Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Python ではじめるスパースモデリング
Search
Hacarus Inc.
May 19, 2018
Technology
1
3k
Python ではじめるスパースモデリング
Presentation Slides at PyCon mini Osaka 2018
https://osaka.pycon.jp/
Hacarus Inc.
May 19, 2018
Tweet
Share
More Decks by Hacarus Inc.
See All by Hacarus Inc.
GitLab CI/CD で C#/WPFアプリケーションのテストとインストーラーのビルド・デプロイを自動化する
hacarus
0
1.1k
QA4AIに則ったMLOpsツールの活用
hacarus
0
660
0から協働ロボット外観検査システムを3ヵ月で具現化した軌跡
hacarus
0
220
ワンちゃんの健康を願う皆様に送る 犬心電図AI解析プロダクト紹介_AWS DevDay2022
hacarus
0
170
犬の心電AI解析プロダクト開発奮闘記 _クラウドからハード開発までてんこ盛り
hacarus
0
1.7k
ExplainableAIの概要とAmazon SageMaker Clarifyでの実装例
hacarus
0
890
AWS Step Functions を用いた非同期学習処理の例
hacarus
0
1.1k
Dashでmyダッシュボードを作ろう ーpytrendsで見るコロナの感染拡大時期ー
hacarus
0
1.3k
Interpretable Machine Learning: モデル非依存な解釈手法の紹介
hacarus
0
990
Other Decks in Technology
See All in Technology
Compose におけるパスワード自動入力とパスワード保存
tonionagauzzi
0
170
勝手に!深堀り!Cloud Run worker pools / Deep dive Cloud Run worker pools
iselegant
4
580
Computer Use〜OpenAIとAnthropicの比較と将来の展望〜
pharma_x_tech
6
860
より良い開発者体験を実現するために~開発初心者が感じた生成AIの可能性~
masakiokuda
0
230
AIとSREで「今」できること
honmarkhunt
3
650
CodeRabbitと過ごした1ヶ月 ─ AIコードレビュー導入で実感したチーム開発の進化
mitohato14
0
190
Winning at PHP in Production in 2025
beberlei
1
250
【Λ(らむだ)】最近のアプデ情報 / RPALT20250422
lambda
0
140
Асинхронная коммуникация в Go: от понятного к душному. Дима Некрасов, Otello, 2ГИС
lamodatech
0
710
AWS全冠芸人が見た世界 ~資格取得より大切なこと~
masakiokuda
6
6.5k
Databricksで完全履修!オールインワンレイクハウスは実在した!
akuwano
0
130
Road to Go Gem #rubykaigi
sue445
0
1.1k
Featured
See All Featured
The Illustrated Children's Guide to Kubernetes
chrisshort
48
49k
The Cult of Friendly URLs
andyhume
78
6.3k
Understanding Cognitive Biases in Performance Measurement
