Upgrade to Pro — share decks privately, control downloads, hide ads and more …

PRMLセミナー

Sponsored · Your Podcast. Everywhere. Effortlessly. Share. Educate. Inspire. Entertain. You do you. We'll handle the rest.
Avatar for gucchi gucchi
April 22, 2019

 PRMLセミナー

Avatar for gucchi

gucchi

April 22, 2019
Tweet

More Decks by gucchi

Other Decks in Science

Transcript

  1. ໨࣍ 1. ༧උ஌ࣝ 1-1. ֬཰࿦ͱϕΠζͷఆཧ (PRML 1.2) 2. άϥϑΟΧϧϞσϧ 2-1.

    ϕΠδΞϯωοτϫʔΫ (PRML 8.1) 2-2. ৚݅෇͖ಠཱੑ (PRML 8.2) 2-2-1. 3 ͭͷάϥϑͷྫ (PRML 8.2.1) 2-2-2. ༗޲෼཭ (D ෼཭)(PRML 8.2.2) 2-3. Ϛϧίϑ֬཰৔ (PRML 8.3) 2-3-1. ৚݅෇͖ಠཱੑ (PRML 8.3.1) 2-3-2. ෼ղಛੑ (PRML 8.3.2) 2-3-3. ༗޲άϥϑͱͷؔ܎ (PRML 8.3.4) 2-4. άϥϑΟΧϧϞσϧʹ͓͚Δਪ࿦ (PRML 8.4) 2-4-1. ࿈࠯ʹ͓͚Δਪ࿦ (PRML 8.4.1) 2-4-2. ɹ໦ (PRML 8.4.2) 2-4-3. Ҽࢠάϥϑ (PRML 8.4.3) 2-4-4. ੵ࿨ΞϧΰϦζϜ (PRML 8.4.4) 3 / 74
  2. 1-1. ֬཰࿦ͱϕΠζͷఆཧ ·ͣ͸༧උ஌ࣝͱͯ͠ɺ֬཰࿦ (ಛʹ֬཰ͷՃ๏ఆཧɺ֬཰ͷ৐๏ఆཧɺ ϕΠζͷఆཧ) Λ؆୯ʹ͓͞Β͍͢Δɻ ·ͣ཭ࢄతͳ֬཰ม਺ X, Y Λߟ͑ɺ͜ΕΒ͸

    X = xi (i = 1, 2, · · · , M)ɺY = yj (j = 1, 2, · · · , L) ΛͱΔͱ͢Δɻ ·ͨɺX, Y ͷ྆ํʹ͍ͭͯαϯϓϧΛऔΔ͜ͱΛશ෦Ͱ N ճߦ͏ɻ ͦͷ͏ͪɺX = xi , Y = yj ͳΔࢼߦͷ਺Λ nij ͱ͠ɺ(Y ʹ͸ؔ܎ͳ ͘)X = xi ͳΔࢼߦͷ਺Λ ci ͱ͠ɺ(X ʹ͸ؔ܎ͳ͘)Y = yj ͳΔࢼߦ ͷ਺Λ rj ͱ͢Δɻ(ҎԼͷਤ) 4 / 74
  3. 1-1. ֬཰࿦ͱϕΠζͷఆཧ Ҏ্ͷઃఆΑΓɺX = xi , Y = yj ͱͳΔ֬཰

    (ಉ࣌֬ ཰)p(X = xi , Y = yj ) ͸ҎԼͷΑ͏ʹͳΔɻ p(X = xi , Y = yj ) = nij N (1.1) ͜͜Ͱɺ૯ࢼߦճ਺ N ͸҉ʹແݶେͷۃݶΛԾఆ͍ͯ͠Δɻ ·ͨɺ(Y ʹ͸ؔ܎ͳ͘)X = xi ͳΔ֬཰ (पล֬཰)p(X = xi ) ͸ҎԼ ͷΑ͏ʹͳΔɻ p(X = xi ) = ci N (1.2) ·ͨɺci ͱ nij ʹ͸ ci = L ∑ j=1 nij (1.3) ͳΔؔ܎͕੒ཱ͢Δɻ 5 / 74
  4. 1-1. ֬཰࿦ͱϕΠζͷఆཧ ͕ͨͬͯ͠ɺपล֬཰ p(X = xi ) ͱಉ࣌֬཰ p(X =

    xi , Y = yj ) ʹ͸Ҏ Լͷؔ܎͕੒ཱ͢Δɻ p(X = xi ) = ci N = L ∑ j=1 nij N = L ∑ j=1 p(X = xi , Y = yj ) (1.4) ͜ΕΛ֬཰ͷՃ๏ఆཧͱ͍͏ɻ ࣍ʹ X = xi ͱͳΔࣄ৅͚ͩΛߟ͑ɺͦͷ಺ Y = yj ͱͳΔ֬཰͸ p(Y = yj |X = xi ) ͱॻ͔ΕΔɻ ͜ͷ֬཰Λ৚݅෇͖֬཰ͱ͍͍ɺX = xi ͕༩͑ΒΕ͍ͯΔ্Ͱ Y = yj ͱͳΔ֬཰Ͱ͋Δɻ ۩ମతʹ͸ p(Y = yj |X = xi ) ͸ p(Y = yj |X = xi ) = nij ci (1.5) ͱॻ͚Δɻ 6 / 74
  5. 1-1. ֬཰࿦ͱϕΠζͷఆཧ Ҏ্ΑΓɺಉ࣌֬཰ p(X = xi , Y = yj

    ) ͸पล֬཰ p(X = xi ) ͱ৚݅෇ ͖֬཰ p(Y = yj |X = xi ) Λ༻͍ͯҎԼͷΑ͏ʹॻ͚Δɻ p(X = xi , Y = yj ) = nij N = nij ci · ci N = p(Y = yj |X = xi )p(X = xi ) (1.6) ͜ΕΛ֬཰ͷ৐๏ఆཧͱ͍͏ɻ ͜ΕΒͷ 2 ͭͷఆཧΛ·ͱΊΔͱ p(X) = ∑ Y p(X, Y ) (1.7) p(X, Y ) =p(Y |X)p(X) (1.8) ͱͳΔɻ ͜͜ͰɺදهΛ؆ུԽ͢ΔͨΊʹ֬཰ม਺͕Ͳͷ஋ΛऔΔͷ͔Λলུ ͨ͠ɻ ࠓޙ͸ޡղ͕ͳ͍ݶΓɺ͜ͷදهΛར༻͢Δɻ 7 / 74
  6. 1-1. ֬཰࿦ͱϕΠζͷఆཧ ͞Βʹɺಉ࣌෼෍ͷରশੑ p(X, Y ) = p(Y, X) ͱ৐๏ఆཧ

    (1.8) Λ༻͍ ΔͱɺҎԼͷϕΠζͷఆཧ͕ಋ͚Δɻ p(Y |X)p(X) = p(X|Y )p(Y ) → p(Y |X) = p(X|Y )p(Y ) p(X) (1.9) Ҏ্ͷఆཧΛ༻͍ͯɺҎԼͷάϥϑΟΧϧϞσϧΛղઆ͢Δɻ 8 / 74
  7. 2. άϥϑΟΧϧϞσϧ ༷ʑͳ֬཰Ϟσϧͷܭࢉ͸਺ࣜΛมܗ͠ɺղ͘͜ͱ͕Ͱ͖Δɻ ͜ͷষͰ͸ɺ֬཰෼෍ΛਤͰදݱ͢Δ͜ͱʹΑΓɺͦͷΑ͏ͳ֬཰Ϟσ ϧͷܭࢉΛਤࣜతʹߦ͏ํ๏Λಋೖ͢Δɻ(֬཰తάϥϑΟΧϧϞσϧ) άϥϑ͸ҎԼͷਤͷΑ͏ʹϦϯΫ (ઢͷ෦෼) ͱϊʔυ (ԁͷ෦෼) Ͱߏ

