$30 off During Our Annual Pro Sale. View Details »
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Kotlin State & Shared Flows in Action
Search
Mohit S
July 27, 2021
Programming
4
1.4k
Kotlin State & Shared Flows in Action
Shared Flow APIs
Mohit S
July 27, 2021
Tweet
Share
More Decks by Mohit S
See All by Mohit S
Guide to Improving Compose Performance
heyitsmohit
0
270
Building Shared UIs across Platforms with Compose
heyitsmohit
1
670
Building Multiplatform Apps with Compose
heyitsmohit
2
550
Building StateFlows with Jetpack Compose
heyitsmohit
6
1.9k
Building Android Testing Infrastructure
heyitsmohit
1
540
Migrating to Kotlin State & Shared Flows
heyitsmohit
1
820
Using Square Workflow for Android & iOS
heyitsmohit
1
460
Building Android Infrastructure Teams at Scale
heyitsmohit
3
350
Strategies for Migrating to Jetpack Compose
heyitsmohit
2
600
Other Decks in Programming
See All in Programming
TestingOsaka6_Ozono
o3
0
170
ローカルLLMを⽤いてコード補完を⾏う VSCode拡張機能を作ってみた
nearme_tech
PRO
0
120
AIコーディングエージェント(NotebookLM)
kondai24
0
210
AIエージェントの設計で注意するべきポイント6選
har1101
5
1.3k
AIの誤りが許されない業務システムにおいて“信頼されるAI” を目指す / building-trusted-ai-systems
yuya4
6
3.8k
「コードは上から下へ読むのが一番」と思った時に、思い出してほしい話
panda728
PRO
39
26k
Github Copilotのチャット履歴ビューワーを作りました~WPF、dotnet10もあるよ~ #clrh111
katsuyuzu
0
120
dotfiles 式年遷宮 令和最新版
masawada
1
800
実は歴史的なアップデートだと思う AWS Interconnect - multicloud
maroon1st
0
230
複数人でのCLI/Infrastructure as Codeの暮らしを良くする
shmokmt
5
2.3k
脳の「省エネモード」をデバッグする ~System 1(直感)と System 2(論理)の切り替え~
panda728
PRO
0
110
Navigation 3: 적응형 UI를 위한 앱 탐색
fornewid
1
370
Featured
See All Featured
Jamie Indigo - Trashchat’s Guide to Black Boxes: Technical SEO Tactics for LLMs
techseoconnect
PRO
0
29
Making the Leap to Tech Lead
cromwellryan
135
9.7k
CoffeeScript is Beautiful & I Never Want to Write Plain JavaScript Again
sstephenson
162
16k
sira's awesome portfolio website redesign presentation
elsirapls
0
87
The Mindset for Success: Future Career Progression
greggifford
PRO
0
180
Performance Is Good for Brains [We Love Speed 2024]
tammyeverts
12
1.3k
Believing is Seeing
oripsolob
0
10
It's Worth the Effort
3n
187
29k
Claude Code のすすめ
schroneko
65
200k
Organizational Design Perspectives: An Ontology of Organizational Design Elements
kimpetersen
PRO
0
38
No one is an island. Learnings from fostering a developers community.
thoeni
21
3.6k
Why Mistakes Are the Best Teachers: Turning Failure into a Pathway for Growth
auna
0
18
Transcript
Mohit Sarveiya Kotlin State & Shared Flows in Action @heyitsmohit
Kotlin State & Shared Flows in Action • State Flow
• Shared Flow • Broadcast Channel vs shared flow • Convert cold streams to shared flows • Buffer Overflow Strategies
Cold vs Hot Flows
What is a cold stream? A cold stream is a
flow that triggers the same code every time it is collected.
Cold Flows val flow = flowOf(1, 2, 3) .map
{ it + 1 }
Cold Flows val flow = flowOf(1, 2, 3) .map
{ it + 1 } flow.collect { ... }
Cold Flows val flow = flowOf(1, 2, 3) .map
{ it + 1 } flow.collect { ... }
Cold Flows val flow = flowOf(1, 2, 3) .map
{ it + 1 } flow.collect { ... }
Cold Flows val flow = flowOf(1, 2, 3) .map
{ it + 1 } flow.collect { // 2, 3, 4 }
Cold Flows val flow = flowOf(1, 2, 3) .map
{ it + 1 } flow.collect { ... } flow.collect { ... }
Cold Flows val flow = flowOf(1, 2, 3) .map
{ it + 1 } flow.collect { ... } flow.collect { ... }
Cold Flows val flow = flowOf(1, 2, 3) .map
{ it + 1 } flow.collect { ... } flow.collect { // 2, 3, 4 }
What is a hot stream? A hot stream is a
flow whose active instance exists independently of the presence of collectors.
