Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
機械学習も筋肉が大事?意外と知らない数学
Search
Kimikazu Kato
September 11, 2019
Technology
0
990
機械学習も筋肉が大事?意外と知らない数学
2019/9/11 みんなのPython勉強会でしゃべったときの資料です。
機械学習の話も筋肉の話もせず、ただひたすら数学の話をしました。
Kimikazu Kato
September 11, 2019
Tweet
Share
More Decks by Kimikazu Kato
See All by Kimikazu Kato
PyTorchの最近の動向
hamukazu
0
800
Python 3.11: What changed in math?
hamukazu
0
510
レコメンデーションシステムのキホン
hamukazu
4
940
機械学習の中身を理解する
hamukazu
28
10k
機械学習に役立つ数学
hamukazu
11
6.4k
Pythonと数学と 多面体とペーパークラフトとベルヌーイと長門屋と田宮模型と私
hamukazu
1
1.8k
Other Decks in Technology
See All in Technology
Copilotの精度を上げる!カスタムプロンプト入門.pdf
ismk
10
3.3k
こんな時代だからこそ! 想定しておきたいアクセスキー漏洩後のムーブ
takuyay0ne
4
540
旧から新へ: 大規模ウェブクローラの Perl から Go への移行 / YAPC::Fukuoka 2025
motemen
1
720
マーケットプレイス版Oracle WebCenter Content For OCI
oracle4engineer
PRO
3
1.3k
ソフトウェア開発現代史: 55%が変化に備えていない現実 ─ AI支援型開発時代のReboot Japan #agilejapan
takabow
1
1.8k
「データ無い! 腹立つ! 推論する!」から 「データ無い! 腹立つ! データを作る」へ チームでデータを作り、育てられるようにするまで / How can we create, use, and maintain data ourselves?
moznion
6
3.5k
自己的售票系統自己做!
eddie
0
430
[JDDStudy #10] 社内Agent勉強会の取り組み紹介
yp_genzitsu
1
130
レビュー負債を解消する ― CodeRabbitが支えるAI駆動開発
moongift
PRO
0
130
バクラクの AI-BPO を支える AI エージェント 〜とそれを支える Bet AI Guild〜
tomoaki25
2
610
エンタープライズ企業における開発効率化のためのコンテキスト設計とその活用
sergicalsix
1
330
Introducing RFC9111 / YAPC::Fukuoka 2025
k1low
1
210