    ੒͞ΕɺҎԼͷΑ͏ͳϦϯΫʹ໼ҹ (޲͖) ͕͋ΔϞσϧ (ϕΠδΞϯ ωοτϫʔΫɺ΋͘͠͸༗޲άϥϑΟΧϧϞσϧ) ͱϦϯΫ͕ํ޲ੑΛ ࣋ͨͳ͍Ϟσϧ (Ϛϧίϑ֬཰৔ɺ΋͘͠͸ແ޲άϥϑΟΧϧϞσϧ) ͕͋Δɻ 9 / 74
  8. 2-1. ϕΠδΞϯωοτϫʔΫ ·ͣɺϕΠδΞϯωοτϫʔΫ (༗޲άϥϑΟΧϧϞσϧ) ʹ͍ͭͯઆ ໌͢Δɻ ͦͷͨΊʹ 3 ͭͷ֬཰ม਺ a,

    b, c ͷಉ࣌෼෍ؔ਺ p(a, b, c) Λߟ͑Δɻ (a, b, c ͸࿈ଓม਺Ͱ΋཭ࢄม਺Ͱ΋ྑ͍ɻ) ֬཰࿦ͷ৐๏ఆཧ (1.8) Λ༻͍ͯɺ͜ͷ֬཰෼෍ p(a, b, c) Λ༗޲άϥϑ Ͱදݱ͢ΔͨΊʹҎԼͷࣜมܗΛ͢Δɻ p(a, b, c) = p(c|a, b)p(a, b) = p(c|a, b)p(b|a)p(a) (2.1) ࣍ʹ (2.1) ͷ࠷ӈลΛάϥϑΛ࢖ͬͯදݱ͢Δɻ 10 / 74
  9. 2-1. ϕΠδΞϯωοτϫʔΫ ·ͣɺ֬཰ม਺ a, b, c ͦΕͧΕʹରԠ͢ΔϊʔυΛඳ͖ɺͦΕͧΕͷ ϊʔυม਺ (a, b,

    c) ͱ (2.1) ͷ࠷ӈลͷҼࢠͰ͋Δ৚݅෇͖֬཰ΛରԠ ͤ͞Δɻ(a → p(a), b → p(b|a), c → p(c|a, b)) ͦͯ͠ɺͦΕͧΕͷ৚݅෇͖֬཰ʹରͯ͠ɺ৚݅ͱͯ͠༩͑ΒΕ͍ͯΔ ม਺ϊʔυ͔Β֬཰ม਺ͱͳΔม਺ϊʔυ΁༗޲ϦϯΫΛҾ͘ɻ ͨͱ͑͹ɺp(c|a, b) ʹରԠ͢Δ c ϊʔυʹ͸ɺa, b ͷϊʔυ͔Β༗޲Ϧ ϯΫ͕Ҿ͔Εɺp(a) ʹରԠ͢Δ a ϊʔυʹ͸Ͳ͔͜Β΋ a ϊʔυ΁ͷ ༗޲ϦϯΫ͸Ҿ͔Εͳ͍ɻ ͜ͷ݁Ռ͕ҎԼͷάϥϑͰ͋Γɺ(2.1) ͷ࠷ӈลΛද͢ɻ ͜͜Ͱɺa ͸ b ͷ਌ϊʔυͰ͋Γɺb ͸ a ͷࢠϊʔυͰ͋Δͱ͍͏ɻ 11 / 74
  10. 2-1. ϕΠδΞϯωοτϫʔΫ ஫ҙਂ͘؍࡯͢Ε͹ɺಉ࣌෼෍͸ҎԼͷΑ͏ʹ͔͚Δɻ p(x1 )p(x2 )p(x3 )p(x4 |x1 , x2

    , x3 )p(x5 |x1 , x3 )p(x6 |x4 )p(x7 |x4 , x5 ) (2.2) ͜ͷΑ͏ʹಉ࣌෼෍͔ΒରԠ͢Δάϥϑ͕ඳ͚ɺ͞Βʹٯʹάϥϑ͔Β ରԠ͢Δಉ࣌෼෍͕ॻ͚Δɻ(ͨͩ͠ɺಉ࣌෼෍ͱάϥϑ͸ҰରҰରԠ ͸͓ͯ͠ΒͣɺҰͭͷಉ࣌෼෍ʹରͯ͠ରԠ͢Δάϥϑ͸ෳ਺͋Δ͜ͱ ͕͋Δɻ) ͪͳΈʹҎԼͷάϥϑ͸શ݁߹Ͱ͸ͳ͍ɻ 13 / 74
  11. 2-1. ϕΠδΞϯωοτϫʔΫ Ұൠతͳಉ࣌෼෍Λ p(x) ͱ͢Δɻ(͜͜Ͱɺx = (x1 , · ·

    · , xK )T Ͱ ͋Δɻ) ·ͨɺϊʔυ xk ͷ਌ϊʔυͷू߹Λ pak ͱ͢Δͱɺಉ࣌෼෍ p(x) ͸ ҎԼͷΑ͏ʹॻ͚Δɻ p(x) = K ∏ k=1 p(xk |pak ) (2.3) ྫ͑͹ɺҎԼͷάϥϑͰ͸ɺpa5 = {x1 , x3 } Ͱ͋Δɻ 14 / 74
  12. 2-2. ৚݅෇͖ಠཱੑ ͜͜Ͱ͸ɺ৚݅෇͖ಠཱੑͱάϥϑͷؔ܎Λઆ໌͢Δɻ ·ͣɺԾఆͱͯ͠ 3 ͭͷ֬཰ม਺ a, b, c ͷ಺ɺb,

    c ͕༩͑ΒΕͨ࣌ͷ a ͷ৚݅෇͖෼෍ p(a|b, c) ͕ b ʹґଘ͠ͳ͍ͱ͢Δɻ ͭ·ΓɺࣜͰॻ͘ͱ p(a|b, c) = p(a|c) (2.4) Ͱ͋Δ࣌ɺc ͕༩͑ΒΕͨԼͰɺa ͸ b ʹରͯ͠৚݅෇͖ಠཱͰ͋Δͱ ͍͏ɻ Ұํɺ৐๏ఆཧ (1.8) Λ༻͍Δͱɺ৚݅෇͖ಠཱ͸ҎԼͷΑ͏ʹ (2.4) ͱ͸ผͷදݱ͕Ͱ͖Δɻ p(a, b|c) = p(a, b, c) p(c) = p(a|b, c) · p(b, c) p(c) =p(a|b, c)p(b|c) = p(a|c)p(b|c) (2.5) ࠷ޙͷΠίʔϧͰ (2.4) Λ࢖༻ͨ͠ɻ 15 / 74
  13. 2-2. ৚݅෇͖ಠཱੑ (2.5) ΛݟΔͱɺc ͕༩͑ΒΕͨ࣌ͷ a ͱ b ͷಉ࣌෼෍ p(a,

