Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
機械学習勉強会04 偏微分と連鎖律/MLStudy04
Search
Sponsored
·
Ship Features Fearlessly
Turn features on and off without deploys. Used by thousands of Ruby developers.
→
hachiilcane
March 03, 2022
Technology
0
41
機械学習勉強会04 偏微分と連鎖律/MLStudy04
機械学習勉強会04 偏微分と連鎖律
hachiilcane
March 03, 2022
Tweet
Share
More Decks by hachiilcane
See All by hachiilcane
機械学習勉強会01 1次関数での回帰分析/MLStudy01
hachiilcane
0
60
機械学習勉強会02 多項式近似と最小二乗法による推定/MLStudy02
hachiilcane
0
77
機械学習勉強会03 最急降下法/MLStudy03
hachiilcane
0
37
機械学習勉強会05 パーセプトロン/MLStudy05
hachiilcane
0
41
機械学習勉強会06 ロジスティック回帰/MLStudy06
hachiilcane
0
56
機械学習勉強会07 ROC曲線/MLStudy07
hachiilcane
0
39
機械学習勉強会08 2次元入力3クラス分類/MLStudy08
hachiilcane
0
66
機械学習勉強会09 2層フィードフォワードニューラルネット/MLStudy09
hachiilcane
0
69
WPF勉強会 第1回 動的レイアウト/WPFStudy1
hachiilcane
0
180
Other Decks in Technology
See All in Technology
10Xにおける品質保証活動の全体像と改善 #no_more_wait_for_test
nihonbuson
PRO
2
210
配列に見る bash と zsh の違い
kazzpapa3
0
100
GitHub Issue Templates + Coding Agentで簡単みんなでIaC/Easy IaC for Everyone with GitHub Issue Templates + Coding Agent
aeonpeople
1
190
学生・新卒・ジュニアから目指すSRE
hiroyaonoe
2
560
生成AIを活用した音声文字起こしシステムの2つの構築パターンについて
miu_crescent
PRO
1
120
プロポーザルに込める段取り八分
shoheimitani
1
170
Azure Durable Functions で作った NL2SQL Agent の精度向上に取り組んだ話/jat08
thara0402
0
150
Introduction to Bill One Development Engineer
sansan33
PRO
0
360
Introduction to Sansan, inc / Sansan Global Development Center, Inc.
sansan33
PRO
0
3k
M&A 後の統合をどう進めるか ─ ナレッジワーク × Poetics が実践した組織とシステムの融合
kworkdev
PRO
1
410
変化するコーディングエージェントとの現実的な付き合い方 〜Cursor安定択説と、ツールに依存しない「資産」〜
empitsu
4
1.3k
What happened to RubyGems and what can we learn?
mikemcquaid
0
250
Featured
See All Featured
Reality Check: Gamification 10 Years Later
codingconduct
0
2k
Distributed Sagas: A Protocol for Coordinating Microservices
caitiem20
333
22k
Intergalactic Javascript Robots from Outer Space
tanoku
273
27k
Building Flexible Design Systems
yeseniaperezcruz
330
40k
Navigating the Design Leadership Dip - Product Design Week Design Leaders+ Conference 2024
apolaine
0
170
AI Search: Where Are We & What Can We Do About It?
