Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
ネットワーク科学 中心性とGoogleのPageRank
Search
hayashilab
July 03, 2020
Science
0
34
ネットワーク科学 中心性とGoogleのPageRank
hayashilab
July 03, 2020
Tweet
Share
More Decks by hayashilab
See All by hayashilab
ネットワーク科学 ネットワークが社会を支える
hayashilab
0
38
ネットワーク科学 小さな世界のモデル
hayashilab
0
44
ネットワーク科学 蔓延する利己主義とScale-Free則
hayashilab
0
46
ネットワーク科学 構造と伝わりやすさ
hayashilab
0
40
ネットワーク科学 社会インフラのレジリエンス
hayashilab
0
52
ネットワーク科学 空間システムデザイン
hayashilab
0
45
ネットワーク科学最前線2017 -インフルエンサーと機械学習からの接近-
hayashilab
1
35
Other Decks in Science
See All in Science
Optimization of the Tournament Format for the Nationwide High School Kyudo Competition in Japan
konakalab
0
150
[Paper Introduction] From Bytes to Ideas:Language Modeling with Autoregressive U-Nets
haruumiomoto
0
190
Hakonwa-Quaternion
hiranabe
1
170
KH Coderチュートリアル(スライド版)
koichih
1
58k
HajimetenoLT vol.17
hashimoto_kei
1
170
Cross-Media Technologies, Information Science and Human-Information Interaction
signer
PRO
3
32k
論文紹介 音源分離:SCNET SPARSE COMPRESSION NETWORK FOR MUSIC SOURCE SEPARATION
kenmatsu4
0
520
タンパク質間相互作⽤を利⽤した⼈⼯知能による新しい薬剤遺伝⼦-疾患相互作⽤の同定
tagtag
PRO
0
140
People who frequently use ChatGPT for writing tasks are accurate and robust detectors of AI-generated text
rudorudo11
0
190
Vibecoding for Product Managers
ibknadedeji
0
130
生成検索エンジン最適化に関する研究の紹介
ynakano
2
2k
データマイニング - ウェブとグラフ
trycycle
PRO
0
240
Featured
See All Featured
Improving Core Web Vitals using Speculation Rules API
sergeychernyshev
21
1.4k
RailsConf 2023
tenderlove
30
1.3k
Conquering PDFs: document understanding beyond plain text
inesmontani
PRO
4
2.3k
Build your cross-platform service in a week with App Engine
jlugia
234
18k
For a Future-Friendly Web
brad_frost
182
10k
Tips & Tricks on How to Get Your First Job In Tech
honzajavorek
0
440
Side Projects
sachag
455
43k
Test your architecture with Archunit
thirion
1
2.2k
Testing 201, or: Great Expectations
jmmastey
46
8k
The Hidden Cost of Media on the Web [PixelPalooza 2025]
tammyeverts
2
190
The Power of CSS Pseudo Elements
geoffreycrofte
80
6.2k
The MySQL Ecosystem @ GitHub 2015
samlambert
251
13k
Transcript
Google PageRank 2 2019 ( ) Google PageRank 1 /
23
1. , , ( ) Google PageRank 2 / 23
, , , 6 , , 2007 ( ) Google
PageRank 3 / 23
2. (Degree Centrality): i ki ki /(N − 1) .