Hot Streams State Flow Shared Flow
State Flow View View Model
State Flow View View Model
State Flow View View Model State
State Flow sealed class UiState { data class Error(
val exception: Throwable ): UiState() }
State Flow sealed class UiState { data class Success(
val data: Data ): UiState() data class Error( val exception: Throwable ): UiState() }
State Flow sealed class UiState { data class Success(
val data: Data ): UiState() data class Error( val exception: Throwable ): UiState() }
State Flow val uiState = MutableStateFlow()
val uiState = MutableStateFlow( UiState.Success(Data()) ) State Flow
State Flow val uiState = MutableStateFlow( . .. ) uiState.emit(
UIState.Success(Data()) )
State Flow val uiState = MutableStateFlow( . .. ) uiState.value
= UIState.Success(Data())
State Flow val uiState = MutableStateFlow( . .. ) uiState.collect
{ ... } Latest value is received
State Flow val uiState = MutableStateFlow( . .. ) uiState.collect
{ ... } uiState.collect { ... } Latest value is received
State Flow Conflation val uiState = MutableStateFlow( . .. )
uiState.value = UIState.Success( .. . ) uiState.value = UIState.Error( .. . ) Conflate
State Flow Conflation val uiState = MutableStateFlow( . .. )
uiState.value = UIState.Success( .. . ) uiState.value = UIState.Error( .. . ) uiState.collect { ... } Error
State Flow vs Live Data State Flow Live Data Default
Value Unsubscribe (Stopped State)
State Flow vs Live Data State Flow Live Data Default
Value Unsubscribe (Stopped State)
State Flow vs Live Data State Flow Live Data Default
Value Unsubscribe (Stopped State)
State Flow Summary • How to setup state flow •
Emit and collect • State Flow vs Live Data
Shared Flow
Shared Flow
Shared Flow Consumer 1 Consumer 2
Shared Flow Consumer 1 Consumer 2
Shared Flow Consumer 1 Consumer 2 Event Event
Shared Flow Consumer 1 Consumer 2 Replay Replay
Shared Flow Buffer
Shared Flow val flow = MutableSharedFlow < > ()
Shared Flow val flow = MutableSharedFlow<String>()
Shared Flow val flow = MutableSharedFlow<String>()
Shared Flow val flow = MutableSharedFlow<String>() launch { flow.collect {
} }
Shared Flow val flow = MutableSharedFlow<String>() launch { flow.emit("Event
1") } launch { flow.collect { } }
Shared Flow val flow = MutableSharedFlow<String>() launch { flow.emit("Event
1") } launch { flow.collect { } } Event 1
Shared Flow val flow = MutableSharedFlow<String>() launch { flow.emit("Event
1”) } launch { delay(2000); flow.collect { } }
Shared Flow val flow = MutableSharedFlow<String>() launch { delay(2000);
flow.collect { } } launch { flow.emit("Event 1”) }
Shared Flow val flow = MutableSharedFlow<String>() launch { delay(2000);
flow.collect { } } launch { flow.emit("Event 1”) }
Shared Flow val flow = MutableSharedFlow<String>() launch { delay(2000);
flow.collect { } } No value is received launch { flow.emit("Event 1”) }
Shared Flow val flow = MutableSharedFlow<String>() launch { flow.emit("Event
1”) } launch { delay(2000); flow.collect { } } Replay
Shared Flow val flow = MutableSharedFlow<String>(replay = 1) launch
{ flow.emit("Event 1”) } launch { delay(2000); flow.collect { } }
Shared Flow val flow = MutableSharedFlow<String>(replay = 1) launch
{ delay(2000); flow.collect { } } launch { flow.emit("Event 1”) } Event 1
val flow = MutableSharedFlow<String>(replay = 1) Shared Flow State
Flow launch { flow.collect { } } launch { flow.subscriptionCount.value }
Shared Flow val flow = MutableSharedFlow<String>(replay = 1) 1 Subscriber
launch { flow.collect { } } launch { flow.subscriptionCount.value }
Shared Flow val flow = MutableSharedFlow<String>(replay = 1) Shared Flow
does not complete normally launch { flow.collect { } }
Cold Flows val flow = flowOf(1, 2, 3) flow
.onCompletion { } .collect { ... } Flow completes normally
Shared Flow val flow = MutableSharedFlow<String>(replay = 1) val job
= launch { flow.collect { } } job.cancel()
Shared Flow val flow = MutableSharedFlow<String>(replay = 1) val job
