٫αϯϓϦϯάͷઆ໌Λߦ͏ɻ ͜͜Ͱ͸ɺલͱಉ͡Α͏ʹ෼෍ p(z) ͔ΒαϯϓϦϯάΛߦ͍͍ͨͱ ͢Δɻ ·ͨԾఆͱͯ͠ɺp(z) ͸ن֨Խఆ਺Λআ͍ͯΘ͔͍ͬͯΔͱ͢Δɻ ͭ·Γɺن֨Խఆ਺Λ

    Zp ͱͯ͠ɺp(z) Λ p(z) = 1 Zp p(z) (11.13) ͱ͢Δͱɺp(z) ͸Θ͔͍ͬͯΔ͕ɺZp ͷ஋͸Θ͔͍ͬͯͳ͍ͱ͢Δɻ غ٫αϯϓϦϯάΛߦ͏ʹ͋ͨͬͯɺΑΓαϯϓϦϯά͕؆୯ͳ (11.1.1 ͷٯؔ਺๏ͰαϯϓϦϯάͰ͖ΔΑ͏ͳ) ෼෍ q(z) Λ༻ҙ͢Δɻ (͜ͷΑ͏ͳ෼෍ΛఏҊ෼෍ͱ͍͏ɻ) 8 / 56
  7. 11.1.2 غ٫αϯϓϦϯά ࣍ʹɺਖ਼ͷఆ਺ k Λ༻ҙͯ͠ɺ͢΂ͯͷ z ʹରͯ͠ kq(z) ≥ p(z)

    ͱͳ ΔΑ͏ʹ k ͷ஋ΛܾΊΔɻ p(z) ͸Θ͔͍ͬͯΔ͔Βɺk ͷ஋͸ٻΊΒΕΔɻ ҎԼ͕ kq(z) ͱ p(z) ͷྫͰ͋Δɻ 9 / 56
  8. 11.1.2 غ٫αϯϓϦϯά ࣮ࡍͷαϯϓϦϯάͷํ๏͸ɺ·ͣఏҊ෼෍ q(z) ͔Βཚ਺ z0 Λੜ੒ ͢Δɻ ࣍ʹ۠ؒ [0,

    kq(z0 )] ͷҰ༷෼෍͔Βཚ਺ u0 Λੜ੒͢Δɻ ੜ੒ͨ͠ u0 ͕ɺu0 > p(z0 ) Ͱ͋Ε͹غ٫͞Ε (ࣺͯΒΕ)ɺͦΕҎ֎Ͱ ͋Ε͹ u0 ͸ p(z) ͔ΒͷαϯϓϦϯάͱͯ͠อ࣋͞ΕΔɻ 10 / 56
  9. 11.1.2 غ٫αϯϓϦϯά αϯϓϦϯά͸Ͱ͖Δ͚ͩޮ཰తʹߦ͍͍ͨͷͰɺغ٫͞ΕΔαϯϓϧ ͷ਺͸ݮΒ͍ͨ͠ɻ ͦ͜Ͱɺαϯϓϧ z ͕डཧ͞ΕΔ֬཰ p(accept) ΛٻΊͯΈΔɻ αϯϓϧ

    z ͸ q(z) ͔Βੜ੒͞Εɺ۠ؒ [0, kq(z)] ͷҰ༷෼෍͔Βੜ੒͞ ΕΔαϯϓϧ͸ p(z)/kq(z) ͷ֬཰Ͱडཧ͞ΕΔͷͰɺαϯϓϧ͕डཧ ͞ΕΔ֬཰ p(accept) ͸ p(accept) = ∫ {p(z)/kq(z)}q(z) dz = 1 k ∫ p(z) dz = ∫ p(z) dz ∫ kq(z) dz (11.14) ͱͳΔɻ 11 / 56
  10. 11.1.2 غ٫αϯϓϦϯά ͭ·Γɺ(11.14) ΑΓɺk ͸͢΂ͯͷ z ʹରͯ͠ kq(z) ≥ p(z)

    Λຬͨ͢ ݶΓɺͰ͖Δ͚ͩখ͘͢͞Δඞཁ͕͋Δɻ ·ͨɺԼͷਤͷփ৭ͷ෦෼ΛͰ͖Δ͚ͩখ͘͢͞ΔΑ͏ͳఏҊ෼෍Λબ ΂͹ɺडཧ཰্͕͕Δɻ 12 / 56
  11. 11.1.3 దԠతغ٫αϯϓϦϯά ·ͣ͸ॳظू߹ͱͯ͠ɺԿ఺͔αϯϓϧ {zi } ͕༩͑Δɻ ͦͯ͠ɺͦͷ఺Ͱͷ ln p(z) ͷඍ෼܎਺Λ

    −λi ͱ͢Δɻ d dz ln p(z) z=zi = −λi ͜ͷඍ෼܎਺ −λi Λ༻͍ͯɺఏҊ෼෍ͷର਺ ln q(z) ΛҎԼͷΑ͏ʹ ࡞Δɻ ln q(z) = −λi (z − zi ) + ln λi ki (ˆ zi−1,i < z ≤ ˆ zi,i+1 ) ͜͜Ͱɺˆ zi−1,i ͸ zi−1 Ͱͷ઀ઢͱ zi Ͱͷ઀ઢͱͷަ఺ͷ z ࠲ඪɻ 14 / 56
  12. 11.1.3 దԠతغ٫αϯϓϦϯά ͜ͷΑ͏ʹͯ͠࡞ΒΕͨఏҊ෼෍͸ p(z) ͕ର਺ԜͰ͋Ε͹ɺ p(z) ≤ q(z) ͱͳΓɺغ٫αϯϓϦϯά͕ద༻Ͱ͖Δɻ ͜ΕΑΓɺq(z)

    ͸ q(z) = λi ki exp {−λi (z − zi )} (ˆ zi−1,i < z ≤ ˆ zi,i+1 ) ͱͳΔɻ ͜ͷ q(z) ͔ΒͷαϯϓϦϯά͸؆୯Ͱɺ11.1.1 ͷٯؔ਺๏Λ༻͍ͯα ϯϓϦϯάͰ͖Δɻ(ԋश 11.9) ͦ͜Ͱɺq(z) ͔Βͷ৽ͨͳαϯϓϦϯά z ͕༩͑ΒΕͨΒɺغ٫αϯϓ Ϧϯάͷͱ͖ͱಉ༷ʹ [0, q(z)] ͷҰ༷෼෍͔Βαϯϓϧ u ΛಘΔɻ ͦͯ͠ɺu > p(u) ͳΒغ٫͠ɺͦΕҎ֎ͳΒडཧ͢Δɻ غ٫͞ΕͨΒɺq(z) Λ࡞੒͢ΔͨΊͷ৽͍͠఺ʹ͢Δɻ 15 / 56
  13. 11.1.3 దԠతغ٫αϯϓϦϯά ͜͜Ͱ͸ɺغ٫αϯϓϦϯά͕αϯϓϧม਺ z ͕ߴ࣍ݩϕΫτϧͷ࣌ʹ ͸޲͔ͳ͍͜ͱΛઆ໌͢Δɻ ྫͱͯ͠ɺฏۉ͕θϩͰڞ෼ࢄߦྻ͕ σ2 p I