    b|c) ͕ c ͕ ༩͑ΒΕͨ࣌ͷ a ͷपล෼෍ p(a|c) ͱ c ͕༩͑ΒΕͨ࣌ͷ b ͷपล෼ ෍ p(b|c) ͷੵʹ෼ղͰ͖Δ͜ͱ͕Θ͔Δɻ ͭ·Γɺc ͕༩͑ΒΕͨͱ͖ a ͱ b ͸ಠཱͰɺ͜ͷΑ͏ͳঢ়گΛҎԼͷ Α͏ͳه๏Ͱද͢ɻ a |= b | c (2.6) ࣍ʹɺ͜ͷ৚݅෇͖ಠཱੑͱάϥϑͷؔ܎Λݟ͍ͯ͘ɻ 16 / 74
  14. 2-2-1. 3 ͭͷάϥϑͷྫ (2.7) ͷ྆ลΛ c ͰपลԽ (1.7) ͢Δͱ p(a,

    b) = ∑ c p(a|c)p(b|c)p(c) ̸= p(a)p(b) (2.8) ͱͳΓɺp(a, b) ͸ p(a) ͱ p(b) ͷੵʹ෼ղͰ͖ͳ͍ͷͰಠཱͰͳ͍ɻ a  |= b | ∅ (2.9) ͜͜Ͱɺ∅ ͸ۭू߹Λද͢ɻ Ұํɺc Λ৚͚݅ͭΔͨΊʹ (2.7) ͷ྆ลΛ p(c) ͰׂΔͱ p(a, b|c) = p(a, b, c) p(c) = p(a|c)p(b|c) (2.10) ͱͳΓɺ৚݅෇͖ಠཱੑ a |= b | c (2.11) Λຬͨ͢͜ͱ͕Θ͔Δɻ 18 / 74
  15. 2-2-1. 3 ͭͷάϥϑͷྫ (2.9) ͱ (2.11) ͷ 2 ͭͷੑ࣭ΛάϥϑΛ࢖ͬͯߟ࡯͢Δͱɺc ͕༩͑Β

    Ε͍ͯͳ͍ͱ͖͸ a ͱ b ͷϊʔυ͕ܨ͕͍ͬͯͯɺa ͱ b ͸ಠཱͰͳ͍ɻ ͨͩ͠ɺc ͕༩͑ΒΕΔͱɺa ͱ b ͷϊʔυ͕ c ͷϊʔυʹःஅ͞Εͯ a ͱ b ͸ಠཱʹͳΔɻ ͜ͷΑ͏ͳϊʔυ c ͸ a ͔Β b ΁ͷܦ࿏ʹؔͯ͠ tail-to-tail Ͱ͋Δͱݴ ΘΕΔɻ 19 / 74
  16. 2-2-1. 3 ͭͷάϥϑͷྫ ࣍ʹҎԼͷάϥϑΛߟ͑Δɻ ͜ͷάϥϑʹରԠ͢Δಉ࣌෼෍͸ p(a, b, c) = p(a)p(c|a)p(b|c)

    (2.12) ͱͳΔɻ ͜ͷಉ࣌෼෍Ͱ͸ɺ྆ล p(a) ͰׂΓɺc Ͱ࿨ΛͱΔͱɺҎԼͷੑ࣭͕੒ ཱ͢Δɻ ∑ c p(a, b, c) p(a) = ∑ c p(c|a)p(b|c) → p(a, b) p(a) = ∑ c p(c|a)p(b|c) →p(b|a) = ∑ c p(c|a)p(b|c) (2.13) 20 / 74
  17. 2-2-1. 3 ͭͷάϥϑͷྫ લͷྫͱಉ༷ʹɺ·ͣ͸ a ͱ b ͷಠཱੑΛௐ΂Δɻ (2.12) ͷ྆ลΛ

    c ͰपลԽ͢Δͱ ((2.13) Λ༻͍Δ) p(a, b) = p(a) ∑ c p(c|a)p(b|c) = p(a)p(b|a) ̸= p(a)p(b) (2.14) ͱͳΓɺp(a, b) ͸ p(a) ͱ p(b) ͷੵʹ෼ղͰ͖ͳ͍ͷͰಠཱͰͳ͍ɻ a  |= b | ∅ (2.15) ͦΕͰ͸࣍ʹɺc Λ৚͚݅ͭΔͨΊʹ (2.12) ͷ྆ลΛ p(c) ͰׂΔͱ p(a, b|c) = p(a, b, c) p(c) = p(a)p(c|a)p(b|c) p(c) = p(a|c)p(b|c) (2.16) ͱͳΔɻ ͜͜ͰɺϕΠζͷఆཧ (1.9) p(a|c) = p(a)p(c|a) p(c) (2.17) Λ΋͍ͪͨɻ 21 / 74
  18. 2-2-1. 3 ͭͷάϥϑͷྫ (2.16) ΑΓɺ৚݅෇͖ಠཱੑ a |= b | c

    (2.18) Λຬͨ͢͜ͱ͕Θ͔Δɻ (2.15) ͱ (2.18) ͷ 2 ͭͷੑ࣭ΛάϥϑΛ࢖ͬͯߟ࡯͢Δͱɺલͷྫͱ ಉ༷ʹɺc ͕༩͑ΒΕ͍ͯͳ͍ͱ͖͸ a ͱ b ͷϊʔυ͕ܨ͕͍ͬͯͯɺ a ͱ b ͸ಠཱͰͳ͍ɻ ͨͩ͠ɺc ͕༩͑ΒΕΔͱɺa ͱ b ͷϊʔυ͕ c ͷϊʔυʹःஅ͞Εͯ a ͱ b ͸ಠཱʹͳΔɻ ͜ͷΑ͏ͳϊʔυ c ͸ a ͔Β b ΁ͷܦ࿏ʹؔͯ͠ head-to-tail Ͱ͋Δͱ ݴΘΕΔɻ 22 / 74
  19. 2-2-1. 3 ͭͷάϥϑͷྫ ·ͣ͸ a ͱ b ͷಠཱੑΛௐ΂Δɻ (2.19) ͷ྆ลΛ

    c ͰपลԽ͢Δͱ p(a, b) = p(a)p(b) ∑ c p(c|a, b) = p(a)p(b) (2.20) ͱͳΓɺp(a, b) ͸ p(a) ͱ p(b) ͷੵʹ෼ղͰ͖ΔͷͰಠཱͰ͋Δɻ a |= b | ∅ (2.21) ͦΕͰ͸࣍ʹɺc Λ৚͚݅ͭΔͨΊʹ (2.19) ͷ྆ลΛ p(c) ͰׂΔͱ p(a, b|c) = p(a, b, c) p(c) = p(a)p(b)p(c|a, b) p(c) ̸= p(a|c)p(b|c) (2.22) ͱͳΓɺ৚݅෇͖ಠཱੑΛຬͨ͞ͳ͍ɻ a  |= b | c (2.23) 24 / 74
  20. 2-2-1. 3 ͭͷάϥϑͷྫ ࠷ޙͷྫ͸લͷ 2 ྫͱ൓ରͷৼΔ෣͍Λ͢Δɻ ͭ·Γɺc ͕༩͑ΒΕ͍ͯͳ͍ͱ͖͸ a ͱ

    b ͷϊʔυΛ݁Ϳܦ࿏͕ःஅ ͞Ε͍ͯͯɺa ͱ b ͸ಠཱͰ͋Δɻ c ͕༩͑ΒΕΔͱɺa ͱ b ͷϊʔυΛ݁Ϳܦ࿏ͷ c ͷϊʔυʹΑΔःஅ ͕ղ͔Εɺa ͱ b ͷؒʹґଘؔ܎͕Ͱ͖Δɻ ͜ͷΑ͏ͳϊʔυ c ͸ a ͔Β b ΁ͷܦ࿏ʹؔͯ͠ head-to-head Ͱ͋Δ ͱݴΘΕΔɻ 25 / 74
  21. 2-2-1. 3 ͭͷάϥϑͷྫ ·ͨɺҎԼͷάϥϑͰϊʔυ e ͸ head-to-head Ͱ͋Γɺe ͕༩͑ΒΕͨ Β

    a ͱ f ͸ಠཱͰͳ͘ͳΔɻ ͜͜Ͱॏཁͳੑ࣭ͱͯ͠ɺe ͕༩͑ΒΕ͍ͯͳͯ͘΋ɺͦͷࢠϊʔυͰ ͋Δϊʔυ c(a ΍ f ͷࢠଙϊʔυͱݺͿɻ) ͕༩͑ΒΕ͍ͯͨͱͯ͠΋ a ͱ f ͸ಠཱͰͳ͘ͳΔ͜ͱ͕Θ͔Δɻ(PRML ԋश 8.10) 26 / 74
  22. 2-2-2. ༗޲෼཭ (D ෼཭) 3 छྨͷάϥϑಠཱੑΛ༻͍ͯɺάϥϑͷ༗޲෼཭ (D ෼཭) Λಋೖ ͢Δɻ

