$30 off During Our Annual Pro Sale. View Details »
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
タンパク質間相互作⽤を利⽤した⼈⼯知能による新しい薬剤遺伝⼦-疾患相互作⽤の同定
Search
Y-h. Taguchi
August 27, 2025
Science
0
120
タンパク質間相互作⽤を利⽤した⼈⼯知能による新しい薬剤遺伝⼦-疾患相互作⽤の同定
HT-101 / PO-148
at IIBMP2025
2025/9/3
https://www.jsbi.org/iibmp2025/
Y-h. Taguchi
August 27, 2025
Tweet
Share
More Decks by Y-h. Taguchi
See All by Y-h. Taguchi
presen_同仁倶楽部.pdf
tagtag
0
16
知能とはなにか -ヒトとAIのあいだ-
tagtag
1
44
生成AIの現状と展望
tagtag
0
61
主成分分析に基づく教師なし特徴抽出法を用いたコラーゲン-グリコサミノグリカンメッシュの遺伝子発現への影響
tagtag
0
110
中央大学AI・データサイエンスセンター 2025年第6回イブニングセミナー 『知能とはなにか ヒトとAIのあいだ』
tagtag
0
95
AI(人工知能)の過去・現在・未来 —AIは人間を超えるのか—
tagtag
0
56
知能とはなにかーヒトとAIのあいだー
tagtag
0
160
PPIのみを用いたAIによる薬剤–遺伝子–疾患 相互作用の同定
tagtag
0
110
AI(人工知能)の過去・現在・未来 —AIは人間を超えるのか—
tagtag
0
130
Other Decks in Science
See All in Science
機械学習 - DBSCAN
trycycle
PRO
0
1.3k
Accelerating operator Sinkhorn iteration with overrelaxation
tasusu
0
110
Performance Evaluation and Ranking of Drivers in Multiple Motorsports Using Massey’s Method
konakalab
0
120
My Little Monster
juzishuu
0
280
Rashomon at the Sound: Reconstructing all possible paleoearthquake histories in the Puget Lowland through topological search
cossatot
0
140
データマイニング - グラフデータと経路
trycycle
PRO
1
250
機械学習 - K-means & 階層的クラスタリング
trycycle
PRO
0
1.2k
ド文系だった私が、 KaggleのNCAAコンペでソロ金取れるまで
wakamatsu_takumu
2
1.7k
イロレーティングを活用した関東大学サッカーの定量的実力評価 / A quantitative performance evaluation of Kanto University Football Association using Elo rating
konakalab
0
130
データベース12: 正規化(2/2) - データ従属性に基づく正規化
trycycle
PRO
0
1k
Optimization of the Tournament Format for the Nationwide High School Kyudo Competition in Japan
konakalab
0
130
Celebrate UTIG: Staff and Student Awards 2025
utig
0
370
Featured
See All Featured
Distributed Sagas: A Protocol for Coordinating Microservices
caitiem20
333
22k
Reflections from 52 weeks, 52 projects
jeffersonlam
355
21k
Easily Structure & Communicate Ideas using Wireframe
afnizarnur
194
17k
YesSQL, Process and Tooling at Scale
rocio
174
15k
Bash Introduction
62gerente
615
210k
Art, The Web, and Tiny UX
lynnandtonic
303
21k
Documentation Writing (for coders)
carmenintech
76
5.2k
Docker and Python
trallard
46
3.7k
The Psychology of Web Performance [Beyond Tellerrand 2023]
tammyeverts
49
3.2k
XXLCSS - How to scale CSS and keep your sanity
sugarenia