    Ͱ͋ΔΨ΢ε෼෍͔Βαϯϓ Ϧϯά͍ͨ͠ͱ͢Δɻ p(z) = N(z|0, σ2 p I) ·ͨɺఏҊ෼෍ q(z) ͸ฏۉ͕θϩͰڞ෼ࢄߦྻ͕ σ2 q I Ͱ͋ΔΨ΢ε෼ ෍Ͱ͋Δͱ͢Δɻ q(z) = N(z|0, σ2 q I) غ٫αϯϓϦϯάͰ͸ɺ͢΂ͯͷ z Ͱ kq(z) ≥ p(z) Ͱ͋ΔΑ͏ͳ k ͕ ଘࡏ͠ͳͯ͘͸͍͚ͳ͍ɻ ͦͷΑ͏ͳ k ͕ଘࡏ͢Δʹ͸ɺq(z) ͕ p(z) ΑΓฏ͍ͨ෼෍Ͱͳ͍ͱ͍ ͚ͳ͍ɻ ͭ·Γɺσ2 q ≥ σ2 p Ͱ͋Δඞཁ͕͋Δɻ 16 / 56
  14. 11.1.3 దԠతغ٫αϯϓϦϯά σ2 q ≥ σ2 p ͷ৚݅Ͱɺ͢΂ͯͷ z Ͱ

    kq(z) ≥ p(z) ͱͳΔͨΊʹ͸ҎԼͷਤ ͷΑ͏ʹɺ࠷େ஋Λ༩͑Δ఺Ͱ z = 0 Ͱ kq(z = 0) = p(z = 0) ͱͳΕ ͹Α͘ɺ N(x|µ, Σ) = 1 (2π)D/2 1 |Σ|1/2 exp { − 1 2 (x − µ)TΣ−1(x − µ) } ΑΓɺ k = ( σq σp )D ͱऔΕ͹ྑ͍ɻ 17 / 56
  15. 11.1.3 దԠతغ٫αϯϓϦϯά ͜ΕΑΓɺαϯϓϦϯάͷडཧ཰ p(accept) ͸ (11.14) ΑΓ p(accept) = ∫

    p(z) dz ∫ kq(z) dz = 1 k = ( σp σq )D ͱͳΔɻ ͭ·ΓɺD = 1000 Ͱ͸ɺσq /σp = 1.01 ͷͱ͖ (σq ͕ͨͬͨ 1 ύʔηϯ τ͚ͩ σp ΑΓେ͖͍ͱ͖) p(accept) = ( 1 1.01 )1000 ∼ 1 20000 ͱͳΓɺ΄ͱΜͲडཧ͞Εͳ͍ɻ ͭ·Γɺغ٫αϯϓϦϯά͸ߴ࣍ݩʹ͸ద͓ͯ͠Βͣɺ1 ࣍ݩ·ͨ͸ 2 ࣍ݩ͘Β͍ͷͱ͖ʹదͨ͠αϯϓϦϯάͰ͋Δɻ 18 / 56
  16. 11.1.4 ॏ఺αϯϓϦϯά ॏ఺αϯϓϦϯάͰ͸ɺ෼෍ p(z) ͔ΒαϯϓϦϯάΛಘΔͷͰ͸ͳ͘ɺ (11.1) ͷΑ͏ͳظ଴஋ͷۙࣅ஋Λ௚઀ٻΊΔɻ (11.2) ͷΑ͏ʹۙࣅ͢Δͱɺ{z(l)} ͸ෳࡶͳ෼෍

    p(z) ͔Βͷαϯϓϧͳ ͷͰɺαϯϓϦϯά͕೉͍͠ɻ ͦ͜Ͱɺ͜͜Ͱ΋αϯϓϦϯά͕ൺֱత؆୯ͳఏҊ෼෍ q(z) Λར༻ ͢Δɻ ఏҊ෼෍Λར༻ͯ͠ɺ(11.1) ΛҎԼͷΑ͏ʹۙࣅ͢Δɻ E[f] = ∫ f(z)p(z) dz = ∫ f(z) p(z) q(z) q(z) dz ∼ 1 L L ∑ l=1 p(z(l)) q(z(l)) f(z(l)) (11.19) ͜͜Ͱɺ{z(l)} ͸ q(z) ͔ΒͷαϯϓϧͰ͋Δɻ 19 / 56
  17. 11.1.4 ॏ఺αϯϓϦϯά ͜͜Ͱɺrl = p(z(l))/q(z(l)) ͸ॏཁ౓ॏΈͱ͍ͬͯɺq(z) ͰαϯϓϦϯ άͨ͜͠ͱʹΑΔ p(z) ͔ΒͷζϨΛิਖ਼͢ΔҼࢠͰ͋Δɻ

    ͨͱ͑͹ɺ͋Δ l ʹରͯ͠ɺq(z(l)) ͕΄ͱΜͲ 1 ͩͬͨͱ͖ɺαϯϓϧ ͷதʹසൟʹ z(l) ͕ೖͬͯདྷΔ͜ͱ͕༧૝͞ΕΔɻ ͨͩ͠ɺp(z(l)) ͕খ͍͞৔߹͸ɺ͋·Γαϯϓϧ z(l) ͸ (11.19) ʹد༩ ͢Δ΂͖Ͱ͸ͳ͍ɻ ͜ͷͱ͖ɺrl = p(z(l))/q(z(l)) ͕খ͘͞ͳͬͯɺ͔ͨ͠ʹαϯϓϧ z(l) ͸ (11.19) ʹد༩͠ͳ͍ɻ 20 / 56
  18. 11.1.4 ॏ఺αϯϓϦϯά ·ͨɺҎલʹ΋͋ͬͨ௨Γɺp(z) ͕ن֨Խఆ਺Λআ͍ͯΘ͔͍ͬͯΔͱ ͢Δɻ ͭ·Γɺp(z) = p(z)/Zp ͱͨ͠ͱ͖ʹɺp(z) ͸Θ͔͍ͬͯΔ͕ɺZp