bluesmoon
29
1.7k
Measuring & Analyzing Core Web Vitals
bluesmoon
7
410
Fantastic passwords and where to find them - at NoRuKo
philnash
51
3.2k
Six Lessons from altMBA
skipperchong
28
3.7k
A designer walks into a library…
pauljervisheath
205
24k
[Rails World 2023 - Day 1 Closing Keynote] - The Magic of Rails
eileencodes
34
2.2k
Building a Modern Day E-commerce SEO Strategy
aleyda
40
7.2k
Designing for Performance
lara
608
69k
It's Worth the Effort
3n
184
28k
Gamification - CAS2011
davidbonilla
81
5.2k
Transcript
Python ではじめるスパースモデリング 2018年5月19日 PyCon mini Osaka @ ヤフー株式会社 GFOオフィス
છాوࢤ ͦΊ͔ͩͨ͠ • גࣜձࣾϋΧϧε औక$50 • 1ZUIPOྺ • .BDIJOF-FBSOJOH.FFUVQ,"/4"*
্ཱͪ͛ • IUUQTNMNLBOTBJDPOOQBTTDPN
ϋΧϧεͱ • ϥΠϑαΠΤϯεɾ࢈ۀ Y"* • εύʔεϞσϦϯάΛ࣠ͱͨ͠σʔλղੳ • ౦େֶɾେؔਅ೭।ڭत͕ΞυόΠβʔ
ຊͷΰʔϧ • εύʔεϞσϦϯάΛͬͯΒ͏ • 1ZUIPOͰͷΞϧΰϦζϜ࣮ΛΈͯΒ͏ • ߟ͑ํɾಛʹڵຯΛͬͯΒ͏
εύʔεϞσϦϯάͱ
εύʔεϞσϦϯά • σʔλʹࡏ͢Δεύʔεੑʹணͯ͠ɺࣄ ΛϞσϧԽ͢Δख๏ • ୯ҰͷΞϧΰϦζϜΛࢦ͢Θ͚Ͱͳ͍ • ࠒ͔Β׆ൃʹݚڀ͞Ε͍ͯΔ
σϞ • Χϝϥ͔Βͷը૾Λֶश • എܠΛਪఆ • ҠಈମΛݕग़
ػցֶशͷಋೖ࣌ͷ՝ • ࣗಈԽ͍͕ͨ͠ɺઆ໌͋Δ • σʔλऩूͷ࣌ؒίετ͕େ͖͍ • ϋʔυΣΞͷίετ͍͑ͨ
εύʔεϞσϦϯάͷظ • ೖྗಛྔͷதͷॏཁͳͷ͕Θ͔Δ • গྔͷใ͔ΒਪఆΛߦ͑Δ • (16ڥҎ֎Ͱಈ࡞͢Δ
ઢܗճؼͰͷεύʔεϞσϦϯά • લఏ • ग़ྗ Z ɺೖྗ Yͷઢܗ݁߹ͱ؍ଌϊΠζЏͰදݱ͞ΕΔ • ೖྗ
Y N ࣍ݩɺ؍ଌ͞Εͨ Z O ݸ͋Δͱ͢Δ ! = #$ %$ + ⋯ + #( %( + ) 㱺 Z Λ͍͍ײ͡ʹઆ໌͢Δ X ΛΓ͍ͨ
ઢܗճؼͰͷεύʔεϞσϦϯά • ղ͖͘ • ؍ଌ Z ͱਪఆͨ͠ X ͔Βܭࢉ͞ΕΔͷೋޡࠩΛ࠷খԽ min
1 2 & − () * 㱺 Z ͷαϯϓϧ͕ Y ͷ࣍ݩΑΓখ͍͞߹ʁ
εύʔε੍ͷՃ • ະͷΑΓํఔࣜͷ͕গͳ͍࿈ཱํఔࣜ • Yʹର͢Δεύʔεͳ੍ΛՃͯ͠ղ͘ • ʮͳΔ͘গͳ͍ Y Ͱ݅Λຬͨ͢ʯ 㱺ʮͳΔ͘ଟ͘ͷ
X Λ ʹ͢Δʯ • ૉʹΔͱɺΈ߹Θͤ࠷దԽ㽊
-ϊϧϜ࠷దԽ • ੍݅Λ؇ • ʮX ͷઈରͷ૯ΛͳΔ͘খ͘͢͞Δʯ • ؇ͯ͠େҬత࠷దղ͕ಘΒΕΔ • తʹղ͘͜ͱ͕Ͱ͖Δ
• -FBTU"CTPMVUF4ISJOLBHFBOE4FMFDUJPO 0QFSBUPS ͷུ • -ϊϧϜΛਖ਼ଇԽ߲ͱͯ͠Ճͨ͠తؔ -BTTP min 1 2
& − () * + , ( - 㱺 ਖ਼ଇԽύϥϝʔλЕͰεύʔε੍ͷޮ͖Λௐ
छʑͷΞϧΰϦζϜ • ࠲ඪ߱Լ๏ $PPSEJOBUF%FTDFOU • ࠷খ֯ճؼ -FBTU"OHMF3FHSFTTJPO • ෮ॖখᮢΞϧΰϦζϜ *45"
• ަޓํ๏ "%..