    A, B ͓Αͼ C Λॏෳ͠ͳ͍೚ҙͷϊʔυͷू߹ͱ͢Δɻ A ʹଐ͢Δ೚ҙͷϊʔυ͔Β B ʹଐ͢Δ೚ҙͷϊʔυ΁ͷܦ࿏͕ҎԼ ͷͲͪΒ͔ͷ৚݅Λຬͨ͢ͱ͖ɺͦͷܦ࿏͸ःஅ͞Ε͍ͯΔɻ (a) ू߹ C ʹؚ·ΕΔϊʔυͰ͋Γɺܦ࿏ʹؚ·ΕΔ໼ҹ͕ ͦ͜Ͱ head-to-tail ΋͘͠͸ tail-to-tail Ͱ͋Δ (b) ܦ࿏ʹؚ·ΕΔ໼ҹ͕ͦͷϊʔυͰ head-to-head Ͱ͋ Γɺͦͷϊʔυ΍ͦͷࢠଙ͕ू߹ C ʹؚ·Εͳ͍ ͢΂ͯͷܦ࿏͕ःஅ͞Ε͍ͯΕ͹ɺA ͸ C ʹΑΓ B ͔Β༗ޮ෼཭͞Ε ͍ͯΔͱ͍͍ɺ A |= B | C (2.24) ͱද͢ɻ 27 / 74
  23. 2-2-2. ༗޲෼཭ (D ෼཭) ͨͱ͑͹ɺҎԼͷਤͰϊʔυͷू߹ A = {a}ɺB = {b,

    f}ɺC = {c, e} ͱ͢Δͱɺ A  |= B | C (2.25) Ͱ͋Δɻ head-to-head ϊʔυͰ͋Δ e ͱࢠଙϊʔυ c ͕ϊʔυͷू߹ C ʹؚ· ΕΔ͔ΒͰ͋Δɻ 28 / 74
  24. 2-2-2. ༗޲෼཭ (D ෼཭) ༗޲άϥϑͷ࠷ޙʹϚϧίϑϒϥϯέοτͷ֓೦ʹ͍ͭͯߟ͑Δɻ ·ͣઃఆͱͯ͠ɺD ݸͷϊʔυΛ࣋ͭ༗ޮάϥϑͰදݱ͞ΕΔಉ࣌෼ ෍ p(x1 ,

    · · · , xD ) Λ༻ҙͯ͠ɺ͜ͷಉ࣌෼෍͔Β xi Ҏ֎ͷม਺ xj̸=i ͕ ༩͑ΒΕͨͱ͖ͷ xi ͷ৚݅෇͖෼෍ p(xi |{xj }j̸=i ) Λܭࢉ͢Δͱɺ p(xi |{xj }j̸=i ) = p(x1 , · · · , xD ) ∫ p(x1 , · · · , xD ) dxi = ∏ k=1 p(xk |pak ) ∫ ∏ k=1 p(xk |pak ) dxi (2.26) ͱͳΔɻ 29 / 74
  25. 2-2-2. ༗޲෼཭ (D ෼཭) p(xk |pak ) ͷதͰɺk = i

    ΋͘͠͸ϊʔυͷू߹ pak ͷதʹ xi ؚΉΑ͏ ͳ k Ҏ֎ͷҼࢠ͸ɺ(2.26) ͷ෼฼ͷੵ෼ͷ֎ʹग़ͯɺ෼ࢠͱΩϟϯηϧ ͞ΕΔɻ ͨͱ͑͹ྫͱͯ͠ɺҎԼͷάϥϑͷಉ࣌෼෍͸ (2.2) p(x1 )p(x2 )p(x3 )p(x4 |x1 , x2 , x3 )p(x5 |x1 , x3 )p(x6 |x4 )p(x7 |x4 , x5 ) (2.27) Ͱ͋Δɻ 30 / 74
  26. 2-2-2. ༗޲෼཭ (D ෼཭) x1 ͷ৚݅෇͖֬཰ p(x1 |x2 , ·

    · · , x7 ) ͸ p(x1|x2, · · · , x7) = p(x1)p(x2)p(x3)p(x4|x1, x2, x3)p(x5|x1, x3)p(x6|x4)p(x7|x4, x5) ∫ p(x1)p(x2)p(x3)p(x4|x1, x2, x3)p(x5|x1, x3)p(x6|x4)p(x7|x4, x5) dx1 = p(x1)p(x2)p(x3)p(x4|x1, x2, x3)p(x5|x1, x3)p(x6|x4)p(x7|x4, x5) p(x2)p(x3)p(x6|x4)p(x7|x4, x5) ∫ p(x1)p(x4|x1, x2, x3)p(x5|x1, x3) dx1 = p(x1)p(x4|x1, x2, x3)p(x5|x1, x3) ∫ p(x1)p(x4|x1, x2, x3)p(x5|x1, x3) dx1 (2.28) ͱͳΔɻ ͭ·Γɺk = i(= 1) ͷҼࢠ p(x1 ) ͱϊʔυͷू߹ pak ͷதʹ xi (= x1 ) ؚΉΑ͏ͳ k(= 4, 5) Ҏ֎ͷҼࢠ͸෼฼ͷੵ෼ͷ֎ʹग़ͯɺ෼ࢠͱΩϟ ϯηϧ͞ΕΔ͜ͱ͕Θ͔Δɻ 31 / 74
  27. 2-2-2. ༗޲෼཭ (D ෼཭) ͭ·Γ͜ͷྫͰ͸ɺ(2.28) ΑΓɺ৚݅෇͖֬཰ p(x1 |x2 , ·

    · · , x7 ) ͷܭࢉ ʹ͸ x1 ࣗ਎ɺx1 ͷࢠϊʔυ x4 , x5 ɺͦͷࢠϊʔυ x4 , x5 ͷڞಉ਌ (x4 , x5 ͷ਌ϊʔυͰ x1 Ҏ֎ͷϊʔυ) Ͱ͋Δ x2 , x3 ͷΈ͕ؔ܎͢Δɻ ڞಉ਌ x3 ͕د༩͢Δ͜ͱ͸ɺࢠϊʔυ x5 ͕ x1 ͔Β x3 ΁ͷܦ࿏Ͱ head-to-head Ͱ͋Δ͜ͱ͕ཧ༝Ͱ͋Δɻ ΋͠ɺhead-to-head Ͱͳ͍৔߹͸ (tail-to-tail ͷͱ͖ͳͲ) ৚݅෇͖֬཰ p(x1 |x2 , · · · , x7 ) ͷܭࢉʹ x3 ͸د༩͠ͳ͍͜ͱ͕Θ͔Δɻ 32 / 74
  28. 2-2-2. ༗޲෼཭ (D ෼཭) Ұൠ࿦ʹ໭Δͱɺ(2.26) ΑΓɺxi ͷ৚݅෇͖෼෍ p(xi |{xj }j̸=i