    ͸ Θ͔͍ͬͯͳ͍ͱԾఆ͢Δɻ·ͨɺಉ༷ʹ q(z) = q(z)/Zq ͱ͢Δɻ ͜ͷͱ͖ɺ(11.19) ͸ҎԼͷΑ͏ʹͳΔɻ E[f] = ∫ f(z)p(z) dz = ∫ f(z) p(z) q(z) q(z) dz ∼ 1 L L ∑ l=1 p(z(l)) q(z(l)) f(z(l)) = Zq Zp 1 L L ∑ l=1 p(z(l)) q(z(l)) f(z(l)) = Zq Zp 1 L L ∑ l=1 rl f(z(l)) (11.20) ͜͜Ͱɺ{z(l)} ͸ q(z) ͔ΒαϯϓϦϯά͞Εͨαϯϓϧͷू߹Ͱ͋Γɺ rl = p(z(l))/q(z(l)) ͱఆٛͨ͠ɻ 21 / 56
  19. 11.1.4 ॏ఺αϯϓϦϯά ·ͨɺZp = ∫ p(z) dz ͱ Zq =

    q(z)/q(z) Λ༻͍ΔͱɺZp /Zq ΋ҎԼͷ Α͏ʹಉ͡αϯϓϧͷू߹ {z(l)} Λ࢖ͬͯɺۙࣅతʹܭࢉͰ͖Δɻ Zp Zq = ∫ 1 Zq p(z) dz = ∫ p(z) q(z) q(z) dz ∼ 1 L L ∑ l=1 rl (11.21) ΑͬͯɺE[f] ͸ҎԼͷΑ͏ʹۙࣅͰ͖Δɻ E[f] ∼ Zq Zp 1 L L ∑ l=1 rl f(z(l)) ∼ L ∑ L m=1 rm · 1 L L ∑ l=1 rl f(z(l)) = L ∑ l=1 rl ∑ L m=1 rm f(z(l)) = L ∑ l=1 wl f(z(l)) (11.22) ͜͜Ͱɺwl ͸ҎԼͰఆٛ͞ΕΔɻ wl = rl ∑ L m=1 rm (11.23) 22 / 56
  20. 11.1.4 ॏ఺αϯϓϦϯά ͜ΕΑΓɺ͔֬ʹॏ఺αϯϓϦϯάΛ༻͍Δͱɺظ଴஋ E[f] Λۙࣅత ʹٻΊΔ͜ͱ͕Ͱ͖Δɻ ͨͩ͠ɺ͜ͷαϯϓϦϯάͰ࢖༻͢ΔఏҊ෼෍ q(z) ͸αϯϓϧΛٻΊ ͍ͨ෼෍

    p(z) ͱ͋Δఔ౓ࣅ͍ͯΔ෼෍Λ࢖༻͢Δඞཁ͕͋Δɻ ͨͱ͑͹ɺp(z) ͕͋Δαϯϓϧۭؒͷখ͞ͳൣғ A Ͱ 0 Ͱͳ͍Α͏ͳ ෼෍Ͱ͋ΓɺఏҊ෼෍ q(z) ͕ͦͷൣғ A Ͱ 0 Ͱ͋Δͱɺαϯϓϧͷू ߹ {z(l)} ͷதͰൣғ A ʹೖΔ΋ͷ͸ͳ͍ͷͰɺॏཁ౓ॏΈͷू߹ {rl } ͸͸͢΂ͯ 0 ͱͳΔɻ ͜ͷͱ͖ɺE[f] ͷۙࣅ஋͸ 0 ͱͳͬͯ͠·͏ɻ ͞ΒʹɺE[f] ͕ 0 ͱͳΔͷ͕ਖ਼͍͔͠൱͔ (ਖ਼͍͠৔߹΋͋Δ) ΛଌΔ ࢦඪ͕ॏ఺αϯϓϦϯάͰ͸ଘࡏ͠ͳ͍ͷ͕࠷΋ਂࠁͳ఺Ͱ͋Δɻ 23 / 56
  21. 11.1.5 SIR غ٫αϯϓϦϯάͷ໰୊఺͸ɺ্͔Βԡ͑͞ΔΑ͏ͳ k ΛܾΊΔͱɺغ ٫཰͕ߴ͘ͳΔ͜ͱͩͬͨɻ ͜͜Ͱ͸ɺk ΛઃఆͤͣʹࡁΉํ๏Ͱ͋Δ SIR(Sampling-Importance-Resampling) ʹ͍ͭͯઆ໌͢Δɻ

    ·ͣɺఏҊ෼෍ q(z) ͔Β L ݸͷαϯϓϧू߹ {z(l)} ΛಘΔɻ (Sampling) (11.23) ΑΓɺwl Λܭࢉ͢Δɻ(Importance) wl ͸ ∑ l wl = 1 Λຬͨ͢ͷͰɺ཭ࢄతͳ֬཰෼෍ͱΈͳͤΔͷͰɺͦ ͷ֬཰෼෍ pl = wl ʹै͏֬཰Ͱ {z(l)} ͔Β L ݸαϯϓϦϯά͢Δɻ (Resampling) ҎԼͰɺ͜ͷΑ͏ʹ࠶αϯϓϦϯά͞Εͨαϯϓϧू߹ {z(l)} ͸ L → ∞ ͰαϯϓϦϯά͍ͨ͠෼෍ p(z) ͔ΒͷαϯϓϦϯάʹͳ͍ͬͯ Δ͜ͱΛࣔ͢ɻ 24 / 56
  22. 11.1.5 SIR αϯϓϧۭ͕ؒҰม਺ͷ৔߹Ͱɺ֬཰෼෍ pl = wl ͷྦྷੵ෼෍ p(z ≤ a)

    Λܭࢉͯ͠ΈΔɻ(֬཰ม਺ z ͕ a ҎԼͱͳΔ֬཰) p(z ≤ a) ͸ (11.23) Λ༻͍Δͱ p(z ≤ a) = ∑ l:z(l)≤a wl = ∑ l I(z(l) ≤ a)p(z(l))/q(z(l)) ∑ m p(z(m))/q(z(m)) (11.25) ͱͳΔɻ ͜͜ͰɺI(z ≤ a) ͸Ҿ਺͕ਅͷ࣌͸ 1 ͰɺͦΕҎ֎Ͱ͸ 0 ͱͳΔؔ਺Ͱ ͋Δɻ 25 / 56
  23. 11.1.5 SIR L → ∞ ͱ͢Δͱɺ{z(l)} ͸΋ͱ΋ͱ q(z) ͔ΒαϯϓϦϯά͞Εͨαϯ ϓϧͳͷͰɺ

    p(z ≤ a) = ∫ I(z ≤ a){p(z)/q(z)}q(z) dz ∫ {p(z)/q(z)}q(z) dz = ∫ I(z ≤ a)p(z) dz ∫ p(z) dz = ∫ I(z ≤ a)p(z) dz (11.26) ͱͳΓɺ͔֬ʹ L → ∞ Ͱ͸ɺαϯϓϦϯά͍ͨ͠෼෍ p(z) ͷྦྷੵ෼ ෍ʹҰக͍ͯ͠Δɻ 26 / 56
  24. 11.1.6 αϯϓϦϯάͱ EM ΞϧΰϦζϜ EM ΞϧΰϦζϜͷ E εςοϓͷۙࣅܭࢉʹαϯϓϦϯά๏͸࢖༻Ͱ ͖Δɻ EM