Featured
See All Featured
Being A Developer After 40
akosma
91
590k
How Fast Is Fast Enough? [PerfNow 2025]
tammyeverts
3
320
Distributed Sagas: A Protocol for Coordinating Microservices
caitiem20
333
22k
How To Stay Up To Date on Web Technology
chriscoyier
791
250k
Thoughts on Productivity
jonyablonski
73
4.9k
Building Applications with DynamoDB
mza
96
6.7k
Easily Structure & Communicate Ideas using Wireframe
afnizarnur
194
16k
Building Adaptive Systems
keathley
44
2.8k
Helping Users Find Their Own Way: Creating Modern Search Experiences
danielanewman
31
2.9k
Fight the Zombie Pattern Library - RWD Summit 2016
marcelosomers
234
17k
Reflections from 52 weeks, 52 projects
jeffersonlam
355
21k
Why Our Code Smells
bkeepers
PRO
340
57k
Transcript
ػցֶशے͕େࣄʁ ҙ֎ͱΒͳֶ͍ ΈΜͳͷPythonษڧձ @ΫϦʔΫɾΞϯυɾϦόʔ 2019/9/11 Ճ౻ެҰ
ͻͲ͍
ࣗݾհ ࢯ໊ɿՃ౻ެҰʢ͔ͱ͏͖Έ͔ͣʣ ॴଐɿιϑτόϯΫגࣜձࣾʢࠓ7݄Ҡ੶ʣ Twitterɿ@hamukazu ࣄɿػցֶशͷΞϧΰϦζϜΛߟ͑Δ͜ͱ झຯɿےτϨ
Ṗͷ҉߸ SQ: 120 BP: 100 DL: 90 ʢීஈͷτϨʔχϯάͰͷɺmaxࢼͨ͜͠ͱͳ͍ʣ
ຊͷհ ॻ͖·ͨ͠ʂ म͠·ͨ͠ʂ https://bit.ly/mlessence https://bit.ly/mlzukan
ۙگ ࣾͰʮػցֶशͷΤοηϯεʯΛಡΉษڧձΛ։࠵ͯ͠· ͢ɻ ༰ࠓͷͱ͜Ζ΄΅ֶͷߨٛɻ
ࠓͷ ֶʹؔ͢Δ͜ͱͰɺ • ීஈ͔Β࣭Λड͚Δ͕ʮػցֶशͷΤοηϯεʯͰॻ͖ ͖Εͳ͔ͬͨ͜ͱ • ʮػցֶशͷΤοηϯεʯͷಡऀ͔Βड͚࣭ͨ
ॳڃฤ
Q: 0÷0Ͳ͏ͳΓ·͔͢ʁ A: ʮఆٛ͞Ε͍ͯͳ͍ʯͰ͢
ׂΓࢉͱͳΜͰ͔͋ͬͨ 6 ÷ 3 3 × ɹ= 6 ͱ ͷ˘ʹ͍ΔͷΛٻΊΑͷҙຯ
༩͑ΒΕͨa, bʹ͍ͭͯ b × x = a Λຬͨ͢x͕།Ұଘࡏ͢Δͱ͖ͦΕΛ a ÷ b ͱॻ͘ ͱͳΔx།ҰͰͳ͍ͷͰ0÷0ఆٛ͞Εͯͳ͍ʢundefinedʣ 0 × x = 0