    ) ʹ͸Ҏ ԼͷਤͷϊʔυͷΈ͕د༩͢Δɻ ͜ͷϊʔυͷू߹ΛϚϧίϑϒϥϯέοτͱ͍͏ɻ 33 / 74
  29. 2-3-1. ৚݅෇͖ಠཱੑ ༗޲άϥϑͰ͸ɺ֬཰෼෍ͷ৚݅෇͖ಠཱੑ͔ΒରԠ͢Δάϥϑͷ৚݅ ෇͖ಠཱੑΛಋग़͕ͨ͠ɺແ޲άϥϑͰ͸άϥϑͷ৚݅෇͖ಠཱੑΛఆ ٛ͢Δͱ͜Ζ͔Β࢝ΊΔɻ ແ޲άϥϑͰɺA, B ͓Αͼ C Λॏෳ͠ͳ͍೚ҙͷϊʔυͷू߹ͱ

    ͢Δɻ A ʹଐ͢Δ೚ҙͷϊʔυ͔Β B ʹଐ͢Δ೚ҙͷϊʔυ΁ͷ͢΂ͯͷܦ ࿏͕৚݅ ▶ C ʹؚ·ΕΔϊʔυͷগͳ͘ͱ΋ 1 ͭΛඞͣ௨Δ Λຬͨ͢ͱ͖ɺҎԼͷ৚݅෇͖ಠཱੑ͸ຬͨ͞ΕΔͱ͢Δɻ A |= B | C (2.29) 35 / 74
  30. 2-3-1. ৚݅෇͖ಠཱੑ ͨͱ͑͹ɺҎԼͷΑ͏ͳάϥϑ͸ (2.29) Λຬͨ͢ɻ ༗޲άϥϑͰ͸ɺA ͱ B ͷϊʔυ͔Β C

    ͷϊʔυ΁ͷϦϯΫ͕ head-to-head Ͱଘࡏ͍ͯ͠Δͱ͖͸ɺ(2.29) ͸੒ཱ͠ͳ͔ͬͨɻ 36 / 74
  31. 2-3-2. ෼ղಛੑ Ҏ্ͷ৚݅෇͖ಠཱੑΑΓɺάϥϑʹରԠ͢Δ֬཰෼෍ͷ෼ղͷੑ࣭ʹ ͍ͭͯߟ͑Δɻ ·ͣɺ௚઀ϦϯΫͰܨ͕͍ͬͯͳ͍ 2 ͭͷϊʔυ xi ͱ xj

    ʹ͍ͭͯߟ ͑Δɻ ϊʔυ xi ͷΈΛཁૉʹ࣋ͭϊʔυू߹Λ A ͱ͠ɺϊʔυ xj ͷΈΛཁ ૉʹ࣋ͭϊʔυू߹Λ B ͱ͠ɺଞͷ͢΂ͯͷϊʔυΛཁૉʹ࣋ͭϊʔ υू߹Λ C ͱ͢Δͱɺxi ͱ xj ͸௚઀ϦϯΫͰܨ͕͍ͬͯͳ͍ͷͰɺxi ͔Β xj ΁ͷܦ࿏͸ C ʹؚ·ΕΔϊʔυΛܦ༝͢Δ͔͠ͳ͍ɻɹ Αͬͯɺ৚݅෇͖ಠཱ A |= B | C (2.30) Λຬͨ͠ɺରԠ͢Δ৚݅෇͖֬཰͸ p(xi , xj |{xl }l̸=i,j ) = p(xi |{xl }l̸=i,j )p(xj |{xl }l̸=i,j ) (2.31) Λຬͨ͢ɻ ͭ·Γɺ௚઀ϦϯΫͰܨ͕͍ͬͯͳ͍ϊʔυม਺ಉ࢜͸ಉ͡Ҽࢠʹؚ· Εͳ͍Α͏ʹҼ਺෼ղ͞ΕΔɻ 38 / 74
  32. 2-3-2. ෼ղಛੑ ۩ମྫͱͯ͠ɺҎԼͷແ޲άϥϑΛߟ͑Δɻ ͜ͷάϥϑ͸ 5 ͭͷΫϦʔΫ ({x1 , x2 },

    {x1 , x3 }, {x2 , x3 }, {x2 , x4 }, {x3 , x4 }) ͱ 2 ͭͷۃେΫϦʔΫ ({x1 , x2 , x3 }, {x2 , x3 , x4 },) Λ࣋ͭɻ 40 / 74
  33. 2-3-2. ෼ղಛੑ ҰൠతʹɺۃେΫϦʔΫΛ C ͱॻ͖ɺͦͷۃେΫϦʔΫʹଐ͢Δม਺ ू߹Λ xC ͱॻ͘ͱɺಉ࣌෼෍ؔ਺ p(x) ͸

    p(x) = 1 Z ∏ C ψC (xC ) (2.33) ͱͳΔɻ ͜͜Ͱɺ ∏ C ͸͢΂ͯͷۃେΫϦʔΫͰͷੵΛද͠ɺZ ͸ن֨Խఆ਺Ͱ Z = ∑ x ∏ C ψC (xC ) (2.34) Ͱఆٛ͞ΕΔɻ 42 / 74
  34. 2-3-3. ༗޲άϥϑͱͷؔ܎ (2.35) ͷӈลΛɺ(2.33) ͷΑ͏ʹۃେΫϦʔΫͷੵͰද͢ͱɺແ޲άϥ ϑͷಉ࣌෼෍ؔ਺͸ p(x) = 1 Z

    ψ1,2 (x1 , x2 )ψ2,3 (x2 , x3 ) · · · ψN,N−1 (xN , xN−1 ) (2.36) ψ1,2 (x1 , x2 ) =p(x1 )p(x2 |x1 ) ψ2,3 (x2 , x3 ) =p(x3 |x2 ) . . . ψN,N−1 (xN , xN−1 ) =p(xN |xN−1 ) (2.37) ͱͳΔɻ͜͜ͰɺZ = 1 Ͱ͋Δ͜ͱʹ஫ҙɻ (2.36) ʹରԠ͢Δແ޲άϥϑ͸ҎԼͰ͋Γɺ༗޲άϥϑͱܗ͸มΘΒͳ ͍ɻ(ਤͷ xN ͱ xN−1 ͷҐஔ͸ٯͰ͢) 44 / 74
  35. 2-3-3. ༗޲άϥϑͱͷؔ܎ ࣍ʹ΋͏গ͠ෳࡶͳྫͱͯ͠ɺҎԼͷΑ͏ͳ༗޲άϥϑͱ౳Ձͳແ޲ά ϥϑΛ୳͢ɻ ͜ͷ༗޲άϥϑʹରԠ͢Δ֬཰෼෍͸ p(x) = p(x1 )p(x2 )p(x3

    )p(x4 |x1 , x2 , x3 ) (2.38) Ͱ͋Δɻ (2.38) ͷӈลΛɺ(2.33) ͷΑ͏ʹۃେΫϦʔΫͷੵͰදͦ͏ͱ͢Δͱɺ Ҽࢠ p(x4 |x1 , x2 , x3 ) ͕ଘࡏ͢Δ͍ͤͰۃେΫϦʔΫ͸ {x1 , x2 , x3 , x4 } ͷ 1 ͭͰ͋Δ͜ͱ͕Θ͔Δɻ 45 / 74
  36. 2-4-1. ࿈࠯ʹ͓͚Δਪ࿦ ·ͣɺ࠷΋؆୯ͳҎԼͷ࿈࠯ʹ͍ͭͯߟ͑Δɻ ͜ͷάϥϑʹରԠ͢Δಉ࣌෼෍ؔ਺͸ (2.36) ΑΓɺ p(x) = 1 Z