    ΞϧΰϦζϜͷ E εςοϓͰ͸ɺӅΕม਺ Z ͷࣄޙ෼෍ p(Z|X, θold) ʹΑΔ׬શσʔλର਺໬౓ ln p(Z, X|θ) ͷظ଴஋ Q(θ, θold) ΛٻΊΔɻ Q(θ, θold) = ∫ p(Z|X, θold) ln p(Z, X|θ) dZ (11.28) ͜ͷੵ෼Λɺࣄޙ෼෍ p(Z|X, θold) ͔Βͷαϯϓϧू߹ {Z(l)} Λ࢖ͬ ͯɺҎԼͷ༗ݶ࿨Ͱۙࣅ͢Δɻ Q(θ, θold) ∼ 1 L L ∑ l=1 ln p(Z(l), X|θ) (11.29) ͦͯ͠ɺ͜ͷ Q(θ, θold) Λ༻͍ͯ M εςοϓΛ࣮ߦ͢Δɻ ͜ͷΑ͏ͳ EM ΞϧΰϦζϜΛϞϯςΧϧϩ EM ΞϧΰϦζϜͱ͍͏ɻ 27 / 56
  25. 11.2 Ϛϧίϑ࿈࠯ϞϯςΧϧϩ ͜͜·Ͱղઆ͖ͯͨ͠αϯϓϦϯά๏Ͱ͸ɺαϯϓϧۭ͕ؒ௿࣍ݩͳΒ ༗ޮͰ͋Δ͕ɺߴ࣍ݩʹͳΔͱ্ख͍͔͘ͳ͍͜ͱ͕Θ͔͍ͬͯΔɻ ͜͜Ͱಋೖ͢ΔϚϧίϑ࿈࠯ϞϯςΧϧϩ (MCMC) Ͱ͸αϯϓϧۭؒ ͕ߴ࣍ݩͰ͋ͬͯ΋Α͘ػೳ͢Δɻ ɹ MCMC

    ʹ͓͍ͯ΋ɺఏҊ෼෍Λಋೖ͢Δɻ ͨͩ͠ɺ͜͜ͰͷఏҊ෼෍͸ݱࡏͷαϯϓϧ z(τ) ʹґଘ͠ɺq(z|z(τ)) ͱͳΓɺ࣍ͷαϯϓϧ z(τ+1) ͸ q(z|z(τ)) ͔ΒಘΒΕΔɻ(ޙ΄Ͳઆ໌͢ ΔϚϧίϑ࿈࠯) ·ͨɺ໨ඪ͸෼෍ p(z) ͔ΒαϯϓϧΛಘΔ͜ͱͰ͋Δ͕ɺ͜͜Ͱ΋ p(z) = p(z)/Zp ͱ͠ɺp(z) ͸Θ͔͍ͬͯΔ͕ɺZp ͷ஋͸Θ͔Βͳ͍ͱ ͢Δɻ 28 / 56
  26. 11.2 Ϛϧίϑ࿈࠯ϞϯςΧϧϩ ·ͣ MCMC ͷҰൠ࿦ʹೖΔલʹɺ࠷΋؆୯ͳྫͰ͋Δ Metropolis Ξϧ ΰϦζϜΛղઆ͢Δɻ ఏҊ෼෍͸͢΂ͯͷαϯϓϧʹ͍ͭͯରশͰ͋Δͱ͢Δɻ ྫ͑͹

    zA ͱ zB ʹରͯ͠ q(zA |zB ) = q(zB |zA ) (ରশͰͳ͍৔߹͸ 11.2.2 Ͱղઆ͢Δɻ) ·ͣɺαϯϓϧ z(τ) ͕༩͑ΒΕͯɺ࣍ͷαϯϓϧީิ z⋆ ͕ఏҊ෼෍ q(z|z(τ)) ͔ΒಘΒΕͨͱ͢Δɻ ͦͷαϯϓϧީิ z⋆ ͸ҎԼͷ֬཰ A(z⋆, z(τ)) Ͱडཧ͞ΕΔɻ A(z⋆, z(τ)) = min ( 1, p(z⋆) p(z(τ)) ) (11.33) ࣮૷Ͱ͸ɺ୯Ґ۠ؒ (0, 1) ͷҰ༷෼෍͔Βཚ਺ u Λऔಘ͠ɺ A(z⋆, z(τ)) > u Ͱ͋Ε͹ɺαϯϓϧީิ z⋆ ͸αϯϓϧͱͯ͠डཧ͞Εɺ ͦΕҎ֎ͷ৔߹͸غ٫͞ΕΔΑ͏ʹ͢Δɻ 29 / 56
  27. 11.2 Ϛϧίϑ࿈࠯ϞϯςΧϧϩ ͜͜Ͱ (11.33) ΑΓɺp(z⋆) > p(z(τ)) Ͱ͋Ε͹ɺA(z⋆, z(τ)) =

    1 ͱͳΓɺ ͲΜͳཚ਺ u Ͱ΋ඞͣ A(z⋆, z(τ)) > u ͱͳΔͷͰɺඞͣαϯϓϧީิ z⋆ ͸αϯϓϧͱͯ͠डཧ͞ΕΔ͜ͱʹ஫ҙɻ ΋͠ɺαϯϓϧީิ z⋆ ͸αϯϓϧͱͯ͠डཧ͞ΕͨΒɺz(τ+1) = z⋆ ͱ ͠ɺغ٫͞ΕͨΒ z(τ+1) = z(τ) ͱ͢Δɻ ͜ͷ఺͕ɺغ٫͞ΕͨΒ୯ʹαϯϓϧΛࣺͯΔغ٫αϯϓϦϯάͱͷҧ ͍Ͱ͋Δɻ (11.2.2 Ͱূ໌͢Δ͕ɺ) ೚ҙͷ zA ͱ zB ʹରͯ͠ q(zA |zB ) ͕ਖ਼ͳΒ ͹ɺz(τ) ͕ै͏෼෍͸ τ → ∞ ͰαϯϓϧΛಘ͍ͨ෼෍ p(z) ʹۙͮ͘ɻ 30 / 56
  28. 11.2.1 Ϛϧίϑ࿈࠯ MCMC ͷҰൠతͳٞ࿦Λ͢ΔͨΊɺ·ͣ͸Ϛϧίϑ࿈࠯ͷٞ࿦Λߦ͏ɻ ͦ͜Ͱɺ·ͣ m εςοϓͰͷ֬཰ม਺Λ z(m) ͱ͢Δɻ ͦͯ͠ɺm

    = 1, · · · , M ͱͨ͠ͱ͖ͷ֬཰ม਺ͷܥྻ z(1), · · · , z(M) ʹ ରͯ͠ɺҎԼͷੑ࣭ (ಠཱੑ) Λຬͨ͢ͱ͖ɺz(1), · · · , z(M) ΛϚϧίϑ ࿈࠯ͱ͍͏ɻ p(z(m+1)|z(1), · · · , z(m)) = p(z(m+1)|z(m)) (11.37) ͭ·Γɺεςοϓ m + 1 ͷ֬཰աఔ͕Ұݸલͷεςοϓ m ΑΓ΋લͷ εςοϓʹ͸ґଘ͠ͳ͍ͱ͍͏͜ͱͰ͋Δɻ ͜ͷ༷ࢠΛάϥϑͰද͢ͱɺҎԼͷΑ͏ʹͳΔɻ 31 / 56
  29. 11.2.1 Ϛϧίϑ࿈࠯ m + 1 εςοϓͰͷαϯϓϧ z(m+1) Λൃੜͤ͞Δपล෼෍ p(z(m+1)) ͸

    p(z(m+1)) = ∑ z(m) p(z(m+1), z(m)) = ∑ z(m) p(z(m+1)|z(m))p(z(m)) (11.38) ͱͳΔɻ ͜͜ͰɺTm (z(m), z(m+1)) = p(z(m+1)|z(m)) ͸ભҠ֬཰ͱ͍͏ɻ ಛʹભҠ֬཰͕εςοϓ m ʹґΒͳ͍ (Tm (z(m), z(m+1)) = T(z(m), z(m+1))) Ϛϧίϑ࿈࠯ΛۉҰϚϧίϑ࿈ ࠯ͱ͍͍ɺࠓޙ͸ͦͷΑ͏ͳભҠ֬཰ʹݶఆͯ͠࿩ΛਐΊΔɻ 32 / 56
  30. 11.2.1 Ϛϧίϑ࿈࠯ Ҏ্ͷٞ࿦ΑΓɺT(z(m), z(m+1)) ͕༩͑ΒΕΕ͹ɺϚϧίϑ࿈࠯ʹै ͏֬཰ม਺͸࣍ͷΑ͏ʹͯ͠ൃੜͤ͞Δ͜ͱ͕Ͱ͖Δɻ 1. ॳظঢ়ଶ z(1) Λॳظ෼෍