= launch { flow.onCompletion { }.collect { } } job.cancel() Flow completes exceptionally
Shared Flow Summary • Setup • Replay and emit •
Cancellation
Broadcast Channel vs Shared Flow
Broadcast Channel Shared Flow Channel APIs Replay Buffer Closed
val channel = BroadcastChannel<Int>(10)
val channel = BroadcastChannel<Int>(10) channel.send( ... )
val channel = BroadcastChannel<Int>(10) channel.send( ... ) channel.close()
val stateFlow = MutableSharedFlow() stateFlow.emit( ... )
Broadcast Channel Shared Flow Channel APIs Replay Buffer Closed
val stateFlow = MutableSharedFlow(replay = 2) stateFlow.emit( ... )
Broadcast Channel Shared Flow Channel APIs Replay Buffer Closed
val channel = BroadcastChannel<Int>(capacity = 10) channel.send( ... )
val stateFlow = MutableSharedFlow( replay = 2, extraBufferCapacity = 10
) stateFlow.emit( ... )
Broadcast Channel Shared Flow Channel APIs Replay Buffer Closed
val channel = BroadcastChannel<Int>(10) channel.send( ... ) channel.close()
val stateFlow = MutableSharedFlow( replay = 2, extraBufferCapacity = 10
) stateFlow.emit( ... )
Broadcast Channel Shared Flow Channel APIs Replay Buffer Closed
Broadcast Channel Shared Flow
val channel = BroadcastChannel<Int>(capacity)
val channel = BroadcastChannel<Int>(capacity) val flow = MutableSharedFlow<String>(extraBufferCapacity)
channel.send( ... ) channel.trySend( ... ) flow.emit( ... ) flow.tryEmit(
... )
Broadcast Channel Shared Flow Channel APIs Replay Buffer Closed
Flow Sharing Strategies
Cold Flow Hot Flow Convert
Sharing Policies • While Subscribed • Eagerly • Lazily
Sharing Policies flow
Sharing Policies flow.shareIn( )
Sharing Policies flow.shareIn( externalScope, )
Sharing Policies flow.shareIn( externalScope, replay = 1, )
Sharing Policies flow.shareIn( externalScope, replay = 1, started = SharingStarted.WhileSubscribed()
)
Sharing Policies val sharedFlow = flow.shareIn( externalScope, replay = 1,
started = SharingStarted.WhileSubscribed() )
While Subscribed • Active as long as external scope is
alive • Remains as long as there are collectors.
Properties Active as long as external scope is alive
Properties Active as long as external scope is alive sharedFlow.collect
{ } Subscriber
flow.shareIn( externalScope, replay = 1, started = SharingStarted.WhileSubscribed() ) Properties
Active as long as external scope is alive
Properties Active as long as external scope is alive sharedFlow.collect
{ } externalScope.cancel()
Properties Active as long as external scope is alive sharedFlow.collect
{ } externalScope.cancel() Complete Exceptionally
Properties Remains as long as there are collectors.
Properties Remains as long as there are collectors. val sharedFlow
= flow.onCompletion { }.shareIn(…)
Properties Remains as long as there are collectors. val sharedFlow
= flow.onCompletion { }.shareIn(…) val job = launch { sharedFlow.onCompletion { }.collect { } }
Properties Remains as long as there are collectors. val sharedFlow
= flow.onCompletion { }.shareIn(…) val job = launch { sharedFlow.onCompletion { }.collect { } } job.cancel()
Properties Remains as long as there are collectors. val sharedFlow
= flow.onCompletion { }.shareIn(…) val job = launch { sharedFlow.onCompletion { }.collect { } } job.cancel()
Properties Remains as long as there are collectors. val sharedFlow
= flow.onCompletion { }.shareIn(…) val job = launch { sharedFlow.onCompletion { }.collect { } } job.cancel()
Properties Remains as long as there are collectors. val sharedFlow
= flow.onCompletion { }.shareIn(…) val job1 = launch { sharedFlow.collect { } } val job2 = launch { sharedFlow.collect { } }
Properties Remains as long as there are collectors. val sharedFlow
= flow.onCompletion { }.shareIn(…) job1.cancel() val job2 = launch { sharedFlow.collect { } }
Properties Remains as long as there are collectors. val sharedFlow
= flow.onCompletion { }.shareIn(…) job1.cancel() val job2 = launch { sharedFlow.collect { } } Remain Active
Properties • Active as long as external scope is alive
• Remains as long as there are collectors.
