Upgrade to Pro — share decks privately, control downloads, hide ads and more …

ネットワーク科学 空間システムデザイン

 ネットワーク科学 空間システムデザイン

Avatar for hayashilab

hayashilab

July 03, 2020
Tweet

More Decks by hayashilab

Other Decks in Science

Transcript

  1. Typical Spatial Net Constructions Step 0 Step 1 Step 2

    : in the radius r = A k (a) BA (b) SFL (c) RAN 1/2 Add new node New m-links Preferential attachment Connect to neighbors Add a new node inside a chosen triangle Connect to its closest 3 nodes Initial triangulation Assign a degree k Initial N0 nodes with m-links Select a node Saturated node Y.Hayashi, IPSJ Journal 47(3), 2006 ( ) 4 / 34
  2. 2. BA BA j Πj ∝ d−α ij popβ j

    kγ j 011 101 110 111 S.S.Manna et al., PRE 66, 026118/066114, 2002, PRE 68, 026104, 2003, New J. of Phy. 9(30), 2007. ( ) 5 / 34
  3. 3. A B C E H F D (c) From

    a random Sierpinski gasket to the correspondig Sierpinski Net Mapping from links a-i (b) Random Pseurdofractal SF Net (a) Random Apollonian Net A B C A B C D D E E to nodes A-I G I h g a b c d e i f S.N.Dorogovtsev et al., PRE 65, 066122, 2002, Z.Zhang et al., EPJB 65, 2008 ( ) 6 / 34
  4. Random Appolonian Network , , . Add a new node

    inside a chosen triangle Connect to its closest 3 nodes Initial triangulation ⇒ ( ) 7 / 34
  5. N + 1 k + 1 n(k + 1, N

    + 1) = k N△ n(k, N) + 1 − k + 1 N△ n(k + 1, N) P(k) ≈ n(k, N)/N , k(P(k + 1) − P(k)) + N + N△ N P(k + 1) = 0 , k k dP dk = −γRA P , P(k) ∼ k−γRA . , γRA = (N△ + N)/N ≈ 3, N△ = N△0 + 2N. T.Zhou, G.Yan, and B.-H.Wang, PRE 71, 046141, 2005 ( ) 8 / 34
  6. 4. (Optimal Traffic Tree) f def = e bewe =

    e be le te , e te = T ⇔ g def = T − e te = 0. te e , le , be ( e ) , we = le /te . , F = f − λg . ∂F ∂te = − bele t2 e + λ = 0, , λ e , te ∝ √ bele . , ∂F/∂λ = 0 te = T √ be le e √ be le f , F = 1 T e √ bele 2 . ( ) 10 / 34
  7. ∼ µ, ν > 0 f = e bµ e

    lν e . µ = 0, ν = 1 , µ = 1/2, ν = 1/2 OTT, µ = 1, ν = 0 M.Barth´ elemy, and A.Flammini, J. of Stat. Mech. L0702, 2006 arXiv:physics/0601203v2 ( ) 11 / 34
  8. : (1 − δ) × + δ × δ =

    0.0 δ = 1.0 ο < δ < 1 M.T.Gastner, and M.E.J.Newman, PRE 74, 2006 ( ) 12 / 34
  9. 5. dwij dt = f (Qij ) − wij Qij

    = wij (pi − pj ) lij , A.Tero et al., Science 327, 439, 2010 Constructal Law ( ) 14 / 34
  10. Initial Configuration: UDG 0 0.1 0.2 0.3 0.4 0.5 0.6

    0.7 0.8 0.9 1 0 0.5 1 1.5 2 2.5 3 Connectivity Ratio Transmission Range A N0 =102 N0 =103 N0 =104 Unit disk graph : Unit Disk Graph dij < A/ √ N0 , i j ⇒ A Y.Hayashi, and Y.Meguro, Physica A 391, 872-879, 2011 ( ) 15 / 34
  11. Network Genetration Methods R = 0.1NT , Link Survival GreedyRouting

    eij wij → wij + 1 pd = 0.1 wij → wij − 1 T = 3 × 104 v w s t u s t u v w s t u Modified Rule 1 Modified Rule 2 (Self-avoiding) v X w dead-end Greedy Routing vt ut wt vt wt d < d < d d < d < d ut ( ) 16 / 34
  12. Modification: Adding Shortcuts Path Reinforcement T , , LS 10