249
1.3M
The Cult of Friendly URLs
andyhume
79
6.7k
GitHub's CSS Performance
jonrohan
1032
470k
Transcript
IIBMP2025 1 タンパク質間相互作用を利用した人工知能による新しい薬剤 遺伝子- 疾患相互作用の同定 “Novel artificial intelligence-based identification of
drug-gene- disease interaction using protein-protein interaction” 中央大学 理工学部 物理学科 田口善弘 このスライドはこちらから→
IIBMP2025 2
IIBMP2025 3 手法論的な目的:ネットワークの統合解析 ネットワークA ネットワークB ? テンソル分解で
IIBMP2025 4 生物(医学)的な目的: ドラッグリポジショニング(DR ) →タンパクータンパク相互作用(PPI )のデー タの解析だけからドラッグリポジショニング出 来るという発見
IIBMP2025 5 こういうことを考える動機: 遺伝子⇔疾患 化合物⇔遺伝子 のそれぞれは可能でも 化合物⇔遺伝子⇔疾患 になると「二重の選択」になり両立が難しい。 • 疾患原因遺伝子は見つかったけど遺伝子を標的とする薬がない。
• 薬をドラッグリポジショニングしようとしたけど、標的遺伝子に関係 する疾患がない みたいになりがち。データ駆動でいきなり 化合物⇔遺伝子⇔疾患 ができないか?そのためには疾患/化合物を決めずに遺伝子選択から 入ればいいのでは?でもどうやって? →PPI →PPI +テンソル分解 +テンソル分解
IIBMP2025 6 具体的な方法論: nii’k ∈R RN×N×K i: タンパク質(総数N 個) K:
k 番目のPPI nii’k :k 番目のPPI におけるi 番目のタンパク質とi’ 番目のタンパ ク質の相互作用 →テンソル分解 n ii ' k =∑ l 1 l 2 l 3 G ( l 1 l 2 l 3 ) u l 1 i u l 2 i ' u l 3 k タンパク(遺伝子選択)→DR
IIBMP2025 7 K=2 の場合のPPI 行列のテンソル化のイメージ
IIBMP2025 8 uli がガウス分布であると仮 定してP 値を付与、多重比 較補正しても閾値(例えば 0.01 )以下のタンパク質 (遺伝子)を選択
タンパク質(遺伝子)選択
IIBMP2025 9 選ばれた遺伝子をエン リッチメント解析して ・生物学的に妥当か? ・選択遺伝子の発現量 を変化させることが知 られてる化合物でDR
IIBMP2025 10 使用データ: BioGRID :R R24875×24875 DIP :R R4901×4901 遺伝子選択に使用する特異値ベクトル
BioGRID :u2i DIP :u2i ,u3i (DIP でu2i とu3i なのはエンリッチした病気が一緒なので) 選択遺伝子は BioGRID :u2i 195 タンパク質→217 遺伝子 DIP :u2i 196 タンパク質→193 遺伝子 DIP :u3i 59 タンパク質→57 遺伝子 24875,4901 は遺伝子の数
IIBMP2025 11 エンリッチメント解析(疾患)の結果(次頁から) BioGRID :u2i DIP :u2i ,u3i で選ばれた3つの遺伝子セットすべてでCancer/ Tumor
が有意に高かった (時間の関係上Jensen Diseases の場合のみ紹介)
IIBMP2025 12 BioGRID for u2i
IIBMP2025 13 DIP for u2i
IIBMP2025 14 DIP for u3i
IIBMP2025 15 DR の結果(次頁から) 複数のデータベースで選択遺伝子の発現を有意に変化させ る化合物が見つかった(→創薬候補) 時間の関係上、ここで見せるのは BioGRID :u2i の場合のみ
IIBMP2025 16 BioGRID for u2i
IIBMP2025 17 BioGRID for u2i
IIBMP2025 18 BioGRID for u2i
IIBMP2025 19 BioGRID for u2i
IIBMP2025 20 BioGRID for u2i
IIBMP2025 21 なぜ、PPI の情報だけでガンのDR ができるのか?PPI に疾 患の情報など入っていないはず→PPI 大きい遺伝子を選択 u2i u3i
IIBMP2025 22 PPI が多い遺伝子を選べばいいならテンソル分解不要? →No. 他のuli (BioGRID for u3i ,DIP
for u6i ) をみればがん以外の疾患 を考慮できる
IIBMP2025 23 BioGRID for u3i
IIBMP2025 24 DIP for u6i
IIBMP2025 25 BioGRID for u3i
IIBMP2025 26 DIP for u6i
IIBMP2025 27 u3i u6i PPI 大きい遺伝子は選択できている
IIBMP2025 28 まとめ • PPI だけでDR が可能 • PPI が多い遺伝子をえらぶだけではがん以外をDR
できない。 • ヒトとマウスのPPI をテンソルで統合解析したときだけがん 以外の多様な疾患のDR が可能。