Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Great Barrier Reef Model Pipeline: 15th place
Search
Sponsored
·
Your Podcast. Everywhere. Effortlessly.
Share. Educate. Inspire. Entertain. You do you. We'll handle the rest.
→
Maxwell
February 16, 2022
Science
1
230
Great Barrier Reef Model Pipeline: 15th place
https://www.kaggle.com/c/tensorflow-great-barrier-reef
All I want to use was YOLO-X!
Maxwell
February 16, 2022
Tweet
Share
More Decks by Maxwell
See All by Maxwell
Causal Impact -paper summary-
hoxomaxwell
3
930
Lecture materials at the University of Tokyo School of Medicine
hoxomaxwell
1
180
Kaggle Hungry Geese
hoxomaxwell
1
130
HuBMAP 17th place model pipeline
hoxomaxwell
1
120
LT: Shallow Dive into Bayes Factor
hoxomaxwell
6
1.4k
Kaggle APTOS 2019 @ U-Tokyo Med
hoxomaxwell
1
430
Cornell Birdcall 36th place solution
hoxomaxwell
2
250
Kaggle Bengali.AI 6 th place solution
hoxomaxwell
4
8.8k
Google Colaboratory Shortcuts
hoxomaxwell
2
1.1k
Other Decks in Science
See All in Science
PPIのみを用いたAIによる薬剤–遺伝子–疾患 相互作用の同定
tagtag
PRO
0
160
データベース11: 正規化(1/2) - 望ましくない関係スキーマ
trycycle
PRO
0
1.1k
データベース14: B+木 & ハッシュ索引
trycycle
PRO
0
660
2025-06-11-ai_belgium
sofievl
1
230
【RSJ2025】PAMIQ Core: リアルタイム継続学習のための⾮同期推論・学習フレームワーク
gesonanko
0
640
力学系から見た現代的な機械学習
hanbao
3
3.9k
[Paper Introduction] From Bytes to Ideas:Language Modeling with Autoregressive U-Nets
haruumiomoto
0
200
機械学習 - DBSCAN
trycycle
PRO
0
1.5k
Lean4による汎化誤差評価の形式化
milano0017
1
430
データベース12: 正規化(2/2) - データ従属性に基づく正規化
trycycle
PRO
0
1.1k
機械学習 - K-means & 階層的クラスタリング
trycycle
PRO
0
1.2k
データマイニング - ウェブとグラフ
trycycle
PRO
0
240
Featured
See All Featured
The Hidden Cost of Media on the Web [PixelPalooza 2025]
tammyeverts
2
200
Designing for humans not robots
tammielis
254
26k
We Are The Robots
honzajavorek
0
170
How GitHub (no longer) Works
holman
316
140k
GraphQLの誤解/rethinking-graphql
sonatard
74
11k
Agile that works and the tools we love
rasmusluckow
331
21k
Max Prin - Stacking Signals: How International SEO Comes Together (And Falls Apart)
techseoconnect
PRO
0
87
State of Search Keynote: SEO is Dead Long Live SEO
ryanjones
0
120
Balancing Empowerment & Direction
lara
5
900
16th Malabo Montpellier Forum Presentation
akademiya2063
PRO
0
52
Save Time (by Creating Custom Rails Generators)
garrettdimon
PRO
32
2.1k
Joys of Absence: A Defence of Solitary Play
codingconduct
1
290
Transcript
Copyright 2022 Maxwell_110 Validation strategy - Sequence-based 4 fold CV
- The number of CoTS is close in each fold - Training data is frames with CoTs - Validation data includes frames w/o CoTs Resize up to 2.75 times using progressive learning 1280 720 Augmentation Increasing probability of applying augmentation as progressive learning progresses. - Default YOLO-X augmentations - random resize: (-5, 5) - mosaic / MixUp / hsv / flip: p = 0.6 -> 0.8 - degrees: Not used - translate: 0.1 - mosaic / MixUp scale: (0.5, 1.5) - RandomGamma - RGBShift - Sharpen - GaussNoise Batch Size: 4 GeForce RTX 3080 (x 2) Solution description in Kaggle discussion https://www.kaggle.com/c/tensorflow-great-barrier-reef/discussion/307691 Learning strategy - Progressive learning - Optimizer: default SGD (decay: 5e-4, momentum: 0.9) - LR: .000625 - Scheduler: yoloxwarmcos - min_lr_ratio: 0.1 - EMA: on - warmup_epochs: 5 - max_epoch: 30 TTA Seq-NMS https://arxiv.org/abs/1602.08465 https://github.com/tmoopenn/seq-nms n_frames: 2 confidence threshold: 0.07 linkage threshold: 0.1 nms th: 0.4 Weighted Box Fusion skip box threshold: 0.05 wbf IoU threshold: 0.45 Final confidence threshold: .08 Public LB : 0.607 Private LB : 0.714