    30% , , , Random Shortcut , LS 10 30% LS wij = 0 , eij , ( ) 17 / 34
  13. Quantitative Analysises Shortcut Effect: Internet AS, Delaunay Tri., Apollonian SF

    : Y.Hayashi, and J.Matsukubo, Improvement of the robustness on geographical networks by adding shortcuts, Physica A, 380, 2007. Y.Hayashi, Necessary Backbone of Super-highways for Transport on Geographical Complex Networks, Advances in Complex Systems 12(1), 2009. Multi-Scale Quatered Net : Y.Hayashi, Evolutionary Construction of Geographical Networks with Nearly Optimal Robustness and Efficient Routing Properties, Physica A 388, 2009. ( ) 19 / 34
  14. Robustness against Failures 0 0.2 0.4 0.6 0.8 1 0

    0.2 0.4 0.6 0.8 1 S/N Fraction f of failures LS PR 30% RS 30% 1 1.5 2 2.5 3 3.5 4 0 0.2 0.4 0.6 0.8 1 <s> Fraction f of failures LS PR 30% RS 30% ⇒ fc , LS 0.6 PR RS 0.8 ( ) 21 / 34
  15. Robustness against Attacks 0 0.2 0.4 0.6 0.8 1 0

    0.2 0.4 0.6 0.8 1 S/N Fraction f of attacks LS PR 30% RS 30% 1 1.5 2 2.5 3 3.5 0 0.2 0.4 0.6 0.8 1 <s> Fraction f of attacks LS PR 30% RS 30% ⇒ fc , LS 0.4 PR RS 0.6 ( ) 22 / 34
  16. Average Path-Length: SW Property 100 101 102 102 103 104

    <Lij > NT LS PR 10% PR 30% RS 10% RS 30% 100 101 102 102 103 104 LS PR 10% PR 30% RS 10% RS 30% ⇒ LS O( √ NT ) PR RS O(log NT ) ! ( ) 23 / 34
  17. Multi-Scale Quartered Net 1 , : k1 = 2, k2

    = 4(Tri) or 3(Squ), k3 = 6(Tri) or 4(Squ). 80km 160 × 160 500m ( ) 25 / 34
  18. Good Properties of MSQ Nets (t-spanner, t = 2) Online

    Routing v1 v2 v3 v4 v5 v0: source v6: terminal v1’ v3’ v5’ v5’’ Y.Hayashi, Physica A 388, 991, 2009, PRE 82, 016108, 2010. , . ( ) 26 / 34
  19. Generalized MSQ Nets , L × L ( ) (a)

    Initial square (b) chosen face (c) subdivision Y.Hayashi, T.Komaki, Y.Ide, T.Machida, and N.Konno, Physica A 392, 2013 ( ) 27 / 34
  20. Random Walks with Splitting x′ × y′ x × y

    ⇔ (x′, y′) (x, y) Division of Rectangle Directional random Walk (x′ − x) × y, x × (y′ − y), (x′ − x) × (y′ − y) , ( ) 28 / 34
  21. Universality Generalized-MSQ : ( ) ( ) , ⇒ G-MSQ

    Science 318(11), 742-743, 2007 Y.Hayashi, Chapter 4, In ”Networks -Emerging Topics in Computer Science,” A.Rezazadeh, L.Momeni, and I.Bilogrevic(Eds), iConcept Press, 2012 ( ) 29 / 34
  22. Biological Foraging L´ evy lij P(lij ) ∼ l−µ ij

    µ → 1 , µ ≥ 3 Brown , µ ≈ 2 G.M.Viswanathan et al. Nature 401, 911, 1999, M.C.Santos et al. PRE 72, 046143, 2005. ⇒ ( ) 30 / 34
  23. DTN , (MFs) Routes Stochastic Deterministic for moving decision (one-

    or multi-) Interactions Synchronous Asynchronous for data trans. by encounters by node-relaying of agents with temporal store J.J.P.C.Rodrigues(Eds), Advences in DTNs, Woodhead Pub., 2015, E.Shah, Int. J. of Com. Theo. and Eng. 3(4), 2011, W.Zhao et al., INFOCOM, 2005. ( ) 33 / 34
  24. MF MF x disappeared cycle reset until the cycle at

    the damaged layer unification of cycles udpate for the smaller cycles by the division in re-assignments of ferries shallow layer deep layer notification to recover MF - - Y.Hayashi, IEEE Xplore Digital Library FoCAS 2015 ( ) 34 / 34