Upgrade to Pro — share decks privately, control downloads, hide ads and more …

機械学習勉強会02 多項式近似と最小二乗法による推定/MLStudy02

機械学習勉強会02 多項式近似と最小二乗法による推定/MLStudy02

機械学習勉強会02 多項式近似と最小二乗法による推定

Avatar for hachiilcane

hachiilcane

March 03, 2022
Tweet

More Decks by hachiilcane

Other Decks in Technology

Transcript

  1. ࣮ଌͯ͠Έͨ 10ݸͷ஋ͷϖΞΛศ্ٓ͜͏هड़͢Δˠ ͜ͷΑ͏ͳػցֶशͷʮݩωλʯͱͯ͠࢖༻͢Δσʔλͷ͜ ͱΛʮτϨʔχϯάηοτʯͱ͍͏ x ʢഎதͷҐஔʣ t ʢتͼ౓ʣ 0 0.000000

    0.659981 1 0.111111 0.849493 2 0.222222 1.853337 3 0.333333 1.500273 4 0.444444 0.297486 5 0.555556 0.101940 6 0.666667 -0.215201 7 0.777778 -0.665270 8 0.888889 0.107402 9 1.000000 0.098598 {(xn, tn)}10 n=1
  2. xͱtͷؒʹ͋Δؔ܎Λ૝ఆ ͢ΔʢϞσϧΛઃఆ͢Δʣ ·ͣ͸࣍ͷΑ͏ͳxͷଟ߲ࣜΛ૝ఆ͢Δ f(x) = w0 + w1x + w2x2

    + ... + wM xM = M X m=0 wmxm M͸ଟ߲ࣜͷ࣍਺ʢ࠷େͰԿ৐ͷ߲·Ͱ༻͍Δ͔ʣ ࣮ࡍʹܭࢉ͢Δͱ͖͸Mͷ஋ΛԿ͔ʹܾΊΔͱͯ͠ɺMʴ1ݸͷ ܎਺͕ະ஌ͷύϥϝʔλͱͳΔˠ ͜ΕΒͷύϥϝʔλΛ͏·ܾ͘ΊΔ͜ͱ͕Ͱ͖Ε͹ɺτϨʔχϯ άηοτΛͰ͖Δ͚ͩਖ਼֬ʹ࠶ݱ͢Δଟ߲ࣜΛखʹೖΕΒΕΔ {wm }M m=0
  3. ύϥϝʔλwΛٻΊΔࣜ ͷղઆ w͸ٻΊΔ΂͖܎਺Λฒ΂ͨϕ Ϋτϧ t͸τϨʔχϯάηοτʹؚ· ΕΔ໨తม਺Λฒ΂ͨϕΫτϧ Φ͸Nݸͷ؍ଌ఺ʹ͍ͭͯɺͦ ΕͧΕΛ0ʙM৐ͨ͠஋Λฒ΂ ͨߦྻ ߦྻʹ͓͚ΔT͸సஔߦྻΛද

    ͢ʢର֯ઢͰ੒෼ΛંΓฦͨ͠ ߦྻʣ W = ( T ) 1 T t W = (w0, ..., wM )T t = (t1, ..., tN )T = 0 B B B @ x0 1 x1 1 · · · xM 1 x0 2 x1 2 · · · xM 2 . . . . . . ... . . . x0 N x1 N · · · xM N 1 C C C A T = 0 B B B @ x0 1 x0 2 · · · x0 N x1 1 x1 2 · · · x1 N . . . . . . ... . . . xM 1 xM 2 · · · xM N 1 C C C A
  4. ࠷খೋ৐๏Ͱܭࢉ͞Εͨ ܎਺ͷ஋ Table of the coefficients M=0 M=1 M=3 M=9

