Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Kotlin State & Shared Flows in Action
Search
Mohit S
July 27, 2021
Programming
4
1.3k
Kotlin State & Shared Flows in Action
Shared Flow APIs
Mohit S
July 27, 2021
Tweet
Share
More Decks by Mohit S
See All by Mohit S
Guide to Improving Compose Performance
heyitsmohit
0
210
Building Shared UIs across Platforms with Compose
heyitsmohit
1
600
Building Multiplatform Apps with Compose
heyitsmohit
2
480
Building StateFlows with Jetpack Compose
heyitsmohit
6
1.8k
Building Android Testing Infrastructure
heyitsmohit
1
450
Migrating to Kotlin State & Shared Flows
heyitsmohit
1
760
Using Square Workflow for Android & iOS
heyitsmohit
1
410
Building Android Infrastructure Teams at Scale
heyitsmohit
3
310
Strategies for Migrating to Jetpack Compose
heyitsmohit
2
540
Other Decks in Programming
See All in Programming
ASP.NETアプリケーションのモダナイゼーションについて
tomokusaba
0
260
Beyond_the_Prompt__Evaluating__Testing__and_Securing_LLM_Applications.pdf
meteatamel
0
110
ウォンテッドリーの「ココロオドル」モバイル開発 / Wantedly's "kokoro odoru" mobile development
kubode
2
600
設計の本質:コード、システム、そして組織へ / The Essence of Design: To Code, Systems, and Organizations
nrslib
10
3.8k
データベースの技術選定を突き詰める ~複数事例から考える最適なデータベースの選び方~
nnaka2992
3
1.8k
The Missing Link in Angular’s Signal Story: Resource API and httpResource
manfredsteyer
PRO
0
150
“技術カンファレンスで何か変わる?” ──RubyKaigi後の自分とチームを振り返る
ssagara00
0
120
Boast Code Party / RubyKaigi 2025 After Event
lemonade_37
0
110
eBPF超入門「o11yに使える」とは (20250424_eBPF_o11y)
thousanda
1
120
音声プラットフォームのアーキテクチャ変遷から学ぶ、クラウドネイティブなバッチ処理 (20250422_CNDS2025_Batch_Architecture)
thousanda
0
430
Instrumentsを使用した アプリのパフォーマンス向上方法
hinakko
0
250
VibeCoding時代のエンジニアリング
daisuketakeda
0
210
Featured
See All Featured
Facilitating Awesome Meetings
lara
54
6.4k
Designing Experiences People Love
moore
142
24k
Statistics for Hackers
jakevdp
799
220k
How to Think Like a Performance Engineer
csswizardry
23
1.6k
VelocityConf: Rendering Performance Case Studies
addyosmani
329
24k
RailsConf 2023
tenderlove
30
1.1k
Keith and Marios Guide to Fast Websites
keithpitt
411
22k
Unsuck your backbone
ammeep
671
58k
XXLCSS - How to scale CSS and keep your sanity
sugarenia
248
1.3M
Mobile First: as difficult as doing things right
swwweet
223
9.6k
The Myth of the Modular Monolith - Day 2 Keynote - Rails World 2024
eileencodes
24
2.7k
What's in a price? How to price your products and services
michaelherold
245
12k
Transcript
Mohit Sarveiya Kotlin State & Shared Flows in Action @heyitsmohit
Kotlin State & Shared Flows in Action • State Flow
• Shared Flow • Broadcast Channel vs shared flow • Convert cold streams to shared flows • Buffer Overflow Strategies
Cold vs Hot Flows
What is a cold stream? A cold stream is a
flow that triggers the same code every time it is collected.
Cold Flows val flow = flowOf(1, 2, 3) .map
{ it + 1 }
Cold Flows val flow = flowOf(1, 2, 3) .map
{ it + 1 } flow.collect { ... }
Cold Flows val flow = flowOf(1, 2, 3) .map
{ it + 1 } flow.collect { ... }
Cold Flows val flow = flowOf(1, 2, 3) .map
{ it + 1 } flow.collect { ... }
Cold Flows val flow = flowOf(1, 2, 3) .map
{ it + 1 } flow.collect { // 2, 3, 4 }
Cold Flows val flow = flowOf(1, 2, 3) .map
{ it + 1 } flow.collect { ... } flow.collect { ... }
Cold Flows val flow = flowOf(1, 2, 3) .map
{ it + 1 } flow.collect { ... } flow.collect { ... }
Cold Flows val flow = flowOf(1, 2, 3) .map
{ it + 1 } flow.collect { ... } flow.collect { // 2, 3, 4 }
What is a hot stream? A hot stream is a
flow whose active instance exists independently of the presence of collectors.