Α͋͘Δؒҧ͍ https://detail.chiebukuro.yahoo.co.jp/qa/question_detail/q117470996 ͷղෆఆʢͳΜͰ͍͍ʣ 0 × x = 0 ํఔࣜ ղͳ͠ʢෆೳʣ
0 × x = 1 ํఔࣜ 0÷0ͱ1÷0undefined ํఔࣜͷղΛग़͢͜ͱͱɺԋࢉͷఆٛผ
ڭ܇ɿ ఆٛʹΔͷେࣄ
Q: ແݶʢ∞ʣͳͷͰ͔͢ʁ A: ʮʯͰͳ͍ͱΈΔͷ͕ҰൠతͰ͢ ∞ ∉ ℝ
∞͕ͩͱࢥ͏ͱ͍Ζ͍Ζͱෆ߹͕ى͜Δ ྫ͑ ∞ − ∞ ͕ҰҙʹܾΊΒΕͳ͍ Ͱ lim x→+0 1
x = ∞ ͬͯͲ͏͍͏͜ͱʁ lim x→+0 1 x ∞ Λܭࢉͨ͠ʮ݁Ռʯ͕͋ͬͯɺͦͷ݁Ռͱ ͍͠ͱ͍͏ҙຯͰͳ͍ʂ ͕ ͜ͷ߸͕͍͜͠ͱΛද͍ͯ͠ΔͷͰͳ͘ɺ ʮ=∞ʯ·ͰؚΊͯܗ༰ࢺͷΑ͏ͳͷͩͱࢥ͏ͱΑ͍ɻ
lim x→+0 f(x) = ∞ R ∈ ℝ δ ∈
ℝ 0 < x < δ f(x) > R ͷਖ਼֬ͳఆٛ ʮҙͷ ʹ͍ͭͯ ͕ଘࡏͯ͠ ͳΒ Ͱ͋Δʯ ҎԼɺԿݴͬͯΔ͔Θ͔Βͳ͍ਓͷͨΊͷऍ 2ਓʹΑΔήʔϜΛߟ͑Δ ϓϨΠϠAɿ࣮ R ΛҰͭબΜͰఏࣔ͢Δ ϓϨΠϠBɿϓϨΠϠAͷఏࣔͷ͋ͱʹ࣮ δ ΛҰͭબΜͰఏࣔ͢Δ 0 < x < δ f(x) > R ͳΒ ʯ ͜ͷͱ໋͖ʮ ͕ΓཱͯϓϨʔϠBͷউͪ lim x→+0 f(x) = ∞ Ͱ͋Δͱɺͭ·ΓϓϨΠϠB͕ඞউͰ͋Δ͜ͱ ʢϓϨΠϠA͕Ұੜݒ໋ҙѱͯ͠উͯͳ͍ʣ ϧʔϧɿ
ҙ ֶͱ࣮ผ >>> 0/0 Traceback (most recent call last): File
"<stdin>", line 1, in <module> ZeroDivisionError: division by zero >>> import numpy as np >>> np.float64(0)/np.float64(0) nan >>> np.inf inf >>> np.inf+1 inf >>> np.inf-1 inf ͱ͘ʹແݶΛࡶʹѻ͏ͱཧతໃ६ͷͱʹͳΓ͕ͪ
Q: ͳͥ a1 2 = a A: ࢦ͕ࣗવͷ߹ͷ๏ଇ͔Β ࣗવʹఆٛ͞ΕͨͷͰ͢ a−1
= 1 a Ͱ ͳͷʁ
ax × ay = ax+y ࢦ๏ଇ ax ÷ ay =
ax−y (ax)y = axy ͜Ε͕ɺx, y͕ࣗવͷͱ͖ΓཱͭͷΘ͔Δ 22 × 23 = (2 × 2) × (2 × 2 × 2) = 25 25 ÷ 23 = 2 × 2 × 2 × 2 × 2 2 × 2 × 2 = 22 (22)3 = (2 × 2) × (2 × 2) × (2 × 2) = 26 (1) (2) (3) ࢦ๏ଇ͕x, y͕ࣗવҎ֎ͰΓཱͭΑ͏ʹͯ͠ΈΔ a2 ÷ a2 = 1 a2 ÷ a2 = a2−2 = a0 ҰํͰ(2)ΑΓ Αͬͯ a0 = 1 1 a = 1 ÷ a = a0 ÷ a1 = a0−1 ʢ(2)ΑΓʣ = a−1 ྫɿ (a1 2)2 = a1 2 ×2 ʢ(3)ΑΓʣ = a1 = a Αͬͯ ͱɺ2ͯ͠ ʹͳΔ a1 2 a a1 2 = a ͭ·Γ ʢx͕࣮ͷͱ͖ͷ ɺ ax a > 0 ͷͱ͖ʹݶఆʣ