    (ྫ͑͹αϯϓϦϯά͕ՄೳͳఏҊ෼෍ q(z)) ͔ΒαϯϓϦϯά͢Δ 2. m = 1, · · · , M − 1 ʹରͯ͠ɺભҠ֬཰ T(z(m), z(m+1)) ΑΓ z(m+1) Λൃੜͤ͞Δ ͜ͷΑ͏ʹͯ͠ൃੜͤͨ͞αϯϓϧ z(m+1) ͸ (11.38) ΑΓɺ͔֬ʹ p(z(m+1)) ͔Βൃੜͤͨ͞αϯϓϧͰ͋Δɻ 33 / 56
  31. 11.2.1 Ϛϧίϑ࿈࠯ ͜ͷΑ͏ʹαϯϓϧ z(m) Λੜ੒͠ଓ͚ͯɺm → ∞ ͱͨ͠ͱ͖ʹ෼෍ p(z(m)) ͸ऩଋ͢Δ͔Ͳ͏͔͕໰୊ͱͳΔɻ

    ͜Ε͸Ϛϧίϑ࿈࠯͕ΤϧΰʔυੑΛຬ͍ͨͯ͠Ε͹ɺऩଋ͢Δ͜ͱ͕ Θ͔͍ͬͯΔɻ Ϛϧίϑ࿈࠯͕ΤϧΰʔυతͰ͋Δͱ͸ɺن໿ੑʢͲͷঢ়ଶ͔ΒͰ΋೚ ҙͷঢ়ଶ΁ભҠͰ͖Δʣͱਖ਼࠶ؼੑʢ೚ҙͷঢ়ଶ΁ԿճͰ΋ભҠͰ͖ Δʣͱඇपظੑʢ೚ҙͷঢ়ଶ͸ҰճͷભҠͰݩʹ໭ΕΔʣΛશͯಉ࣌ʹ ຬͨ͢͜ͱΛݴ͏ɻ ͦͯ͠ΤϧΰʔυੑΛຬ͍ͨͯ͠ΔۉҰϚϧίϑ࿈࠯Ͱ͸ɺm → ∞ ͱ ͨ͠ͱ͖ɺ෼෍ p(z(m)) ͸ҎԼͷৄࡉ௼Γ߹͍৚݅Λຬͨ͢෼෍ p⋆(z) ʹऩଋ͢Δɻ p⋆(z)T(z, z′) = p⋆(z′)T(z′, z) (11.40) 34 / 56
  32. 11.2.1 Ϛϧίϑ࿈࠯ Ҏ্Λ౿·͑ΔͱɺఏҊ෼෍ q(z) ͔ΒɺϚϧίϑ࿈࠯Λ࢖ͬͯر๬ͷ ෼෍ p⋆(z) ͔ΒͷαϯϓϧΛಘ͍ͨͳΒҎԼͷखॱͰαϯϓϦϯάΛߦ ͑͹͍͍ɻ 1.

    (11.40) ͷৄࡉ௼Γ߹͍৚݅ΛΈͨ͢Α͏ͳભҠ֬཰ T(z, z′) Λ༻ ҙ͢Δ 2. ॳظঢ়ଶ z(1) ΛఏҊ෼෍ q(z) ͔ΒαϯϓϦϯά͢Δ 3. m = 1, · · · , M − 1 ʹରͯ͠ɺT(z(m), z(m+1)) ͔Β z(m+1) Λൃੜ ͤ͞Δ 4. m → ∞ ͷͱ͖ͷαϯϓϧ z(m) ͸ر๬ͷ෼෍ p⋆(z) ͔Βͷαϯϓ ϧͰ͋Δ 35 / 56
  33. 11.2.2 Metropolis-Hastings ΞϧΰϦζϜ ҎલɺMetropolis ΞϧΰϦζϜΛ MCMC ͷҰྫͱͯ͠঺հ͕ͨ͠ɺͦ Ε͕αϯϓϦϯά͍ͨ͠෼෍ p(z) ͔ΒͷαϯϓϦϯάʹͳ͍ͬͯΔ͜

    ͱ͸આ໌͠ͳ͔ͬͨɻ ͜͜Ͱ͸ɺMetropolis ΞϧΰϦζϜΛ֦ுͯ͠ɺఏҊ෼෍͕ରশͰͳ͍ ৔߹ (zA ͱ zB ʹରͯ͠ q(zA |zB ) ̸= q(zB |zA )) ͷΞϧΰϦζϜ (Metropolis-Hastings ΞϧΰϦζϜ) Λಋೖ͢Δɻ ·ͣɺαϯϓϧ z(τ) ͕༩͑ΒΕͯɺ࣍ͷαϯϓϧީิ z⋆ ͕ఏҊ෼෍ qk (z|z(τ)) ͔ΒಘΒΕͨͱ͢Δɻ(ఴ͑ࣈ k ͸ભҠઌ͕ෳ਺͋ͬͨ৔߹ ͷͨΊʹ͚͍ͭͯΔɻ11.3 Ͱ۩ମྫΛݟΔɻ) ͦͷαϯϓϧީิ z⋆ ͸ҎԼͷ֬཰ Ak (z⋆, z(τ)) Ͱडཧ͞ΕΔɻ Ak (z⋆, z(τ)) = min ( 1, p(z⋆)qk (z(τ)|z⋆) p(z(τ))qk (z⋆|z(τ)) ) (11.44) 36 / 56
  34. 11.2.2 Metropolis-Hastings ΞϧΰϦζϜ ͜ͷ Metropolis-Hastings ΞϧΰϦζϜͰ͸ɺqk (z′|z) ʹΑΓαϯϓϧީ ิ͕બ͹ΕɺAk (z′,