Hot Streams State Flow Shared Flow
State Flow View View Model
State Flow View View Model
State Flow View View Model State
State Flow sealed class UiState { data class Error(
val exception: Throwable ): UiState() }
State Flow sealed class UiState { data class Success(
val data: Data ): UiState() data class Error( val exception: Throwable ): UiState() }
State Flow sealed class UiState { data class Success(
val data: Data ): UiState() data class Error( val exception: Throwable ): UiState() }
State Flow val uiState = MutableStateFlow()
val uiState = MutableStateFlow( UiState.Success(Data()) ) State Flow
State Flow val uiState = MutableStateFlow( . .. ) uiState.emit(
UIState.Success(Data()) )
State Flow val uiState = MutableStateFlow( . .. ) uiState.value
= UIState.Success(Data())
State Flow val uiState = MutableStateFlow( . .. ) uiState.collect
{ ... } Latest value is received
State Flow val uiState = MutableStateFlow( . .. ) uiState.collect
{ ... } uiState.collect { ... } Latest value is received
State Flow Conflation val uiState = MutableStateFlow( . .. )
uiState.value = UIState.Success( .. . ) uiState.value = UIState.Error( .. . ) Conflate
State Flow Conflation val uiState = MutableStateFlow( . .. )
uiState.value = UIState.Success( .. . ) uiState.value = UIState.Error( .. . ) uiState.collect { ... } Error
State Flow vs Live Data State Flow Live Data Default
Value Unsubscribe (Stopped State)
State Flow vs Live Data State Flow Live Data Default
Value Unsubscribe (Stopped State)
State Flow vs Live Data State Flow Live Data Default
Value Unsubscribe (Stopped State)
State Flow Summary • How to setup state flow •
Emit and collect • State Flow vs Live Data
Shared Flow
Shared Flow
Shared Flow Consumer 1 Consumer 2
Shared Flow Consumer 1 Consumer 2
Shared Flow Consumer 1 Consumer 2 Event Event
Shared Flow Consumer 1 Consumer 2 Replay Replay
Shared Flow Buffer
Shared Flow val flow = MutableSharedFlow < > ()
Shared Flow val flow = MutableSharedFlow<String>()
Shared Flow val flow = MutableSharedFlow<String>()
Shared Flow val flow = MutableSharedFlow<String>() launch { flow.collect {
} }
Shared Flow val flow = MutableSharedFlow<String>() launch { flow.emit("Event
1") } launch { flow.collect { } }
Shared Flow val flow = MutableSharedFlow<String>() launch { flow.emit("Event
1") } launch { flow.collect { } } Event 1
Shared Flow val flow = MutableSharedFlow<String>() launch { flow.emit("Event
1”) } launch { delay(2000); flow.collect { } }
Shared Flow val flow = MutableSharedFlow<String>() launch { delay(2000);
flow.collect { } } launch { flow.emit("Event 1”) }
Shared Flow val flow = MutableSharedFlow<String>() launch { delay(2000);
flow.collect { } } launch { flow.emit("Event 1”) }
Shared Flow val flow = MutableSharedFlow<String>() launch { delay(2000);
flow.collect { } } No value is received launch { flow.emit("Event 1”) }
Shared Flow val flow = MutableSharedFlow<String>() launch { flow.emit("Event
1”) } launch { delay(2000); flow.collect { } } Replay
Shared Flow val flow = MutableSharedFlow<String>(replay = 1) launch
{ flow.emit("Event 1”) } launch { delay(2000); flow.collect { } }
Shared Flow val flow = MutableSharedFlow<String>(replay = 1) launch
{ delay(2000); flow.collect { } } launch { flow.emit("Event 1”) } Event 1
val flow = MutableSharedFlow<String>(replay = 1) Shared Flow State
Flow launch { flow.collect { } } launch { flow.subscriptionCount.value }
Shared Flow val flow = MutableSharedFlow<String>(replay = 1) 1 Subscriber
launch { flow.collect { } } launch { flow.subscriptionCount.value }
Shared Flow val flow = MutableSharedFlow<String>(replay = 1) Shared Flow
does not complete normally launch { flow.collect { } }
Cold Flows val flow = flowOf(1, 2, 3) flow
.onCompletion { } .collect { ... } Flow completes normally
Shared Flow val flow = MutableSharedFlow<String>(replay = 1) val job
= launch { flow.collect { } } job.cancel()
Shared Flow val flow = MutableSharedFlow<String>(replay = 1) val job