aleyda
0
6.9k
The B2B funnel & how to create a winning content strategy
katarinadahlin
PRO
0
270
How Fast Is Fast Enough? [PerfNow 2025]
tammyeverts
3
450
Ethics towards AI in product and experience design
skipperchong
2
190
So, you think you're a good person
axbom
PRO
2
1.9k
Save Time (by Creating Custom Rails Generators)
garrettdimon
PRO
32
2.1k
The Illustrated Guide to Node.js - THAT Conference 2024
reverentgeek
0
250
Transcript
ภඍͱ࿈ ػցֶशͷڧྗͳث @hachiilcane
લճ·Ͱ ࠷ٸ߱Լ๏ʢޯ߱Լ๏ʣͱ͍͏ภඍ Λ༻͍ͨ࠷దͳύϥϝʔλͷٻΊํ ΛֶΜͩ ภඍͷํʹ͍ͭͯઆ໌͠ͳ͔ͬ ͨ
ࠓճֶͿ͜ͱ ඍͱͳΜ͔ͩͬͨΛࢥ͍ग़͢ ภඍͱݴͬͯେͨ͜͠ͱͳ͍͜ͱ ΛֶͿ ඍ͢Δ্Ͱͱͯศརͳ࿈ʹͭ ֶ͍ͯͿ
ඍͱͳΜ͔ͩͬͨ มԽͷ߹͍Λࣔ͢ ʮॠؒͷมԽʯΛٻΊΔ͜ͱͱݴ ͑Δ
άϥϑͰݴ͏ͳΒ͖ w=1ͷͱ͖ ͖2 w=-1ͷͱ ͖͖-2 w=0ͷͱ͖ ͖0 ͯ͢ͷwʹର͖ͯ͠Λϓ ϩοτ͢Δͱɺf’(w)=2wͱͳΔ
ඍͷఆٛ ؔf(x)ͷxͰͷ͖ҎԼͷΑ͏ʹද ͞ΕΔ ͜Ε͕ඍͷఆٛ d dx f(x) = lim h!0
f(x + h) f(x) h
ඍͷެࣜ جຊதͷجຊ ઢܗੑ xʹؔ͠ͳ͍ఆ0 ͳͷͰɺ૯ه߸ͱඍԋࢉࢠೖΕସ͑ΒΕΔ ͍͍ͩͨ͜ΕΒͷΈ߹ΘͤͰ͍͚Δ f(x) = xn d
dx f(x) = nxn 1 d dx a = 0 d dx n X i=0 xn = n X i=0 d dx xn d dx (f(x) + g(x)) = d dx f(x) + d dx g(x) d dx (af(x)) = a d dx f(x)
ඍͯ͠ಘΒΕͨಋؔ ؔ ಋؔf’(x)xͷؔͳͷͰɺx=0ͷͱ͖Ͱ x=1ͷͱ͖Ͱɺ͖ͳxʹର͢Δ͖Λ ಘΔ͜ͱ͕Ͱ͖Δʢ͋Δݻఆͷͷͱ͖ͩ ͚ͷͰͳ͘ɺxͱ͍͏มΛಋೖ͢Δ ͜ͱͰҰൠԽ͞Ε͍ͯΔʣ ݴ͍͑Δͱɺ۩ମతͳ͖Λಘ͍ͨͷͰ ͋Εɺxʹͳʹ͔ೖ͢Δ͜ͱʹͳΔ