    ψ1,2 (x1 , x2 )ψ2,3 (x2 , x3 ) · · · ψN,N−1 (xN , xN−1 ) (2.39) ͱͳΔɻ ͜͜Ͱɺxn ͸ K ঢ়ଶม਺Ͱ͋Δɻ ͜ͷಉ࣌෼෍ؔ਺͔Βɺ͋Δϊʔυ xn ͷपล෼෍ p(xn ) ΛٻΊΔ͜ͱ Λߟ͑Δɻ 48 / 74
  37. 2-4-1. ࿈࠯ʹ͓͚Δਪ࿦ ࠷΋۪௚ͳํ๏͸ɺ(1.7) ͷՃ๏ఆཧΑΓɺҎԼͷΑ͏ʹ xn Ҏ֎ͷঢ়ଶ ม਺ͷ࿨ΛͱΔ͜ͱͰ͋Δɻ p(xn ) =

    ∑ x1 · · · ∑ xn−1 ∑ xn+1 · · · ∑ xN p(x) (2.40) ͜Εͷܭࢉྔ͸ɺ·ͣ x ͷऔΓ͏Δ͢΂ͯͷ஋ʹର͢Δ p(x) Λ༻ҙ͢ Δɻ(x ͷऔΓ͏Δ͢΂ͯͷ஋͸ KN ݸ͋Δɻ) ͦΕͧΕͷ xn (K ݸ) ʹର͠ɺxn Ҏ֎ͷঢ়ଶม਺ͷ࿨ΛͱΔɻ(࿨Λͱ Δճ਺͸େମ KN−1 ճ) Αͬͯɺ͢΂ͯ xn ͷ஋ʹର͢Δ p(xn ) ΛٻΊΔʹ͸ɺେମ K × KN−1 = KN ճͷ࿨ΛͱΔඞཁ͕͋Δɻ ͳͷͰɺ͜ͷ۪௚ͳํ๏Ͱͷपล෼෍ͷܭࢉྔ͸ O(KN ) Ͱɺঢ়ଶม਺ ͷ਺ N ʹରͯ͠ࢦ਺తʹ૿Ճ͢Δɻ 49 / 74
  38. 2-4-1. ࿈࠯ʹ͓͚Δਪ࿦ ࣍ʹɺάϥϑͷੑ࣭Λར༻ͨ͠पล෼෍ͷܭࢉΛߦ͏ɻ άϥϑΑΓɺಉ࣌෼෍͸ p(x) = 1 Z ψ1,2 (x1

    , x2 )ψ2,3 (x2 , x3 ) · · · ψN,N−1 (xN , xN−1 ) (2.41) ͱॻ͚͍ͯͨɻ ͜ͷӈลΛ (2.40) ʹ୅ೖ͢Δͱɺ p(x) = 1 Z [ ∑ x1 · · · ∑ xn−1 ψ1,2 (x1 , x2 ) · · · ψn−1,n (xn−1 , xn ) ] =µα(xn) × [ ∑ xn+1 · · · ∑ xN ψn,n+1 (xn , xn+1 ) · · · ψN−1,N (xN−1 , xN ) ] =µβ (xn) (2.42) ͱͳΔɻ 50 / 74
  39. 2-4-1. ࿈࠯ʹ͓͚Δਪ࿦ ͞Βʹ µα (xn ) ʹରͯࣜ͠มܗΛߦ͏ͱɺ µα(xn) = ∑

    x1 · · · ∑ xn−1 [ ψ1,2(x1, x2) · · · ψn−1,n(xn−1, xn) ] = ∑ xn−1 [ ψn−1,n(xn−1, xn) · · · ∑ x2 [ ψ2,3(x2, x3) ∑ x1 [ ψ1,2(x1, x2) ] =f(x2) ] =g(x3) ] (2.43) ͱͳΓɺx1 ͷ࿨͔Β xn−1 ͷ࿨Λॱ൪ʹ࣮ߦ͍͚ͯ͠͹ܭࢉͰ͖Δɻ ͨͱ͑͹ɺx1 ͷ࿨͸ ψ1,2 (x1 , x2 ) ͷ͢΂ͯͷ x2 (K ݸ) ʹରͯ͠ɺx1 ͷ ࿨ (K ճͷ࿨) ΛऔΕ͹͍͍ɻ ͢΂ͯͷ x2 ʹରͯ͠ɺ࿨ΛऔΒͳͯ͘͸͍͚ͳ͍ཧ༝͸ɺ࣍ʹ x2 ͷ࿨ ΛͱΔͱ͖ʹ͢΂ͯͷ x2 ʹର͢Δ f(x2 ) ͷ஋͕ඞཁ͔ͩΒͰ͋Δɻ ͜ΕΑΓɺx1 ͷ࿨͚ͩͰେମ K2 ճͷ଍͠ࢉΛߦ͏ඞཁ͕͋Δɻ 51 / 74
  40. 2-4-1. ࿈࠯ʹ͓͚Δਪ࿦ ͦΕʹΑΓಘΒΕͨ f(x2 ) ͷ஋Λ ψ2,3 (x2 , x3

    ) ʹ͔͚ͯɺx2 ͷ࿨ΛͱΔ ͜ͱΛ͢΂ͯͷ x3 ʹରͯ͠ߦ͏ɻ(ܭࢉྔ K2) ͜ΕΛ܁Γฦ͢ͱɺµα (xn ) ͷܭࢉʹ͸ O((n − 1)K2) ͷܭࢉ͕ඞཁͰ ͋Δɻ ಉ༷ʹ µβ (xn ) ͷܭࢉʹ͸ O((N − n)K2) ͷܭࢉ͕ඞཁͰ͋ΔͷͰɺ߹ ܭͰ O(NK2) ͷܭࢉ͕ඞཁɻ(N ≫ 1 ΛԾఆ) ͜Ε͸ܭࢉྔ͕ N ʹରͯ͠ɺઢܗʹ૿͍͚͑ͯͩ͘ͳͷͰɺҎલʹ࿩ ͨ͠΋ͬͱ΋۪௚ͳํ๏ͷͱ͖ͷࢦ਺తͳ૿Ճʹൺ΂Δͱɺඇৗʹେ͖ ͳ N ͷͱ͖ʹάϥϑΛ༻͍ͨपลԽ͕ܭࢉίετͷ໘Ͱ༗ޮͰ͋Δ͜ ͱ͕Θ͔Δɻ 52 / 74
  41. 2-4-1. ࿈࠯ʹ͓͚Δਪ࿦ µα (xn ) ΍ µβ (xn ) ͸ϝοηʔδͱݺ͹ΕΔྔͰ͋Δɻ

    ͜ͷΑ͏ʹݺ͹ΕΔཧ༝Λղઆ͢Δɻ ͜͜ͰࠞཚΛ๷͙ͨΊʹɺ͜Ε·Ͱग़͖ͯͨ µα (xn ) ΍ µβ (xn ) Λ µ(n) α (xn ) ΍ µ(n) β (xn ) ͱॻ͘͜ͱʹ͢Δɻ ·ͣɺµ(n) α (xn ) ͸ µ(n) α (xn) = ∑ xn−1 [ ψn−1,n(xn−1, xn) · · · ∑ x2 [ ψ2,3(x2, x3) ∑ x1 [ ψ1,2(x1, x2) ]]] = ∑ xn−1 [ ψn−1,n(xn−1, xn) ∑ xn−2 [ ψn−2,n−1(xn−2, xn−1) · · · ∑ x1 [ ψ1,2(x1, x2) ]]] = ∑ xn−1 ψn−1,n(xn−1, xn)µ(n−1) α (xn−1) (2.44) ͱ͔͚Δɻ 53 / 74
  42. 2-4-1. ࿈࠯ʹ͓͚Δਪ࿦ ͭ·Γɺ͸͡Ίʹ µ(2) α (x2 ) = ∑ x1