= launch { flow.onCompletion { }.collect { } } job.cancel() Flow completes exceptionally
Shared Flow Summary • Setup • Replay and emit •
Cancellation
Broadcast Channel vs Shared Flow
Broadcast Channel Shared Flow Channel APIs Replay Buffer Closed
val channel = BroadcastChannel<Int>(10)
val channel = BroadcastChannel<Int>(10) channel.send( ... )
val channel = BroadcastChannel<Int>(10) channel.send( ... ) channel.close()
val stateFlow = MutableSharedFlow() stateFlow.emit( ... )
Broadcast Channel Shared Flow Channel APIs Replay Buffer Closed
val stateFlow = MutableSharedFlow(replay = 2) stateFlow.emit( ... )
Broadcast Channel Shared Flow Channel APIs Replay Buffer Closed
val channel = BroadcastChannel<Int>(capacity = 10) channel.send( ... )
val stateFlow = MutableSharedFlow( replay = 2, extraBufferCapacity = 10
) stateFlow.emit( ... )
Broadcast Channel Shared Flow Channel APIs Replay Buffer Closed
val channel = BroadcastChannel<Int>(10) channel.send( ... ) channel.close()
val stateFlow = MutableSharedFlow( replay = 2, extraBufferCapacity = 10
) stateFlow.emit( ... )
Broadcast Channel Shared Flow Channel APIs Replay Buffer Closed
Broadcast Channel Shared Flow
val channel = BroadcastChannel<Int>(capacity)
val channel = BroadcastChannel<Int>(capacity) val flow = MutableSharedFlow<String>(extraBufferCapacity)
channel.send( ... ) channel.trySend( ... ) flow.emit( ... ) flow.tryEmit(
... )
Broadcast Channel Shared Flow Channel APIs Replay Buffer Closed
Flow Sharing Strategies
Cold Flow Hot Flow Convert
Sharing Policies • While Subscribed • Eagerly • Lazily
Sharing Policies flow
Sharing Policies flow.shareIn( )
Sharing Policies flow.shareIn( externalScope, )
Sharing Policies flow.shareIn( externalScope, replay = 1, )
Sharing Policies flow.shareIn( externalScope, replay = 1, started = SharingStarted.WhileSubscribed()
)
Sharing Policies val sharedFlow = flow.shareIn( externalScope, replay = 1,
started = SharingStarted.WhileSubscribed() )
While Subscribed • Active as long as external scope is
alive • Remains as long as there are collectors.
Properties Active as long as external scope is alive
Properties Active as long as external scope is alive sharedFlow.collect
{ } Subscriber
flow.shareIn( externalScope, replay = 1, started = SharingStarted.WhileSubscribed() ) Properties
Active as long as external scope is alive
Properties Active as long as external scope is alive sharedFlow.collect
{ } externalScope.cancel()
Properties Active as long as external scope is alive sharedFlow.collect
{ } externalScope.cancel() Complete Exceptionally
Properties Remains as long as there are collectors.
Properties Remains as long as there are collectors. val sharedFlow
= flow.onCompletion { }.shareIn(…)
Properties Remains as long as there are collectors. val sharedFlow
= flow.onCompletion { }.shareIn(…) val job = launch { sharedFlow.onCompletion { }.collect { } }
Properties Remains as long as there are collectors. val sharedFlow
= flow.onCompletion { }.shareIn(…) val job = launch { sharedFlow.onCompletion { }.collect { } } job.cancel()
Properties Remains as long as there are collectors. val sharedFlow
= flow.onCompletion { }.shareIn(…) val job = launch { sharedFlow.onCompletion { }.collect { } } job.cancel()
Properties Remains as long as there are collectors. val sharedFlow
= flow.onCompletion { }.shareIn(…) val job = launch { sharedFlow.onCompletion { }.collect { } } job.cancel()
Properties Remains as long as there are collectors. val sharedFlow
= flow.onCompletion { }.shareIn(…) val job1 = launch { sharedFlow.collect { } } val job2 = launch { sharedFlow.collect { } }
Properties Remains as long as there are collectors. val sharedFlow
= flow.onCompletion { }.shareIn(…) job1.cancel() val job2 = launch { sharedFlow.collect { } }
Properties Remains as long as there are collectors. val sharedFlow
= flow.onCompletion { }.shareIn(…) job1.cancel() val job2 = launch { sharedFlow.collect { } } Remain Active
Properties • Active as long as external scope is alive
• Remains as long as there are collectors.
