Upgrade to Pro — share decks privately, control downloads, hide ads and more …

機械学習勉強会08 2次元入力3クラス分類/MLStudy08

機械学習勉強会08 2次元入力3クラス分類/MLStudy08

機械学習勉強会08 2次元入力3クラス分類

Avatar for hachiilcane

hachiilcane

March 03, 2022
Tweet

More Decks by hachiilcane

Other Decks in Technology

Transcript

  1. χϡʔϥϧωοτϫʔΫ ෩ͷදݱʹͯ͠࠶੔ཧ x y ॏΈw1 ॏΈw2 f ग़ྗ ೖྗ ೖྗ

    1 ͍ͭ΋1ͷ μϛʔೖྗ ॏΈw0 f(x, y) = w0 + w1 x + w2 y { P(x, y) = σ( f ) ⟶ t = 1 1 − P(x, y) ⟶ t = 0 ೖྗ૯࿨
  2. ࠓޙΛߟ͑ɺଟೖྗଟΫϥεΛѻ ͑ΔΑ͏ʹ਺ࣜͷදݱΛม͑Δ x1 x2 ॏΈw1 ॏΈw2 a ग़ྗ ೖྗ ೖྗ

    x0 ͍ͭ΋1ͷ μϛʔೖྗ ॏΈw0 a = w0 x0 + w1 x1 + w2 x2 { y = σ(a) ⟶ P(t = 1|x) 1 − y ⟶ P(t = 0|x) ೖྗ૯࿨ ৚݅෇͖֬཰ͷදݱ ʢx͕ϕΫτϧදهͳͷ ͸ೖྗ͕ଟ࣍ݩͰ͋Δ ͜ͱʹ߹Θ͍ͤͯΔʣ ग़ྗΛyͱ͢Δ ೖྗ૯࿨Λaͱ͢Δ ೖྗΛxͷఴࣈ Ͱදݱ͢Δ
  3. 3Ϋϥε෼ྨʹ֦ு͢Δ ͱ͜͏ͳΔ x1 x2 a0 ग़ྗ ೖྗ ೖྗ x0 ͍ͭ΋1ͷ

    μϛʔೖྗ w00 ೖྗ૯࿨ ग़ྗΛ3ͭʹ͢Δͷʹ߹Θͤͯɺ ೖྗ૯࿨Λ3ͭʹ͠ɺॏΈ΋߹Θ ͤͯ૿͑Δ ॏΈͷఴࣈͷ͚ͭํ͕ٯ ͡Όͳ͍͔ͱࢥ͏͔΋͠Ε ͳ͍͕ɺ͜ͷํ͕৭ʑศར a1 a2 w01 w02 w20 w21 w22 y0 = exp(a0 ) ∑K−1 k=0 exp(ak ) → P(t = 0|x) y1 = exp(a1 ) ∑K−1 k=0 exp(ak ) → P(t = 1|x) y2 = exp(a2 ) ∑K−1 k=0 exp(ak ) → P(t = 2|x) Ҏ߱Ͱࡉ͔͘ݟ͍ͯ͘ ೖྗ૯࿨ʹιϑτϚοΫεؔ਺Λ௨ ͍ͯ͠ΔʢͦͷҙຯͰͦΕͧΕͷग़ ྗ͸ؔ܎͠߹͍ͬͯΔʣ a0 = ∑2 i=0 w0i xi
  4. ೖྗxͱ໨తม਺t n ೖྗ ೖྗ ਖ਼ղσʔλ ʢΫϥεʣ 0 5.604765 -0.837603 0

    1 5.093028 -1.098183 1 2 -2.595448 1.348614 1 3 -0.662749 -5.056531 0 4 15.573566 10.073330 2 5 7.084038 2.165339 2 6 6.204333 -2.945187 1 7 13.349965 12.577250 0 8 16.487809 6.629031 0 9 0.060047 -2.900301 2 x1 x2 t 1-of-Kූ߸Խ ʢone-hotදݱʣ [[1 0 0] [0 1 0] [0 1 0] [1 0 0] [0 0 1] [0 0 1] [0 1 0] [1 0 0] [1 0 0] [0 0 1]] NݸͷσʔλશମͰେจࣈͷX ೖྗ1ͭͰখจࣈͷϕΫτϧදهx = x0 x1 x2 NݸͷσʔλશମͰT x0͸ৗʹ1ͷ μϛʔೖྗ
  5. ฏۉަࠩΤϯτϩϐʔޡ ͕ࠩҙຯ͢Δ΋ͷ͸̍ ͋ΔҰͭͷσʔλ͚ͩʹ஫໨͢ΔͱɺɹɹɹɹͱͳΔ E(w) = − 1 N N−1 ∑

    n=0 K−1 ∑ k=0 tnk log ynk tk log yk ͚ͩ͜͜ʹ஫໨ ͢Δ a0 ग़ྗ ೖྗ૯࿨ a1 a2 y0 = softmax(a0 ) y1 = softmax(a1 ) y2 = softmax(a2 ) 0.85 0.11 0.04 ਖ਼ղt 0 1 0 t0 log y0 = 0 t1 log y1 = − 0.1625 t2 log y2 = 0 ͜͜ͱ͜͜Λֻ ͚ͨ஋ʹͳΔ ͜͜ʢΛlogͱͬͨ஋ʣͱ͜͜ Λֻ͚ͨ஋ʹͳΔ