    ψ1,2 (x1 , x2 ) (2.45) Λܭࢉ͢Ε͹ɺ(2.44) ΑΓ࠶ؼతʹ µ(n) α (xn ) ΛٻΊΔ͜ͱ͕Ͱ͖Δɻ ಉ༷ʹɺµ(n) β (xn ) ʹ͍ͭͯ΋ µ(n) β (xn ) = ∑ xn+1 ψn,n+1 (xn , xn+1 )µ(n+1) β (xn+1 ) (2.46) Λຬͨ͢ͷͰɺ͸͡Ίʹ µ(N−1) β (xN−1 ) = ∑ xN ψN−1,N (xN−1 , xN ) (2.47) Λܭࢉ͢Ε͹ɺ(2.46) ΑΓ࠶ؼతʹ µ(n) β (xn ) ΛٻΊΔ͜ͱ͕Ͱ͖Δɻ 54 / 74
  43. 2-4-2. ໦ Ҏ্ٞ࿦ͨ͠࿈࠯ͷ࣍ʹෳࡶͳ໦ߏ଄Λ࣋ͭάϥϑʹ͍ͭͯɺपล෼෍ ΛٻΊΔͱ͖ʹάϥϑߏ଄Λར༻͢ΔͱศརͰ͋Δ͜ͱΛղઆ͢Δɻ ·ͣɺ͜͜Ͱ͸໦ߏ଄Λ࣋ͭάϥϑΛಋೖ͢Δɻ ແ޲άϥϑͷ৔߹ɺҎԼͷਤͷ (a) ͷΑ͏ʹɺ೚ҙͷϊʔυͷ૊ͷؒͷ ܦ࿏͕།ҰʹͳΔΑ͏ͳάϥϑͱఆٛ͞ΕΔɻ(ͭ·Γɺϧʔϓ͸࣋ͨ ͳ͍ɻ)

    ҰํͰɺ༗޲άϥϑͷ৔߹ɺ໦ߏ଄͸ਤͷ (b) ͷΑ͏ʹ਌Λ࣋ͨͳ͍ ϊʔυ͕Ұͭ͋Γ (ࠜϊʔυͱ͍͏)ɺଞͷϊʔυ͸͢΂ͯ਌ΛҰͭͣͭ ࣋ͭάϥϑͰ͋Δɻ ਤ (c) ͷΑ͏ʹ਌Λ 2 ͭ΋ͭϊʔυ͕͋Δ͕ɺ೚ҙͷϊʔυͷ૊ͷؒͷ ܦ࿏͕།ҰͰ͋ΔΑ͏ͳάϥϑΛଟॏ໦ͱ͍͏ɻ 56 / 74
  44. 2-4-3. Ҽࢠάϥϑ Ҽࢠάϥϑʹ͓͍ͯ΋ɺ௨ৗͷάϥϑͱಉ༷ʹม਺ϊʔυ͸ؙ͍ԁͰඳ ͔ΕΔɻ ҧ͍͸·ͣɺҼࢠϊʔυͱݺ͹ΕΔϊʔυ͕ଘࡏ͠ɺͦΕ͸ (2.48) ͷ Ҽࢠ fs (xs

    ) ʹରԠ͢ΔϊʔυͰ͋Δɻ ͞Βʹ௨ৗͷάϥϑͷϦϯΫ͕औΓআ͔ΕɺҼࢠϊʔυͱͦͷҼࢠʹଐ ͢Δ͢΂ͯͷม਺ϊʔυ͕ແ޲ϦϯΫͰ݁͹ΕΔɻ ྫͱͯ͠ɺҎԼͷΑ͏ͳ෼෍Λߟ͑Δɻ p(x) = fa (x1 , x2 )fb (x1 , x2 )fc (x2 , x3 )fd (x3 ) (2.49) ͜ͷ෼෍ʹରԠ͢ΔҼࢠάϥϑ͸ҎԼͰ͋Δɻ 58 / 74
  45. 2-4-3. Ҽࢠάϥϑ ·ͨٯʹҼࢠάϥϑ͔ΒରԠ͢Δ෼෍Λ୳͠ग़͢ʹ͸ɺ·ͣҼࢠ͕ fa , fb , fc , fd

    ͷ 4 ͭଘࡏ͠ɺͦΕͧΕͷҼࢠ͸ରԠ͢ΔҼࢠϊʔυͱϦ ϯΫΛ࣋ͭม਺ʹͷΈґଘ͠ɺ p(x) = fa (x1 , x2 )fb (x1 , x2 )fc (x2 , x3 )fd (x3 ) (2.50) ͱॻ͘ɻ ·ͨɺม਺ϊʔυ (ྫ͑͹ x1 ) ࢹ఺Ͱ͸ɺx1 ͱϦϯΫΛ࣋ͭҼࢠϊʔυ ʹରԠ͢ΔҼࢠ fa , fb ʹͷΈ x1 ͸ґଘ͠ɺx1 ʹґଘ͢Δ fa ͱ fb ͷੵ ͱ x1 ʹґଘ͠ͳ͍Ҽࢠ (fc (x2 , x3 )fd (x3 )) ͷੵͰॻ͚Δɻ 59 / 74
  46. 2-4-3. Ҽࢠάϥϑ ࣍ʹҎԼͷ༗޲άϥϑ (a) ΛҼࢠάϥϑʹม׵͢Δͱ͖͸ɺಉ࣌෼෍͸ p(x1 , x2 , x3

    ) = p(x1 )p(x2 )p(x3 |x1 , x2 ) (2.51) ͱͳΓɺҼࢠ͸ p(x1 )p(x2 )p(x3 |x1 , x2 ) = f(x1 , x2 , x3 ) ͱॻ͚ɺҼࢠά ϥϑ͸ (b) ͱͳΔɻ ·ͨɺҼࢠ͸ p(x1 )p(x2 )p(x3 |x1 , x2 ) = fa (x1 )fb (x2 )fc (x1 , x2 , x3 ) ͱ΋ ॻ͚ΔͷͰɺҼࢠάϥϑ͸ (c) ͱ΋ͳΔɻ(༗޲άϥϑ΋ରԠ͢ΔҼࢠ άϥϑ͸ҰҙͰ͸ͳ͍) 60 / 74
  47. 2-4-4. ੵ࿨ΞϧΰϦζϜ ࠓճ͸ҎԼͷਤͰදͤΔΑ͏ͳάϥϑͷҰ෦ʹ͍ͭͯߟ͑Δɻ άϥϑ͸໦ߏ଄ͳͷͰɺಉ࣌෼෍͸ม਺ϊʔυ x ʹྡ઀͢Δ֤Ҽࢠ ϊʔυ͝ͱʹάϧʔϓ෼͚Ͱ͖ɺҎԼͷΑ͏ʹॻ͚Δɻ p(x) = ∏

    s∈ne(x) Fs (x, Xs ) (2.53) ͜͜Ͱɺne(x) ͸ x ʹྡ઀͢Δ͢΂ͯͷҼࢠϊʔυͷू߹ͰɺXs ͸Ҽ ࢠϊʔυ fs Λ௨ͯ͠ x ʹ઀ଓ͞ΕΔ෦෼໦ʹଐ͢Δ͢΂ͯͷม਺ू߹ Ͱ͋Δɻ 63 / 74
  48. 2-4-4. ੵ࿨ΞϧΰϦζϜ ͦ͜Ͱɺx ʹྡ઀͢Δ͢΂ͯͷҼࢠϊʔυ s Λ s = 1, ·