ʮֶΨʔϧͷൿີϊʔτʯ ͥͻࢀߟʹͯ͠΄͍͠ ඍΛߟ͑ΔͷมԽΛͱΒ͑ΔͨΊ ༩͑ΒΕͨؔΛඍͯ͠ಋؔΛಘΔɻͦ͏ ͢ΕؔͷมԽͷ༷ࢠΛΔ͜ͱ͕Ͱ͖Δ ಋؔؔɻඍͷܭࢉΛ͢Δͱ͖ɺ͔ؔ ΒผͷؔΛ࡞ΔܭࢉΛ͍ͯ͠Δ͜ͱʹͳΔ ݁ߒʮֶΨʔϧͷൿີϊʔτɹඍΛ͍͔͚ͯʯ
ͭ·Γ͜Μͳؔੑ f(x) f0(x) ؔ ಋؔ ॠؒͷมԽ ʢ͖ʣ ඍ ͋Δ۩ମతͳ
xͷΛೖ ʮͲΜͳxͰʯ ೖͨ͠Βͦͷxʹ ରԠ͢Δ͕͑Θ͔ ΔΑʂ ʮͲΜͳxͰʯ ೖͨ͠Βͦͷxʹ ରԠ͢ΔॠؒͷมԽ ͕Θ͔ΔΑʂ ʮ͋Δಛఆͷxͷͱ ͖ͷʯॠؒͷมԽ ʢ͖ʣͩΑʂ
ͰภඍͱԿ͔ ม͕ҰͭͰͳ͍ɺͭ·Γଟมؔͷͱ͖ͷඍ ྫ͑w0ͱw1ͷؔͰ͋ΔҎԼͷΑ͏ͳͭʢม͕x ͳͷ͔wͳͷ͔ຊ࣭తʹͲͬͪͰ͍͍͜ͱͳͷͰ ؾʹ͠ͳ͍͍ͯ͘ʣ ม͕ෳ͋Δ͔Β͠ΐ͏͕ͳ͍ͷͰҰͭͣͭඍ͢Δɻண ͢ΔมҎ֎ఆͱΈͳͯ͠ඍ͢Δ ภඍͬͯͨͩ͜Ε͚ͩ f(w0, w1)
= w2 0 + 2w0w1 + 3
࣮લճखͰࢼΈΑ͏ͱ ͍ͯͨ͠ͱಉ͡
ภඍͷٻΊํ ʮภඍ͢Δม͚ͩʹணͯ͠ඍ͢ Δʯɻண͠ͳ͍มఆͱΈͳ͢ ภඍɺͦͷؔͷணͨ͠มํ ʹ͓͚Δʮ͖ʯΛද͍ͯ͠Δ f(w0, w1) = w2 0
+ 2w0w1 + 3 @f @w0 = 2w0 + 2w1 @f @w1 = 2w0 ←w0Ͱภඍ ←w1Ͱภඍ
ෳࡶͳؔΛඍ·ͨ ภඍ͍ͨ࣌͠ ྫͷ͜ΜͳͭΛภඍ͠ΖͬͯݴΘ ΕΔͱɺͪΐͬͱ·͍ͭͪ͝Ό͏ ͕ؔೖΕࢠʹͳ͍ͬͯΔ߹ʢ͜Ε Λ߹ؔͱݺͿʣɺͪΐͬͱָʹඍ ͢Δํ๏͕͋Δ f(x) = w0
+ w1x ED = 1 2 N X n=1 (w0 + w1xn tn)2
߹ؔΛඍ͢Δʹ ࿈ f(w)͕f(g(w))ͷΑ͏ʹೖΕࢠʹͳ͍ͬͯͯɺw Ͱඍ͢Δ͜ͱΛߟ͑Δͱ͖ɺҎԼͷ࿈ ͷެࣜΛͬͯஈ֊తʹඍ͢Δ͜ͱ͕Ͱ͖ ΔɻภඍͰಉ͡ߟ͑Ͱߦ͚Δ ͜͏͍͏;͏ʹදݱͰ͖Δ df dw =
df dg · dg dw d dw f(g(w)) = df dg · dg dw dgͰͨ͠Βಉ͡ ࣜʹͳΔͶͱࢥ͏ͱ֮ ͍͑͢
࿈Λͬͨ߹ؔ ͷඍͷྫ ҎԼͷΑ͏ͳf(g(w))ΛwͰඍ͢Δ ࿈Λ͏ͱ͜͏ܭࢉ͢Δ f(g(w)) = g(w)2 g(w) = aw
+ b df dg = d dg g(w)2 = 2g(w) dg dw = d dw (aw + b) = a df dw = df dg · dg dw = 2ga = 2(aw + b)a = 2a2w + 2ab ͳͷͰɺ gΛల։ͯ͋͛͠Δ ͜ͱΛΕͣʹ
ͰɺޡࠩؔΛ࿈ Ͱภඍͯ͠ΈΔ̍ M=1ͱͨ͠ͱ͖ͷޡࠩؔ ୯७ʹf(x)ΛೖΕࢠͷؔͱݟ͍͍ͯ ͕ɺ͜͜ͰɹɹɹɹɹΛೖΕࢠͷؔ ͱݟͯ࿈ΛͬͯΈΔ f(x) = w0 +
w1x ED = 1 2 N X n=1 (f(xn) tn)2 f(xn) tn