    z) ʹΑΓडཧ͞ΕΔ͔Ͳ͏͔ܾ·ΔͷͰɺભҠ֬ ཰͸ Tk (z, z′) = qk (z′|z)Ak (z′, z) ͱͳΔ͔Βɺ(11.44) ΑΓ p(z)Tk (z, z′) =p(z)qk (z′|z)Ak (z′, z) =p(z)qk (z′|z) · min ( 1, p(z′)qk (z|z′) p(z)qk (z′|z) ) =p(z)qk (z′|z) · min ( 1, p(z′)qk (z|z′) p(z)qk (z′|z) ) =min ( p(z)qk (z′|z), p(z′)qk (z|z′) ) =p(z′)qk (z|z′) · min ( p(z)qk (z′|z) p(z′)qk (z|z′) , 1 ) =p(z′)qk (z|z′)Ak (z, z′) = p(z′)Tk (z′, z) (11.45) ͱͳΔͷͰɺαϯϓϧΛಘ͍ͨ෼෍ p(z) ͕ৄࡉ௼Γ߹͍৚݅ (11.40) Λ ຬͨ͢ͷͰɺMetropolis-Hastings ΞϧΰϦζϜΛ܁Γฦ͢ͱɺp(z) ͔Β ͷαϯϓϧΛಘΔ͜ͱ͕Ͱ͖Δ͜ͱ͕Θ͔Δɻ 37 / 56
  35. 11.2.2 Metropolis-Hastings ΞϧΰϦζϜ ͜ͷ Metropolis-Hastings ΞϧΰϦζϜʹ΋஫ҙ఺͕͋Δɻ ྫ͑͹ɺҎԼͷਤͷΑ͏ʹɺରশͳఏҊ෼෍ q(z) Λݱࡏͷঢ়ଶ z(τ)

    Λ த৺ʹͨ͠౳ํΨ΢ε෼෍ͱ͠ɺp(z) ͸ํ޲ʹΑͬͯେ͖͘ҟͳΔภ ࠩΛ࣋ͭΨ΢ε෼෍ͱ͢Δɻ(੺͕ p(z) Ͱɺ੨͕ q(z)) ఏҊ෼෍ͷεέʔϧ ρ ͕খ͍͞ͱغ٫཰͸Լ͕Δ͕ɺz ͕ z(τ) ͔Βେ͖ ͘มԽ͠ͳ͍ͨΊɺϥϯμϜ΢ΥʔΫΛͱΓɺܥྻ z(1), · · · ͷؒͰ௕͍ ૬ؔΛ࣋ͭɻ Ұํɺεέʔϧ ρ େ͖͗͘͢͠Δͱ p(z) ͕খ͍͞αϯϓϧΛऔͬͯ͘ ΔՄೳੑ͕ߴ͘ͳΓɺغ٫཰্͕͕Δɻ 38 / 56
  36. 11.3 ΪϒεαϯϓϦϯά ࣍͸ MCMC ͷҰྫͰ͋ΔΪϒεαϯϓϦϯάΛઆ໌͢Δɻ ޙͰड़΂ΔΑ͏ʹɺΪϒεαϯϓϦϯά͸ Metropolis-Hastings Ξϧΰ ϦζϜͷಛघͳ৔߹Ͱ͋Δ͜ͱ͕Θ͔Δɻ αϯϓϦϯάΛ͍ͨ͠෼෍Λ

    p(z) = p(z1 , · · · , zM ) ͱ͠ɺ֤εςοϓͰ ͸ z = (z1 , · · · , zM )T ͷதͷҰͭͷ੒෼ zi Λ p(zi |z\i ) ͔ΒαϯϓϦϯ ά͠ɺߋ৽͢Δɻ ͜͜Ͱɺz\i ͸ z ͔Β zi ΛऔΓআ͍ͨ΋ͷͰ͋Δɻ 1. {zi : i = 1, · · · , M} ΛॳظԽ͢Δ 2. τ = 1, · · · , T ʹରͯ͠ҎԼΛߦ͏ɻ ▶ p(z1 |z(τ) 2 , · · · , z(τ) M ) ͔Β z(τ+1) 1 ΛαϯϓϦϯά ▶ p(z2 |z(τ+1) 1 , z(τ) 3 , · · · , z(τ) M ) ͔Β z(τ+1) 2 ΛαϯϓϦϯά . . . ▶ p(zM |z(τ+1) 1 , z(τ+1) 2 , · · · , z(τ+1) M−1 ) ͔Β z(τ+1) M ΛαϯϓϦϯά 39 / 56
  37. 11.3 ΪϒεαϯϓϦϯά ຊདྷαϯϓϧΛٻΊ͍ͨ෼෍ p(z) = p(z1 , · · ·

    , zM ) ͔ΒͷαϯϓϦϯά ͸αϯϓϧۭ͕ؒߴ࣍ݩͰ͋ΔͨΊɺغ٫αϯϓϦϯάͳͲͰ͸αϯϓ ϦϯάͰ͖ͳ͍ɻ ͔͠͠ɺ৚݅෇͖෼෍ p(zi |z(τ+1) 1 , · · · , z(τ+1) i−1 , z(τ) i+1 , · · · , z(τ) M ) ͸αϯϓ ϧۭ͕ؒҰ࣍ݩͳͷͰɺغ٫αϯϓϦϯάͳͲͰαϯϓϧ z(τ+1) i Λಘ Δ͜ͱ͕Ͱ͖Δɻ ·ͨɺΪϒεαϯϓϦϯάͰͷ֤εςοϓͰ͸ɺzi ͷΈ͕มߋ͞ΕΔͷ ͰɺఏҊ෼෍͸ qi (z∗|z) = p(z∗ i |z\i ) ͱͳΔɻ ͜͜Ͱɺz ͸εςοϓલͷม਺Ͱ z∗ ͸εςοϓલͷม਺Ͱ͋Γɺzi ͷ Έ͕มߋ͞ΕΔͷͰ z∗ \i = z\i Ͱ͋Δɻ 40 / 56
  38. 11.3 ΪϒεαϯϓϦϯά ·ͨɺ͜ͷఏҊ෼෍ qk (z∗|z) = p(z∗ k |z\k )

    ͱҰൠతͳੑ࣭ p(z) = p(zk |z\k )p(z\k ) Λ༻͍Δͱ p(z∗)qk (z|z∗) p(z)qk (z∗|z) = p(z∗ k |z∗ \k )p(z∗ \k )p(zk |z∗ \k ) p(zk |z\k )p(z\k )p(z∗ k |z\k ) = 1 (11.49) ͱͳΔɻ ͜͜Ͱɺz∗ \k = z\k Λ༻͍ͨɻ ͭ·Γɺ(11.44) ΑΓɺ Ak (z∗, z) = min ( 1, p(z∗)qk (z|z∗) p(z)qk (z∗|z) ) = min(1, 1) = 1 ͱͳΓɺΪϒεαϯϓϦϯά͸ Metropolis-Hastings ΞϧΰϦζϜͷಛ घͳ৔߹ (ৗʹडཧ) Ͱ͋Δ͜ͱ͕Θ͔Δɻ ΑͬͯɺΪϒεαϯϓϦϯάΛଓ͚Ε͹ɺαϯϓϧΛಘ͍ͨ෼෍ p(z) ͔ΒͷαϯϓϧΛಘΔ͜ͱ͕Ͱ͖Δ͜ͱ͕Θ͔Δɻ 41 / 56
  39. 11.4 εϥΠεαϯϓϦϯά αϯϓϧऔಘͷखॱͱͯ͠͸ɺݱࡏͷ఺Λ z ͱͨ͠ͱ͖ʹൣғ 0 ≤ u ≤ p(z)