N − 1 , i N − 1 . , . (Information Centrality): i j ( ) . ( ) Google PageRank 4 / 23
(Closeness Centrality): i j : +1 Hij , j Hij
N − 1 −1 = N − 1 j Hij . . N − 1 . , . (Flow Centrality): i . ( ) Google PageRank 5 / 23
(betweenness centrality): v s,t δst (v), σst (s, t) ,
σst (v) v δst (v) def = σst (v) σst L.C. Freeman, Sociometry 40, 1977 http://www.geocities.jp/woodone3831/kanntou/c-4-11-sekisyo-HAKONE.html ( ) Google PageRank 6 / 23
BC http://astamuse.com/ja/published/JP/No/2010141442 ( ) Google PageRank 7 / 23
Brandes BC s u σsu , δs,•(w) w ∼ w′
t , w ∼ w′ t δs,•(v) = {w|v∈Ps (w)} σsv σsw (1 + δs,•(w)), Ps (w) def = {v ∈ V |(v, w) ∈ E, d(s, w) = d(s, v) + 1}, w ∈ ∂v s v w w’ Ps(w) t t’ : : : : σ sw σ sv : U.Brandes, Journal of Math. Sociology 25, 2001 ( ) Google PageRank 8 / 23
, δst (v) = u∈Preds , t (v) δst (u)
× R(s, u, v, t), Preds,t (v) s-t v 1 {u}, R(s, u, v, t) s t (u, v) , . s-t T(s, t) , v ∈ V . δ•,•(v) = s,t∈V δst (v) × T(s, t). S.Dolev et al., Journal of the ACM 57, 2010 ( ) Google PageRank 9 / 23
R(s , u , v , t) T(s , t)
s u-v t u s t v Pred T(s, t) , ( ) Google PageRank 10 / 23
(Bonacichi Centrality): . x = αA1 + βAx, x ,
1 1−z = 1 + z + z2 + z3 + . . . x = (I − βA)−1(αA1) = α ∞ k=0 βkAk+11, = α(A + βA2 + β2A3 + . . .)1. ⇒ i j , 1 , 2 , 3 , . . . β . α = 0, β = 1/λ , [aij ] . ( ) Google PageRank 11 / 23
, , i aij 1/ki , , PageRank . ,
Katz Hubbel . ⇒ , . ( ) Google PageRank 12 / 23
3. PageRank WWW , ( ) Google PageRank 13 /
23
r ← Pr, r P rv ← d v′∈Nv rv′
kv′ + 1 − d N , d ≈ 0.85, 1 − d ⇒ ( ) Google PageRank 14 / 23
Google i ri ⇔ πi , i πi = 1
, r ← d × Pr + (1 − d)/N π1 . . . πi . . . πj . . . πn T 1−d N . . . . . . . . . . . . . . . 1−d N . . . . . . . . . . . . . . . . . . . . . . . . . . . 1−d N . . . d ki + 1−d N . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1−d N . . . 1−d N . . . . . . . . . . . . . . . . . . . . . . . . . . . 1−d N . . . . . . . . . . . . . . . 1−d N = π1 . . . πi . . . πj . . . πn T A.N.Langville and C.D.Meyer, Google’s Page Rank and Beyond, Princeton Univ. Press, 2006 ( ) Google PageRank 15 / 23
WWW ( ) Google PageRank 16 / 23
πi = d j Aij πj kout j + (1
− d)β j πj . π = dAD−1π + (1 − d)β1 → π = (1 − d)β(I − dAD−1)−11. Katz xi = α j Aij xi + β′. x = αAx + β′1 → x = β′(I − αA)−11 = β′ ∞ k=0 (αA)k1. A : x = 1 λ1 Ax = PageRank ! xi (t) = j Aij kj xj (t − 1), xi = ki j kj . x = AD−1x → (I − AD−1)x = (D − A)D−1x = 0, D−1x = 1. M.E.J.Newman, Networks -An Introduction-, OXFORD Univ. Press, 2010. ( ) Google PageRank 17 / 23
, , , , Gram-Schmidt Householder R Q QR Rayleigh-Ritz
Krylov x, Ax, A2x, A3x, . . . Arnoldi , Lanczos , Jacobi , , , , [ 2], 1994, ( ) Google PageRank 18 / 23
Google L.E.Page . , . WWW , . , WWW
, PC . ( ) Google PageRank 19 / 23
Indexing Hadoop https://enterprisezine.jp/dbonline/detail/4254 ( ) Google PageRank 20 / 23
MapReduce Map Key Value , Reduce Key http://www.dineshonjava.com/2014/11/mapreduce-flow-chart-sample-example.html ⇒ (
) Google PageRank 21 / 23
4. HITS J.M.Kleinberg HITS (Hyperlink-induced topic search) Authority: x ←
AT y ← AT Ax, x AT A Hub: y ← Ax ← AAT y. y AAT . A , AT . J.M.Kleinberg, Journal of the ACM 46, 1999 ( ) Google PageRank 22 / 23
5. i Li , . i Li N . ¯
L def = i Li /N . i ¯ L , ∆Li = Li − ¯ L . ∆Li < 0 . . , ( ) Google PageRank 23 / 23