ྫɿ࠲ඪ߱Լ๏ͷΞϧΰϦζϜ 1. #$ % = 1, … , ) ΛॳظԽ
2. + #$ = , - . /0 . 1 , 2 Ͱߋ৽ 3($) = 6 − 8 9:$ ; 9 #9 ͱ͠ɺ, ೈᮢ࡞༻ૉͱ͢Δ 3. ऩଋ݅·Ͱ܁Γฦ͠
ೈᮢ࡞༻ૉ • Λθϩʹ͚ۙͮΔ࡞༻Λ࣋ͭ S ", $ = & " −
$, (" ≥ $) 0, (−$ < " < $) " + $, (" ≤ −$)
ྫɿ࠲ඪ߱Լ๏ͷ࣮ྫ # def soft_threshold(X, thresh): return np.where(np.abs(X) <= thresh,
0, X - thresh * np.sign(X)) # w_cd = np.zeros(n_features) for _ in range(n_iter): for j in range(n_features): w_cd[j] = 0.0 r_j = y - np.dot(X, w_cd) w_cd[j] = soft_threshold(np.dot(X[:, j], r_j) / n_samples, alpha)
࣮ߦ݁Ռ ೖྗಛྔͷ࣍ݩ ඇθϩཁૉ αϯϓϧ
ͦͷଞͷ࣮ • TDJLJUMFBSO • ࠲ඪ߱Լ๏ͱ࠷খ֯ճؼ • IUUQTDJLJUMFBSOPSHTUBCMFNPEVMFTHFOFSBUFETLMFBSOMJOFBS@NPEFM-BTTPIUNM • IUUQTDJLJUMFBSOPSHTUBCMFNPEVMFTHFOFSBUFETLMFBSOMJOFBS@NPEFM-BTTP-BSTIUNM •
TQNJNBHF • ަޓํ๏ • IUUQTHJUIVCDPNIBDBSVTTQNJNBHFCMPCEFWFMPQNFOUTQNJNBHFMJOFBS@NPEFMBENNQZ
TQNJNBHF • εύʔεϞσϦϯά༻ϥΠϒϥϦ • ը૾ղੳʹ༻͍ΒΕΔΞϧΰϦζϜΛத৺ʹ • TDJLJUMFBSOΠϯλʔϑΣʔεʹ४ڌ • IUUQTHJUIVCDPNIBDBSVTTQNJNBHF
ը૾ॲཧͷద༻ • جຊΞΠσΟΞ • ը૾͔ΒύονΛΓग़͢ • ύονΛಉαΠζͷࣙॻجఈͷઢܕ݁߹Ͱදݱ͢Δ • ը૾શମΛදݱ͢ΔͨΊࣙॻֶश͢Δ
ը૾ॲཧͷద༻ :ը૾ "ࣙॻ ! "# $# 9
ࣙॻʹΑΔ࠶ߏ Yύον جఈͰͷ࠶ߏ݁Ռ
ྫɿࣙॻֶशͱ࠶ߏ # patches = extract_simple_patches_2d(img, patch_size) #
patches = patches.reshape(patches.shape[0], -1).astype(np.float64) intercept = np.mean(patches, axis=0) patches -= intercept patches /= np.std(patches, axis=0) # model = MiniBatchDictionaryLearning(n_components=n_basis, alpha=1, n_iter=n_iter, n_jobs=1) model.fit(patches) # reconstructed_patches = np.dot(code, model.components_) reconstructed_patches = reconstructed_patches.reshape(len(patches), *patch_size) reconstructed = reconstruct_from_simple_patches_2d(reconstructed_patches, img.shape)
ܽଛิͷద༻ ܽଛΛߟྀͨࣙ͠ॻֶशʹΑΔใ෮ݩ ը૾ :ʹର͠ྼԽ࡞༻ૉ .͕͔͔Δͱߟ͑ͯॲཧΛߦ͏
·ͱΊ
εύʔεϞσϦϯάͱ • ೖྗಛྔͷதͷॏཁͳͷ͕Θ͔Δ • গྔͷใͰ͡ΊΔ͜ͱ͕Ͱ͖Δ • طଘ࣮ΛͬͯؾܰʹࢼͤΔ • TDJLJUMFBSO TQNJNBHF
• ຊͷ༰ ˠ IUUQTHJUJPWQY2