Upgrade to Pro — share decks privately, control downloads, hide ads and more …

ネットワーク科学 中心性とGoogleのPageRank

Sponsored · Your Podcast. Everywhere. Effortlessly. Share. Educate. Inspire. Entertain. You do you. We'll handle the rest.

 ネットワーク科学 中心性とGoogleのPageRank

Avatar for hayashilab

hayashilab

July 03, 2020
Tweet

More Decks by hayashilab

Other Decks in Science

Transcript

  1. , , , 6 , , 2007 ( ) Google

    PageRank 3 / 23
  2. 2. (Degree Centrality): i ki ki /(N − 1) .

    N − 1 , i N − 1 . , . (Information Centrality): i j ( ) . ( ) Google PageRank 4 / 23
  3. (Closeness Centrality): i j : +1 Hij , j Hij

    N − 1 −1 = N − 1 j Hij . . N − 1 . , . (Flow Centrality): i . ( ) Google PageRank 5 / 23
  4. (betweenness centrality): v s,t δst (v), σst (s, t) ,

    σst (v) v δst (v) def = σst (v) σst L.C. Freeman, Sociometry 40, 1977 http://www.geocities.jp/woodone3831/kanntou/c-4-11-sekisyo-HAKONE.html ( ) Google PageRank 6 / 23
  5. Brandes BC s u σsu , δs,•(w) w ∼ w′

    t , w ∼ w′ t δs,•(v) = {w|v∈Ps (w)} σsv σsw (1 + δs,•(w)), Ps (w) def = {v ∈ V |(v, w) ∈ E, d(s, w) = d(s, v) + 1}, w ∈ ∂v s v w w’ Ps(w) t t’ : : : : σ sw σ sv : U.Brandes, Journal of Math. Sociology 25, 2001 ( ) Google PageRank 8 / 23
  6. , δst (v) = u∈Preds , t (v) δst (u)

    × R(s, u, v, t), Preds,t (v) s-t v 1 {u}, R(s, u, v, t) s t (u, v) , . s-t T(s, t) , v ∈ V . δ•,•(v) = s,t∈V δst (v) × T(s, t). S.Dolev et al., Journal of the ACM 57, 2010 ( ) Google PageRank 9 / 23
  7. R(s , u , v , t) T(s , t)

    s u-v t u s t v Pred T(s, t) , ( ) Google PageRank 10 / 23
  8. (Bonacichi Centrality): . x = αA1 + βAx, x ,

    1 1−z = 1 + z + z2 + z3 + . . . x = (I − βA)−1(αA1) = α ∞ k=0 βkAk+11, = α(A + βA2 + β2A3 + . . .)1. ⇒ i j , 1 , 2 , 3 , . . . β . α = 0, β = 1/λ , [aij ] . ( ) Google PageRank 11 / 23
  9. , , i aij 1/ki , , PageRank . ,

    Katz Hubbel . ⇒ , . ( ) Google PageRank 12 / 23
  10. r ← Pr, r P rv ← d v′∈Nv rv′

    kv′ + 1 − d N , d ≈ 0.85, 1 − d ⇒ ( ) Google PageRank 14 / 23
  11. Google i ri ⇔ πi , i πi = 1

    , r ← d × Pr + (1 − d)/N              π1 . . . πi . . . πj . . . πn              T                1−d N . . . . . . . . . . . . . . . 1−d N . . . . . . . . . . . . . . . . . . . . . . . . . . . 1−d N . . . d ki + 1−d N . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1−d N . . . 1−d N . . . . . . . . . . . . . . . . . . . . . . . . . . . 1−d N . . . . . . . . . . . . . . . 1−d N                =              π1 . . . πi . . . πj . . . πn              T A.N.Langville and C.D.Meyer, Google’s Page Rank and Beyond, Princeton Univ. Press, 2006 ( ) Google PageRank 15 / 23
  12. πi = d j Aij πj kout j + (1

    − d)β j πj . π = dAD−1π + (1 − d)β1 → π = (1 − d)β(I − dAD−1)−11. Katz xi = α j Aij xi + β′. x = αAx + β′1 → x = β′(I − αA)−11 = β′ ∞ k=0 (αA)k1. A : x = 1 λ1 Ax = PageRank ! xi (t) = j Aij kj xj (t − 1), xi = ki j kj . x = AD−1x → (I − AD−1)x = (D − A)D−1x = 0, D−1x = 1. M.E.J.Newman, Networks -An Introduction-, OXFORD Univ. Press, 2010. ( ) Google PageRank 17 / 23
  13. , , , , Gram-Schmidt Householder R Q QR Rayleigh-Ritz

    Krylov x, Ax, A2x, A3x, . . . Arnoldi , Lanczos , Jacobi , , , , [ 2], 1994, ( ) Google PageRank 18 / 23
  14. Google L.E.Page . , . WWW , . , WWW

    , PC . ( ) Google PageRank 19 / 23
  15. 4. HITS J.M.Kleinberg HITS (Hyperlink-induced topic search) Authority: x ←

    AT y ← AT Ax, x AT A Hub: y ← Ax ← AAT y. y AAT . A , AT . J.M.Kleinberg, Journal of the ACM 46, 1999 ( ) Google PageRank 22 / 23
  16. 5. i Li , . i Li N . ¯

    L def = i Li /N . i ¯ L , ∆Li = Li − ¯ L . ∆Li < 0 . . , ( ) Google PageRank 23 / 23