    · · , S ͱϥϕϧ෇ ͚͠ɺ(2.53) ͷӈลΛ (2.52) ʹ୅ೖ͢Δͱɺ p(x) = ∑ x\x ∏ s∈ne(x) Fs (x, Xs ) = ∑ X1 · · · ∑ XS S ∏ s=1 Fs (x, Xs ) = S ∏ s=1 [ ∑ Xs Fs (x, Xs ) ] = ∏ s∈ne(x) [ ∑ Xs Fs (x, Xs ) ] = ∏ s∈ne(x) µfs→x (x) (2.54) ͱͳΔɻ ͜͜Ͱɺ µfs→x (x) = ∑ Xs Fs (x, Xs ) (2.55) ͱఆٛͨ͠ɻ 64 / 74
  49. 2-4-4. ੵ࿨ΞϧΰϦζϜ ·ͨɺFs (x, Xs ) ࣗମ΋ҼࢠάϥϑʹΑͬͯهड़͞ΕΔͷͰɺ(2.48) Α ΓɺҎԼͷΑ͏ͳܗ΁ͷ෼ղ͕ՄೳͰ͋Δɻ Fs

    (x, Xs ) = fs (x, x1 , · · · , xM )G1 (x1 , Xs1 ) · · · GM (xM , XsM ) (2.56) ͜͜Ͱɺ{x, x1 , · · · , xM } ͸Ҽࢠϊʔυ fs ʹܨ͕Δม਺ϊʔυͰ͋Δɻ ·ͨɺXsm ͸ xm ͕ܨ͕͍ͬͯΔҼࢠϊʔυ fsm ʹܨ͕͍ͬͯΔ xm Ҏ֎ͷม਺ͷू߹Ͱ͋Δɻ 66 / 74
  50. 2-4-4. ੵ࿨ΞϧΰϦζϜ ͜ΕΒͷه߸ͷఆٛΑΓɺ(2.56) Λ (2.55) ʹ୅ೖ͢Δͱ µfs→x(x) = ∑ x1

    · · · ∑ xM ∑ Xs1 · · · ∑ XsM = ∑ Xs fs(x, x1, · · · , xM )G1(x1, Xs1) · · · GM (xM , XsM ) = ∑ x1 · · · ∑ xM fs(x, x1, · · · , xM ) ∏ m∈ne(fs)\x [ ∑ Xsm Gm(xm, Xsm) ] = ∑ x1 · · · ∑ xM fs(x, x1, · · · , xM ) ∏ m∈ne(fs)\x µxm→fs (xm) (2.57) ͱͳΔɻ ͜͜Ͱɺfs (x, x1 , · · · , xM ) ͸Ҽࢠɺne(fs )\x ͸Ҽࢠϊʔυ fs ʹྡ઀͢ Δ͢΂ͯͷม਺ϊʔυͷத͔Β x Λআ͍ͨ΋ͷͰ͋Γɺ·ͨɺ µxm→fs (xm ) = ∑ Xsm Gm (xm , Xsm ) (2.58) ͱఆٛͨ͠ɻ 67 / 74
  51. 2-4-4. ੵ࿨ΞϧΰϦζϜ ·ͣ۩ମྫͱͯ͠ɺҎԼͷҼࢠάϥϑͷपล෼෍ p(x2 ) Λߟ͑Δɻ ͜ͷάϥϑͷಉ࣌෼෍͸ p(x) = f(x1

    , x2 , x3 ) (2.59) ͱॻ͚Δɻ (2.54) ΑΓɺp(x2 ) ͸ p(x2 ) = µfs→x2 (x2 ) (2.60) ͱͳΔɻ 69 / 74
  52. 2-4-4. ੵ࿨ΞϧΰϦζϜ ·ͨ (2.57) ΑΓɺµfs→x2 (x2 ) ͸ µfs→x2 (x2

    ) = ∑ x1 ∑ x3 f(x1 , x2 , x3 )µx1→f (x1 )µx3→f (x3 ) (2.61) ͱͳΔɻ Αͬͯɺp(x2 ) ͸ p(x2 ) = ∑ x1 ∑ x3 f(x1 , x2 , x3 )µx1→f (x1 )µx3→f (x3 ) (2.62) Ͱ͋Δ͕ɺ۪௚ʹ (2.59) ͔Βܭࢉ͞Εͨपล෼෍͸ҎԼͷΑ͏ʹͳΔɻ p(x2 ) = ∑ x1 ∑ x3 f(x1 , x2 , x3 ) (2.63) 70 / 74
  53. 2-4-4. ੵ࿨ΞϧΰϦζϜ ࠷ޙʹҎԼͷάϥϑͷ x2 ͷपล෼෍ p(x2 ) Λੵ࿨ΞϧΰϦζϜΛ༻͍ ͯܭࢉ͢Δɻ ·ͣɺ͜ͷάϥϑͷಉ࣌෼෍͸

    p(x) = fa (x1 , x2 )fb (x2 , x3 )fc (x2 , x4 ) (2.65) ͱ͢Δɻ ͜͜Ͱɺp(x) ͸ن֨Խ͞Ε͍ͯͳ͍͕ɺٻΊ͍ͨͷ͸पล֬཰ p(x2 ) Ͱ ͋Γɺಉ࣌෼෍ͷஈ֊Ͱن֨Խ͢Δ (4 ม਺Ͱͷੵ෼Λ͢Δඞཁ͋Γ) ΑΓ΋पลԽ͔ͯ͠Βن֨Խ͢Δ (1 ม਺Ͱͷੵ෼ͰΑ͍) ํ͕ޮ཰త Ͱ͋Δ͔Βɺ·ͣ͸ن֨Խ͞Ε͍ͯͳ͍पล෼෍ p(x2 ) ΛٻΊΔͱ͜Ζ ͔Β࢝ΊΔɻ 72 / 74
  54. 2-4-4. ੵ࿨ΞϧΰϦζϜ (2.54) ΑΓɺp(x2 ) ͸ p(x2 ) = µfa→x2

    (x2 )µfb→x2 (x2 )µfc→x2 (x2 ) (2.66) ͱͳΔɻ ·ͨɺ(2.57) ΑΓɺҼࢠάϥϑ͔Βม਺ϊʔυ΁ͷϝοηʔδ͸ҎԼͷ Α͏ʹͳΔɻ µfa→x2 (x2 ) = ∑ x1 [ fa (x1 , x2 )µx1→fa (x1 ) ] µfb→x2 (x2 ) = ∑ x3 [ fb (x2 , x3 )µx3→fb (x3 ) ] µfc→x2 (x2 ) = ∑ x4 [ fc (x2 , x4 )µx4→fc (x4 ) ] (2.67) 73 / 74
  55. 2-4-4. ੵ࿨ΞϧΰϦζϜ (2.64) ΑΓɺ µx1→fa (x1 ) = 1 µx3→fb

    (x3 ) = 1 µx4→fc (x4 ) = 1 (2.68) ͱͱΔͱɺ(2.66) ΑΓ p(x2 ) = ∑ x1 [ fa (x1 , x2 ) ] ∑ x3 [ fb (x2 , x3 ) ] ∑ x4 [ fc (x2 , x4 ) ] (2.69) ͱͳΔɻ 74 / 74