    0 0.39466 0.960706 0.109101 0.219798 1 NaN -1.132092 11.916871 -96.853538 2 NaN NaN -33.286735 2312.552194 3 NaN NaN 21.740843 -20029.415671 4 NaN NaN NaN 89134.138600 5 NaN NaN NaN -227927.456238 6 NaN NaN NaN 347467.085391 7 NaN NaN NaN -311769.354346 8 NaN NaN NaN 151936.364081 9 NaN NaN NaN -31026.909452 f(x) = 0.109101 + 11.916871x + 33.286735x2 + 21.740843x3 ͭ·ΓM=3ͷ৔߹ɺҎԼͷΑ͏ͳ͕ࣜಘΒΕͨ͜ͱʹͳ Δɻ͜ͷࣜͷxʹɺ͍͵͞ΜͷഎதͷҐஔΛ୅ೖ͢Ε͹Ͳ Ε͘Β͍تΜͰ͘ΕΔ͔Θ͔ΔΑʂ
  5. ςετηοτΛ༻ҙ x ʢഎதͷҐஔʣ t ʢتͼ౓ʣ 0 0.000000 0.575962 1 0.111111

    0.699933 2 0.222222 1.301221 3 0.333333 1.269027 4 0.444444 1.386038 5 0.555556 0.851104 6 0.666667 -0.249711 7 0.777778 -0.318560 8 0.888889 0.116516 9 1.000000 0.496955 x ʢഎதͷҐஔʣ t ʢتͼ౓ʣ 0 0.000000 0.659981 1 0.111111 0.849493 2 0.222222 1.853337 3 0.333333 1.500273 4 0.444444 0.297486 5 0.555556 0.101940 6 0.666667 -0.215201 7 0.777778 -0.665270 8 0.888889 0.107402 9 1.000000 0.098598 τϨʔχϯάηοτ ςετηοτ ͬͪ͜Ͱ ଟ߲ࣜͷ܎ ਺Λܾఆ͢ Δ ͬͪ͜͸ ݕূʹ͔͠ ࢖Θͳ͍ ͦΕͧΕʹର͢Δฏํࠜฏۉೋ৐ޡࠩΛܭࢉ͢Δ
  6. 02-square_error.ipynbΛϕʔεʹ ͯ͠՝୊ʹνϟϨϯδͯ͠ΈΑ͏ɹɹ M=0, 1, 3, 9ͷͱ͖ͷֶशͨ͠ύϥϝʔλΛग़ྗͯ͠ΈΔ ΫϩεόϦσʔγϣϯΛ࣮૷ͯ͠ΈΔ Boston house-prices (Ϙετϯࢢͷॅ୐Ձ֨)σʔληοτΛ࢖ͬͯճ

    ؼ෼ੳͯ͠ΈΔ https://pythondatascience.plavox.info/scikit-learn/scikit- learn%E3%81%AB%E4%BB%98%E5%B1%9E%E3%81%97%E3 %81%A6%E3%81%84%E3%82%8B%E3%83%87%E3%83%BC %E3%82%BF%E3%82%BB%E3%83%83%E3%83%88 ࠷ٸ߱Լ๏ʢޯ഑߱Լ๏ʣΛ༻͍ͯ࠷ྑͷύϥϝʔλΛٻΊͯΈΔ ʢޙड़ʣ {wm }M m=0
  7. ʢ͓·͚ʣ࠷ٸ߱Լ๏ʢޯ഑߱Լ ๏ʣΛ༻͍ͯύϥϝʔλΛٻΊΔ ্هͷϞσϧͰEDΛΑΓখ͘͢͞Δʹ͸ɺֶश཰ΛБͱͯ͠ ύϥϝʔλΛҎԼͷΑ͏ʹߋ৽͢Δ ED = 1 2 N X

    n=1 {f(xn) tn }2 wm := wm ⌘ @ED @wm f(x) = w0 + w1x + w2x2 + ... + wM xM = M X m=0 wmxm ۩ମతʹ͸ҎԼͷΑ͏ʹͳΔɻͱΓ͋͑ͣM=1ɺБ͸0.001 ͘Β͍ͰԿඦճ͔ߋ৽ͯ͠ΈΑ͏ wm := wm ⌘ N X n=1 (f(xn) tn)xm n