Sharing Policies • While Subscribed • Eagerly • Lazily
Eagerly flow.shareIn( externalScope, replay = 1, started = SharingStarted.Eagerly() )
Eagerly Start producer eagerly and never stop flow .onStart {
println("ON START") } .shareIn( ... started = SharingStarted.Eagerly)
Eagerly Start producer eagerly and never stop flow .onStart {
println("ON START") } .shareIn( ... started = SharingStarted.Eagerly)
Eagerly Start producer eagerly and never stop flow .onStart {
println("ON START") } .shareIn( ... started = SharingStarted.Eagerly) ON START
Eagerly Start producer eagerly and never stop flow .onComplete {
println("ON COMPLETE”) } .shareIn( ... started = SharingStarted.Eagerly)
Eagerly Start producer eagerly and never stop flow .onComplete {
println("ON COMPLETE”) } .shareIn( ... started = SharingStarted.Eagerly) externalScope.cancel()
Eagerly Start producer eagerly and never stop flow .onComplete {
println("ON COMPLETE”) } .shareIn( ... started = SharingStarted.Eagerly) Never stops externalScope.cancel()
Eagerly Start producer eagerly and never stop
Sharing Policies • While Subscribed • Eagerly • Lazily
Lazily Start sharing after the first subscriber appears and never
stop
Lazily flow.shareIn( externalScope, replay = 1, started = SharingStarted.Lazily )
Lazily flow .onStart { println("ON START") } .shareIn(…,started = SharingStarted.Lazily)
Lazily flow .onStart { println("ON START") } .shareIn(…,started = SharingStarted.Lazily)
launch { sharedFlow.collect { } }
Lazily flow .onStart { println("ON START") } .shareIn(…,started = SharingStarted.Lazily)
launch { sharedFlow.collect { } } "ON START"
Lazily flow .onCompletion { println("COMPLETE") } .shareIn(…,started = SharingStarted.Lazily)
flow .onCompletion { println("COMPLETE") } .shareIn(externalScope,…,started = SharingStarted.Lazily) Lazily
flow .onCompletion { println("COMPLETE") } .shareIn(externalScope,…,started = SharingStarted.Lazily) Lazily externalScope.cancel()
flow .onCompletion { println("COMPLETE") } .shareIn(externalScope,…,started = SharingStarted.Lazily) Lazily Never
stops externalScope.cancel()
Lazily Start sharing after the first subscriber appears and never
stop
Sharing Policies • While Subscribed • Active while there are
active subscribers. • Eagerly • Start producer eagerly and never stop • Lazily • Start after the first subscriber appears and never stop
Buffer Overflow Strategies
Shared Flow Buffer
Shared Flow Producer Consumer
Shared Flow Producer Consumer Generating events fast
Shared Flow Producer Consumer Listening to events with
delay
Shared Flow Producer Consumer
Shared Flow Producer Consumer
Shared Flow Producer Consumer What happens when it is
full?
Buffering Overflow Strategies • Suspend • Drop oldest • Drop
latest
Shared Flow Producer Consumer Suspend
Buffering Overflow Strategies val flow = MutableSharedFlow<String>( extraBufferCapacity = 2,
onBufferOverflow = BufferOverflow.SUSPEND ) Buffer + Replay Count
Buffering Overflow Strategies val flow = MutableSharedFlow<String>( extraBufferCapacity = 2,
onBufferOverflow = BufferOverflow.SUSPEND )
Buffering Overflow Strategies launch { flow.emit("Event 1") flow.emit("Event 2") flow.emit("Event
3") } Suspend
Buffering Overflow Strategies • Suspend • Drop oldest • Drop
latest
Shared Flow Producer Consumer Drop Oldest
Shared Flow Producer Consumer Drop latest
Buffering Overflow Strategies • Suspend • Drop oldest • Drop
latest
Kotlin State & Shared Flows in Action • State Flow
• Shared Flow • Broadcast Channel vs shared flow • Convert cold streams to shared flows • Buffer Overflow Strategies
https: // codingwithmohit.com/coroutines/learning-shared-and-state-flows-with-tests/ Coding with Mohit
Thank You! www.codingwithmohit.com @heyitsmohit