͜͜ͰͷετʔϦʔɿ ͱͱɹɹx͕ࣗવͷͱ͖ͷΈΛߟ͍͑ͯͨ ࣗવͷͱ͖ʹΓཱ͍ͬͯͨ๏ଇ͕ΓཱͭΑ͏ʹɺ ࣮ͷͱ͖ʹ֦ுͨ͠ ͜ͷΑ͏ʹɺݶఆతͳൣғͰߟ͑ΒΕ͍ͯͨͷΛɺ ͦΕ·Ͱͷ๏ଇ͕ΓཱͭΑ͏ʹ֦ு͢Δͱ͍͏͜ͱ ͕Α͋͘Δ ax ͜͏͍͏ͷɺֶͰ ʮʙͷ֓೦ͷࣗવͳ֦ுʯ
ͱݴͬͨΓ͢Δɻ
্ڃฤ
Q: ೋ࣍ܗࣜͷϔοηߦྻͷܭࢉ͕Θ͔Γ·ͤΜ ʢʮػցֶशͷΤοηϯεʯp168ʣ A: ͖ͪΜͱ͝ͱʹҙࣝͯ͠ܭࢉ͠·͠ΐ͏ ҎԼॻ੶ΑΓஸೡʹઆ໌͠·͢
f(x) = xT Ax ͷͱ͖ͷ ∇2f ΛٻΊ͍ͨ f(x) = n
∑ i=1 n ∑ j=1 aij xi xj ͳͷͰɺ͜ΕΛ Ͱภඍ͍ͨ͠ xk (k = 1,2,…, n) A͕ରশߦྻͱͯ͠ i ≠ k, j ≠ k ͷͱ͖ ∂ ∂xk (aij xi xj ) = 0 ͋ͱɺi, jͷҰํ͕kͷͱ͖ɺ྆ํ͕kͷͱ͖ʹ ͚ͯܭࢉ͢ΕΑ͍
∂f ∂xk = ∂ ∂xk akk x2 k + ∑
j≠k aik xi xk + ∑ i≠k akj xk xj = 2akk xk + ∑ j≠k aik xi + ∑ i≠k akj xj = 2akk xk + ∑ j≠k aki xi + ∑ i≠k akj xj = 2akk xk + 2∑ j≠k aki xi = 2 n ∑ i=1 aki xi ∇f = 2∑n i=1 a1i xi 2∑n i=1 a2i xi ⋮ 2∑n i=1 ani xi = 2Ax ↑͜͜ͰA͕ରশͰ͋Δ͜ͱΛͬͨ ∇2f ͱɺ ∇f ͷ֤Λ xl (l = 1,2,…, n) Ͱภඍͨ͠ͷ
∂ ∂xl ( 2 n ∑ i=1 aki xi) ∂
∂xl (aki xi) = 0 i ≠ l ͷͱ͖ Λܭࢉ͍ͨ͠ɻ ͳͷͰ ͷͱ͖͚ͩΛߟྀ͢ΕΑ͍ i = l ∂ ∂xl ( 2 n ∑ i=1 aki xi) = ∂ ∂xl (2akl xl) = 2akl ∇f ͜Εɺ ͷk൪ͷΛ xl Ͱภඍͨ͠ͷͳͷͰ ͭ·Γ ∇2f ͷ (k, l) ∇2f ͷ ͕ (k, l) ͭ·Γ 2akl ͱ͍͏͜ͱ ∇2f = 2A
Q: ࠷খೋ๏ͷܭࢉ A: ͖͞΄Ͳͷܭࢉ͕ʹཱͪ·͢ E(w) = ∥y − Xw∥2 ͷͱ͖
∇E = − 2XTy + XT Xw ͕Θ͔Γ·ͤΜɻ ʢˡ࣮͜ͷεϥΠυͷ४උதʹޡ২͕ݟ͔ͭͬͨʣ
E(w) = ∥y − Xw∥2 = (y − Xw) T
(y − Xw) = (yT − (Xw)T) (y − Xw) = (yT − wT XT) (y − Xw) = yTy − yT Xw − wT XTy + wT XT Xw ∇E = − 2XTy + 2XT Xw ∇(yT Xw) = XTy ∇(wT XTy) = XTy } ∇(wT XT Xw) = 2XT Xw ࣗͰܭࢉͯ͠ΈΑ͏ ʢͦΜͳʹ͘͠ͳ͍ͣʣ ͖͞΄Ͳͷೋ࣍ܗࣜͷܭࢉͱಉ͡ Αͬͯ
·ͱΊ • ఆٛʹͬͯߟ͑Δ͜ͱ͕༗ޮͳ͜ͱ͋Δ • ֶͷཧͱίϯϐϡʔλ্ͷ࣮ผ • ʮࣗવͳ֦ுʯͷߟ͑ํΛ͓ͬͯ͜͏ • ϔοηߦྻͷܭࢉɺҰͭҰͭΛߟ͑ΔͱͦΕ΄Ͳ ͘͠ͳ͍͔Αʢʁʣ