    ͔ΒҰ༷ʹ u ΛαϯϓϦϯά͢Δɻ ͦͯ͠ u Λݻఆͯ͠ɺp(z) > u ͱͳΔΑ͏ͳ z ͷྖҬ͔Β࣍ͷ z Λந ग़͢Δɻ(p(z) = u ͰεϥΠε) 43 / 56
  40. 11.4 εϥΠεαϯϓϦϯά ͜ͷαϯϓϦϯά͸ಉ࣌෼෍ ˆ p(z, u) ͔ΒαϯϓϦϯάΛߦ͏͜ͱͱ౳ ͍͠ɻ ˆ p(z,

    u) = { 1/Zp (0 ≤ u ≤ p(z)) 0 (otherwise) (11.51) ͨͩ͠ɺ Zp = ∫ p(z) dz Ͱ͋Δɻ ·ͨɺz ͷपล෼෍͸ (11.51) ΑΓ ∫ ˆ p(z, u) du = ∫ p(z) 0 1 Zp du = p(z) Zp = p(z) ͱͳΔͷͰɺαϯϓϧ (u, z) Λ ˆ p(z, u) ͔Βಘͯɺu Λແࢹ͢Ε͹ر๬ ͷ෼෍ p(z) ͔Βͷαϯϓϧ z ͕ಘΒΕΔɻ 44 / 56
  41. 11.4 εϥΠεαϯϓϦϯά ͨͩ͠ɺ࣮ࡍ໰୊ p(z) > u ͱͳΔΑ͏ͳ z ͷྖҬ͔Β࣍ͷ z

    Λநग़͢ Δ͜ͱ͕ࠔ೉ͳ͜ͱ͕ଟ͍ɻ ͦ͜ͰɺԼͷਤͷΑ͏ʹݱࡏͷ z ͷ஋Λ z(τ) ͱ͢Δͱɺͦͷ z(τ) ΛؚΉ ൣғ zmin ≤ z(τ) ≤ zmax ͷҰ༷෼෍͔Β z(τ+1) Λநग़͢Δํ๏͕͋Δɻ Ͱ͖Δ͚ͩ p(z) > u ͱͳΔΑ͏ͳ z Λ zmin ≤ z(τ) ≤ zmax ͷதʹؚΊ ΔΑ͏ʹൣғΛܾΊ͍͕ͨɺ޿͛͗͢Δͱغ٫཰্͕͕ͬͯ͠·͏໰୊ ఺͕͋Δɻ 45 / 56
  42. 11.4 εϥΠεαϯϓϦϯά ͦ͜ͰɺൣғͷܾΊํͱͯ͠ɺ·ͣ z(τ) ΛؚΉΑ͏ʹϥϯμϜʹൣғ w ΛܾΊΔɻ ͦͷ w ͕εϥΠε֎ʹग़ΔΑ͏ʹ֦ு͢Δɻ

    ͦͷ֦ு͞Εͨൣғͷத͔Βαϯϓϧ z′ Λநग़͠ɺͦΕ͕εϥΠε಺ ʹ͋Ε͹αϯϓϧͱ͢Δɻ(z(τ+1) = z′) ΋͠εϥΠε֎ʹ͋Ε͹ɺൣғ w Λ (z(τ) ΛؚΉΑ͏ʹ)z′ Λ୺఺ͱ͢ ΔΑ͏ʹॖখ͢Δɻ ͦͯ͠৽ͨʹ z(τ+1) ͱͳΓ͏ΔީิΛൣғ w ͷத͔ΒऔΓग़͢ɻ 46 / 56
  43. 11.5.1 ྗֶܥ ·ͣɺϋϛϧτϯྗֶʹ͍ͭͯઆ໌͢Δɻ ͜Ε·Ͱ཭ࢄతͳεςοϓ τ Ͱͷ֬཰ม਺Λ z(τ) ͱ͕ͨ͠ɺτ Λ࿈ଓ ม਺ʹ֦ு͠ɺ֬཰ม਺Λ

    τ ͷؔ਺ z(τ) ͱ͢Δɻ ྗֶͰݴ͑͹ɺ͜ͷ τ ͕࣌ؒͰɺz(τ) ͕෺ମͷҐஔϕΫτϧͱͳΔɻ ·ͨɺz(τ) ͷ τ ඍ෼ r = dz dτ (11.53) ͸ӡಈྔ (෺ମͷ଎౓ͱಉ౳ͷྔ) Ͱ͋Δɻ ·ͨɺܥͷϙςϯγϟϧΤωϧΪʔΛ E(z) ͱ͢Δͱɺ෺ମ͸ҎԼͷӡ ಈํఔࣜʹै͍ӡಈΛߦ͏͜ͱ͕஌ΒΕ͍ͯΔɻ dr dτ = − ∂E(z) ∂z (11.55) 48 / 56
  44. 11.5.1 ྗֶܥ ͜ΕΛϋϛϧτϯܗࣜͰ·ͱΊͳ͓͢ɻ ·ͣ͸ӡಈΤωϧΪʔ K(r) ΛҎԼͷΑ͏ʹఆٛ͢Δɻ K(r) = 1 2

    ∥r∥2 (11.56) ͞ΒʹɺϙςϯγϟϧΤωϧΪʔ E(z) ͱӡಈΤωϧΪʔ K(r) Λ଍͠ ͨશΤωϧΪʔΛҎԼͰఆٛ͢Δɻ H(z, r) = E(z) + K(r) (11.57) ͜͜ͰɺશΤωϧΪʔ H(z, r) ͸ϋϛϧτϯؔ਺ͱ͍͏ɻ ͜ͷஈ֊Ͱ͸ɺҐஔϕΫτϧ z ͱӡಈྔϕΫτϧ r ͸ಠཱͳϕΫτϧͰ ͋Δ͜ͱʹ஫ҙɻ((11.53) ͱ͍͏ؔ܎͸ຬͨ͞ͳ͍ɻ) 49 / 56
  45. 11.5.1 ྗֶܥ ͜ͷϋϛϧτϯؔ਺Λ༻͍Δͱɺܥͷํఔࣜ (11.53) ͱ (11.55) ͸ҎԼ ͷ 2 ͭͷࣜͰදͤΔ͜ͱ͕Θ͔Δɻ

    dz dτ = ∂H ∂r (11.58) dr dτ = − ∂H ∂z (11.59) ͞Βʹɺ(11.58) ͱ (11.59) Λຬͨ࣌͢ɺϋϛϧτϯؔ਺ͷ࣌ؒඍ෼Λܭ ࢉ͢ΔͱҎԼͷΑ͏ʹ 0 ͱͳΔɻ dH(z, r) dτ = 0 (11.60) ͭ·Γɺ(11.58) ͱ (11.59) Λຬͨ͢ӡಈ͸ɺશΤωϧΪʔ H(z, r) Λอ ଘ͢Δɻ 50 / 56
  46. 11.5.1 ྗֶܥ ͞ΒʹɺԼͷਤͷΑ͏ͳ (z, r) ۭؒ (Ґ૬ۭؒ) ͷ͋ΔྖҬΛߟ͑Δɻ ͜ͷྖҬͷ֤఺͕ํఔࣜ (11.58)