Sharing Policies • While Subscribed • Eagerly • Lazily
Eagerly flow.shareIn( externalScope, replay = 1, started = SharingStarted.Eagerly() )
Eagerly Start producer eagerly and never stop flow .onStart {
println("ON START") } .shareIn( ... started = SharingStarted.Eagerly)
Eagerly Start producer eagerly and never stop flow .onStart {
println("ON START") } .shareIn( ... started = SharingStarted.Eagerly)
Eagerly Start producer eagerly and never stop flow .onStart {
println("ON START") } .shareIn( ... started = SharingStarted.Eagerly) ON START
Eagerly Start producer eagerly and never stop flow .onComplete {
println("ON COMPLETE”) } .shareIn( ... started = SharingStarted.Eagerly)
Eagerly Start producer eagerly and never stop flow .onComplete {
println("ON COMPLETE”) } .shareIn( ... started = SharingStarted.Eagerly) externalScope.cancel()
Eagerly Start producer eagerly and never stop flow .onComplete {
println("ON COMPLETE”) } .shareIn( ... started = SharingStarted.Eagerly) Never stops externalScope.cancel()
Eagerly Start producer eagerly and never stop
Sharing Policies • While Subscribed • Eagerly • Lazily
Lazily Start sharing after the first subscriber appears and never
stop
Lazily flow.shareIn( externalScope, replay = 1, started = SharingStarted.Lazily )
Lazily flow .onStart { println("ON START") } .shareIn(…,started = SharingStarted.Lazily)
Lazily flow .onStart { println("ON START") } .shareIn(…,started = SharingStarted.Lazily)
launch { sharedFlow.collect { } }
Lazily flow .onStart { println("ON START") } .shareIn(…,started = SharingStarted.Lazily)
launch { sharedFlow.collect { } } "ON START"
Lazily flow .onCompletion { println("COMPLETE") } .shareIn(…,started = SharingStarted.Lazily)
flow .onCompletion { println("COMPLETE") } .shareIn(externalScope,…,started = SharingStarted.Lazily) Lazily
flow .onCompletion { println("COMPLETE") } .shareIn(externalScope,…,started = SharingStarted.Lazily) Lazily externalScope.cancel()
flow .onCompletion { println("COMPLETE") } .shareIn(externalScope,…,started = SharingStarted.Lazily) Lazily Never
stops externalScope.cancel()
Lazily Start sharing after the first subscriber appears and never
stop
Sharing Policies • While Subscribed • Active while there are
active subscribers. • Eagerly • Start producer eagerly and never stop • Lazily • Start after the first subscriber appears and never stop
Buffer Overflow Strategies
Shared Flow Buffer
Shared Flow Producer Consumer
Shared Flow Producer Consumer Generating events fast
Shared Flow Producer Consumer Listening to events with
delay
Shared Flow Producer Consumer
Shared Flow Producer Consumer
Shared Flow Producer Consumer What happens when it is
full?
Buffering Overflow Strategies • Suspend • Drop oldest • Drop
latest
Shared Flow Producer Consumer Suspend
Buffering Overflow Strategies val flow = MutableSharedFlow<String>( extraBufferCapacity = 2,
onBufferOverflow = BufferOverflow.SUSPEND ) Buffer + Replay Count
Buffering Overflow Strategies val flow = MutableSharedFlow<String>( extraBufferCapacity = 2,
onBufferOverflow = BufferOverflow.SUSPEND )
Buffering Overflow Strategies launch { flow.emit("Event 1") flow.emit("Event 2") flow.emit("Event
3") } Suspend
Buffering Overflow Strategies • Suspend • Drop oldest • Drop
latest
Shared Flow Producer Consumer Drop Oldest
Shared Flow Producer Consumer Drop latest
Buffering Overflow Strategies • Suspend • Drop oldest • Drop
latest
Kotlin State & Shared Flows in Action • State Flow
• Shared Flow • Broadcast Channel vs shared flow • Convert cold streams to shared flows • Buffer Overflow Strategies
https: // codingwithmohit.com/coroutines/learning-shared-and-state-flows-with-tests/ Coding with Mohit
Thank You! www.codingwithmohit.com @heyitsmohit