Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Great Barrier Reef Model Pipeline: 15th place
Search
Maxwell
February 16, 2022
Science
1
150
Great Barrier Reef Model Pipeline: 15th place
https://www.kaggle.com/c/tensorflow-great-barrier-reef
All I want to use was YOLO-X!
Maxwell
February 16, 2022
Tweet
Share
More Decks by Maxwell
See All by Maxwell
Causal Impact -paper summary-
hoxomaxwell
2
540
Lecture materials at the University of Tokyo School of Medicine
hoxomaxwell
1
93
Kaggle Hungry Geese
hoxomaxwell
1
77
HuBMAP 17th place model pipeline
hoxomaxwell
1
66
LT: Shallow Dive into Bayes Factor
hoxomaxwell
6
1.2k
Kaggle APTOS 2019 @ U-Tokyo Med
hoxomaxwell
1
390
Cornell Birdcall 36th place solution
hoxomaxwell
2
210
Kaggle Bengali.AI 6 th place solution
hoxomaxwell
4
7.9k
Google Colaboratory Shortcuts
hoxomaxwell
2
980
Other Decks in Science
See All in Science
Snowflakeによる統合バイオインフォマティクス
ktatsuya
0
380
Reaping the Benefits of Ritual and Routine
arthurdoler
PRO
0
160
Machine Learning for Materials (Lecture 8)
aronwalsh
0
390
Mastering Feature Engineering: Mining the Hidden Salary Formula with CakeResume
tlyu0419
0
230
最新のAI技術を使った材料シミュレーションで材料研究現場に変革を
matlantis
0
700
Machine Learning for Materials (Lecture 7)
aronwalsh
0
790
20分で分かる Human-in-the-Loop 機械学習におけるアノテーションとヒューマンコンピューターインタラクションの真髄
hurutoriya
3
1.5k
第61回コンピュータビジョン勉強会「BioCLIP: A Vision Foundation Model for the Tree of Life」
x_ttyszk
1
1.4k
Direct Preference Optimization
zchenry
0
250
はじめての「相関と因果とエビデンス」入門:“動機づけられた推論” に抗うために
takehikoihayashi
16
6.5k
A Theory of Scrum Team Effectiveness 〜『ゾンビスクラムサバイバルガイド』の裏側にある科学〜
bonotake
15
6.6k
Non-Gaussian methods for causal discovery
sshimizu2006
0
250
Featured
See All Featured
Faster Mobile Websites
deanohume
304
30k
XXLCSS - How to scale CSS and keep your sanity
sugarenia
246
1.3M
Put a Button on it: Removing Barriers to Going Fast.
kastner
58
3.4k
BBQ
matthewcrist
83
9.1k
Code Reviewing Like a Champion
maltzj
518
39k
VelocityConf: Rendering Performance Case Studies
addyosmani
321
23k
Creatively Recalculating Your Daily Design Routine
revolveconf
215
12k
Docker and Python
trallard
39
3k
[RailsConf 2023] Rails as a piece of cake
palkan
44
4.6k
The World Runs on Bad Software
bkeepers
PRO
64
11k
Gamification - CAS2011
davidbonilla
79
4.9k
Fight the Zombie Pattern Library - RWD Summit 2016
marcelosomers
230
17k
Transcript
Copyright 2022 Maxwell_110 Validation strategy - Sequence-based 4 fold CV
- The number of CoTS is close in each fold - Training data is frames with CoTs - Validation data includes frames w/o CoTs Resize up to 2.75 times using progressive learning 1280 720 Augmentation Increasing probability of applying augmentation as progressive learning progresses. - Default YOLO-X augmentations - random resize: (-5, 5) - mosaic / MixUp / hsv / flip: p = 0.6 -> 0.8 - degrees: Not used - translate: 0.1 - mosaic / MixUp scale: (0.5, 1.5) - RandomGamma - RGBShift - Sharpen - GaussNoise Batch Size: 4 GeForce RTX 3080 (x 2) Solution description in Kaggle discussion https://www.kaggle.com/c/tensorflow-great-barrier-reef/discussion/307691 Learning strategy - Progressive learning - Optimizer: default SGD (decay: 5e-4, momentum: 0.9) - LR: .000625 - Scheduler: yoloxwarmcos - min_lr_ratio: 0.1 - EMA: on - warmup_epochs: 5 - max_epoch: 30 TTA Seq-NMS https://arxiv.org/abs/1602.08465 https://github.com/tmoopenn/seq-nms n_frames: 2 confidence threshold: 0.07 linkage threshold: 0.1 nms th: 0.4 Weighted Box Fusion skip box threshold: 0.05 wbf IoU threshold: 0.45 Final confidence threshold: .08 Public LB : 0.607 Private LB : 0.714