    ͱ (11.59) Λຬͨ͠ͳ͕ΒҠಈͨ͠ޙ ͷମੵ͸ɺݩͷମੵͱಉ͡Ͱ͋Δ͜ͱ͕஌ΒΕ͍ͯΔɻ(Ϧ΢ϰΟϧͷ ఆཧ) 51 / 56
  47. 11.5.1 ྗֶܥ Ҏ্ͷϋϛϧτϯؔ਺ͷ࣌ؒෆมੑͱϦ΢ϰΟϧͷఆཧ͔ΒɺҎԼͷΑ ͏ʹఆٛ͞Εͨ֬཰෼෍͸Ґ૬্ۭؒͷ (11.58) ͱ (11.59) Λຬͨ͢ม Խʹରͯ͠ෆมͰ͋Δ͜ͱ͕Θ͔Δɻ p(z,

    r) = 1 ZH exp (−H(z, r)) (11.63) ͜͜Ͱɺ֬཰෼෍͸ม਺ม׵ޙ΋ن֨Խ͕੒ཱ͍ͯ͠ͳ͍ͱ͍͚ͳ͍ (۩ମతʹ͸ PRML(1.27) ͷΑ͏ͳม׵Λ͢Δ) ͷͰɺϋϛϧτϯؔ਺ͷ ࣌ؒෆมੑ͚ͩͰ͸ p(z, r) ͸ෆมʹͳΒͳ͍͜ͱʹ஫ҙɻ (11.58) ͱ (11.59) Λຬͨ͢ (p(z, r) Λෆมʹ͢Δ)z ͱ r ͷ਺஋తͳ࣌ ؒมԽ (਺஋ੵ෼) ͷ༩͑ํͱͯ͠ɺϦʔϓϑϩοά཭ࢄԽͱ͍͏ํ๏ ͕͋Δɻ 52 / 56
  48. 11.5.1 ྗֶܥ Ϧʔϓϑϩοά཭ࢄԽͱ͸ɺҎԼͷΑ͏ͳߋ৽ํ๏Ͱ͋Δɻ ˆ r(τ + ϵ/2) =ˆ r(τ) −

    ϵ 2 ∂E ∂z (ˆ z(τ)) (11.64) ˆ z(τ + ϵ) =ˆ z(τ) + ϵˆ r(τ + ϵ/2) (11.65) ˆ r(τ + ϵ) =ˆ r(τ + ϵ/2) − ϵ 2 ∂E ∂z (ˆ z(τ + ϵ)) (11.66) ͜ͷߋ৽͸਺஋ੵ෼ʹ΋͔͔ΘΒͣϦ΢ϰΟϧͷఆཧΛຬͨ͢ߋ৽ํ ๏Ͱ͋Δɻ͔͠͠ɺH ͷ஋ʹ͸ ϵ ෼ͷޡ͕ࠩग़Δɻ 53 / 56
  49. 11.5.2 ϋΠϒϦουϞϯςΧϧϩΞϧΰϦζϜ Ҏ্ͷϋϛϧτϯྗֶͱ Metropolis ΞϧΰϦζϜΛ༥߹ͤͨ͞ϋΠϒ ϦουϞϯςΧϧϩΞϧΰϦζϜΛಋग़͢Δɻ ·ͣɺॳظঢ়ଶΛ (z, r) ͱ͠ɺϦʔϓϑϩοά཭ࢄԽͰߋ৽ͨ͠ม਺Λ

    (z⋆, r⋆) ͱ͠ɺҎԼͷ֬཰Ͱडཧ͢Δɻ min(1, exp {H(z, r) − H(z⋆, r⋆)}) (11.67) ΋͠ϋϛϧτϯྗֶΛ׬શʹγϛϡϨʔτͨ͠ΒɺH ͸ෆมͳͷͰඞ ͣडཧ͞ΕΔ͕ɺϦʔϓϑϩοά཭ࢄԽΛ༻͍ͨΒɺ਺஋ੵ෼ʹΑΔޡ ࠩʹΑΓɺH ͕มԽ͢Δ৔߹͕͋ΔͷͰɺغ٫͞ΕΔ͜ͱ͕͋Δɻ ·ͨɺৄࡉ௼Γ߹͍৚͕݅੒ཱ͢Δ͔Ͳ͏͔͸ԋश 11.17 Ͱٞ࿦ͯ͠ ͍Δɻ 54 / 56
  50. 11.6 ෼഑ؔ਺ͷਪఆ ຊষͷ΄ͱΜͲͷ৔߹ͰɺαϯϓϧΛٻΊ͍ͨ෼෍͸ن֨Խఆ਺Λআ͍ ͯΘ͔͍ͬͯΔͱԾఆͨ͠ɻ ͭ·ΓɺαϯϓϧΛٻΊ͍ͨ෼෍ pE (z) Λ pE (z)

    = 1 ZE exp (−E(z)) (11.71) ͱͨ࣌͠ʹ E(z) ͷؔ਺ܗ͸Θ͔͍ͬͯΔ͕ɺZE ͷ஋͸Θ͔Βͳ͍ͱ ͍͏͜ͱͰ͋Δɻ ͞Βʹɺ͜Ε·Ͱͷ͍ΖΜͳαϯϓϦϯά๏Ͱ͸ ZE ͸Θ͔Βͳͯ͘ ΋ɺۙࣅతʹ pE (z) ͔ΒαϯϓϦϯάͰ͖͍ͯͨɻ ͨͩ͠ɺZE ͷ஋͕Θ͔ΔͱϞσϧͷൺֱ͕Ͱ͖ɺศརͳ͕࣌͋Δɻ ͜͜Ͱ͸ɺZE ͷ஋Λ஌Δํ๏Λઆ໌͢Δɻ 55 / 56
  51. 11.6 ෼഑ؔ਺ͷਪఆ ϞσϧൺֱͰ஌Γ͍ͨͷ͸ɺ2 ͭͷϞσϧͷ෼഑ؔ਺ͷൺͰ͋Δɻ ͦ͜ͰɺҎԼͷ෼෍ pG (z) Λߟ͑Δɻ pG (z)

    = 1 ZG exp (−G(z)) ͜͜ͰɺpG (z) ͔ΒͷαϯϓϦϯά͸ՄೳͰ͋ΔͱԾఆ͢Δɻ ͜ͷ࣌ɺൺ ZE /ZG ͸ pG (z) ͔Βͷαϯϓϧͷू߹ {z(l)} Λ༻͍ͯҎԼ ͷΑ͏ʹܭࢉͰ͖Δɻ ZE ZG = ∑ z exp (−E(z)) ∑ z exp (−G(z)) = ∑ z exp (−E(z) + G(z)) exp (−G(z)) ∑ z exp (−G(z)) = ∑ z exp (−E(z) + G(z))pG (z) =EpG [exp (−E + G)] ∼ 1 L ∑ l exp (−E(z(l)) + G(z(l))) (11.72) 56 / 56