ͰɺޡࠩؔΛ࿈ Ͱภඍͯ͠ΈΔ̎ ·ͣw0Ͱภඍ͢ΔɻɹɹɹɹΛɹɹ ͱஔ͘ ED = 1 2 N X
n=1 (g(w0))2 @ED @g(w0) = 1 2 N X n=1 2g(w0) = N X n=1 g(w0) @g(w0) @w0 = @ @w0 (w0 + w1xn tn) = 1 @ED @w0 = @ED @g(w0) · @g(w0) @w0 = N X n=1 g(w0) · 1 = N X n=1 (f(xn) tn) f(xn) tn g(w0)
ͰɺޡࠩؔΛ࿈ Ͱภඍͯ͠ΈΔ̏ ࣍w1Ͱภඍ͢ΔɻɹɹɹɹΛɹɹ ͱஔ͘ f(xn) tn g(w1) ED = 1
2 N X n=1 (g(w1))2 @ED @g(w1) = 1 2 N X n=1 2g(w1) = N X n=1 g(w1) @g(w1) @w1 = @ @w1 (w0 + w1xn tn) = xn @ED @w1 = @ED @g(w1) · @g(w1) @w1 = N X n=1 g(w1) · xn = N X n=1 (f(xn) tn)xn
ภඍͱਤܗతʹԿ Λද͍ͯ͠ΔͷͩΖ͏͔ 3DͷάϥϑΛͿͬͨͬͨஅ໘ΛݟΔΑ͏ͳΠϝʔδ w0ͷภඍͳΒɺw0ͷ࣠ʹฏߦʹͳΔΑ͏ʹfΛแஸ Ͱͬͨͱ͖ͷஅ໘ Δॴແʹ͋Δ͕ɺw0ͷภඍʹw1͕ม ͱؚͯ͠·Ε͍ͯΔͳΒɺ࠷ऴతʹw1ΛԿ͔ͷ Ͱݻఆʹ͢Δ͜ͱʹͳΔɻw1=-1Ͱͬͨஅ໘ ɺw0ͷภඍͷಋؔͷw1ʹ-1Λೖ͕ͨࣜ͠ ͦͷ໘ͷ͖ͷࣜʹͳΔ
۩ମྫ ͢Έ·ͤΜɻྗਚ͖ͨͷͰলུ ͔͑ͨͬͨ͜ͱɺยํͷมΛݻఆ ͱߟ͑Δͱ͍͏͜ͱɺݻఆͨ͠Ͱ ʢ໘ͰʣάϥϑΛͿ͍ͬͨͬͯΔͱ͍ ͏͜ͱΛɺ࣮ࡍʹάϥϑͰ͔ࣔͨͬͨ͠ ֤ʑ͔֬Ίͯ͘Ε
܁Γฦ͠ʹͳΔ͕ภඍ ͱਤܗతʹߟ͑Δͱ w0ͱw1ʹؔ͢ΔภඍɺͦΕͧΕ w0ํͷ͖ɺw1ํͷ͖Λ༩͑Δ ภඍʹΑͬͯҙͷҐஔ(w0, w1)Ͱͷ ̎ํͷ͖Λܭࢉ͢Δ͜ͱ͕Ͱ͖Δ
ภඍ͕Ͱ͖ΔͳΒɺ͍Ζ ͍ΖͳϞσϧʹରԠग़དྷΔ ϞσϧͷಛมΛෳʹͨ͠Γɺଟ ߲ࣜ͡Όͳ͍ؔʹͨ͠Γͯ͠ɺภ ඍͯ͠తؔʢ͜Ε·Ͱޡࠩؔ ͱݴ͍ͬͯͨͷͷҰൠతͳݺͼํʣ ͷ୩ఈΛݟ͚ͭΔ͜ͱͰ࠷దͳύϥ ϝʔλΛݟ͚ͭΔɺͱ͍͏Γํ൚ ༻తʹ͑Δ
ා͕ΒͣʹνϟϨϯδ ͋ͱ࣮ࡍʹखΛಈ͔ͯ͠ཧղ͠Α͏
ࢀߟจݙ தҪ ӻ࢘ʮITΤϯδχΞͷͨΊͷػցֶशཧೖʯٕज़ධ ࣾ, 2015 ҏ౻ ਅʮPythonͰಈֶ͔ͯ͠Ϳʂ͋ͨΒ͍͠ػցֶशͷڭՊ ॻʯᠳӭࣾ, 2018 ݁ߒʮֶΨʔϧͷൿີϊʔτ
ඍΛ͍͔͚ͯʯSBΫϦ ΤΠςΟϒ, 2015 ཱੴݡޗʮֶ͘͞͠Ϳ ػցֶशΛཧղ͢ΔͨΊͷֶͷ͖ ΄Μ ʯϚΠφϏग़൛, 2017