Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Great Barrier Reef Model Pipeline: 15th place
Search
Maxwell
February 16, 2022
Science
1
160
Great Barrier Reef Model Pipeline: 15th place
https://www.kaggle.com/c/tensorflow-great-barrier-reef
All I want to use was YOLO-X!
Maxwell
February 16, 2022
Tweet
Share
More Decks by Maxwell
See All by Maxwell
Causal Impact -paper summary-
hoxomaxwell
2
580
Lecture materials at the University of Tokyo School of Medicine
hoxomaxwell
1
100
Kaggle Hungry Geese
hoxomaxwell
1
81
HuBMAP 17th place model pipeline
hoxomaxwell
1
69
LT: Shallow Dive into Bayes Factor
hoxomaxwell
6
1.2k
Kaggle APTOS 2019 @ U-Tokyo Med
hoxomaxwell
1
390
Cornell Birdcall 36th place solution
hoxomaxwell
2
210
Kaggle Bengali.AI 6 th place solution
hoxomaxwell
4
8k
Google Colaboratory Shortcuts
hoxomaxwell
2
980
Other Decks in Science
See All in Science
DEIM2024 チュートリアル ~AWSで生成AIのRAGを使ったチャットボットを作ってみよう~
yamahiro
3
1.3k
20分で分かる Human-in-the-Loop 機械学習におけるアノテーションとヒューマンコンピューターインタラクションの真髄
hurutoriya
4
2.2k
2024-06-16-pydata_london
sofievl
0
510
深層学習を利用して 大豆の外部欠陥を判別した研究事例の紹介
kentaitakura
0
210
JSol'Ex : traitement d'images solaires en Java
melix
0
100
Iniciativas independentes de divulgação científica: o caso do Movimento #CiteMulheresNegras
taisso
0
120
Machine Learning for Materials (Lecture 2)
aronwalsh
0
710
インフラだけではない MLOps の話 @事例でわかるMLOps 機械学習の成果をスケールさせる処方箋 発売記念
icoxfog417
2
510
位相的データ解析とその応用例
brainpadpr
1
540
【健康&筋肉と生産性向上の関連性】 【Google Cloudを企業で運用する際の知識】 をお届け
yasumuusan
0
320
拡散モデルの原理紹介
brainpadpr
3
4.6k
Direct Preference Optimization
zchenry
0
270
Featured
See All Featured
Measuring & Analyzing Core Web Vitals
bluesmoon
1
37
Bootstrapping a Software Product
garrettdimon
PRO
305
110k
Code Review Best Practice
trishagee
64
17k
GraphQLとの向き合い方2022年版
quramy
43
13k
Visualization
eitanlees
144
15k
The Power of CSS Pseudo Elements
geoffreycrofte
72
5.3k
Product Roadmaps are Hard
iamctodd
PRO
48
10k
ReactJS: Keep Simple. Everything can be a component!
pedronauck
664
120k
Refactoring Trust on Your Teams (GOTO; Chicago 2020)
rmw
31
2.6k
Building Adaptive Systems
keathley
38
2.2k
Designing Dashboards & Data Visualisations in Web Apps
destraynor
228
52k
Building Applications with DynamoDB
mza
90
6.1k
Transcript
Copyright 2022 Maxwell_110 Validation strategy - Sequence-based 4 fold CV
- The number of CoTS is close in each fold - Training data is frames with CoTs - Validation data includes frames w/o CoTs Resize up to 2.75 times using progressive learning 1280 720 Augmentation Increasing probability of applying augmentation as progressive learning progresses. - Default YOLO-X augmentations - random resize: (-5, 5) - mosaic / MixUp / hsv / flip: p = 0.6 -> 0.8 - degrees: Not used - translate: 0.1 - mosaic / MixUp scale: (0.5, 1.5) - RandomGamma - RGBShift - Sharpen - GaussNoise Batch Size: 4 GeForce RTX 3080 (x 2) Solution description in Kaggle discussion https://www.kaggle.com/c/tensorflow-great-barrier-reef/discussion/307691 Learning strategy - Progressive learning - Optimizer: default SGD (decay: 5e-4, momentum: 0.9) - LR: .000625 - Scheduler: yoloxwarmcos - min_lr_ratio: 0.1 - EMA: on - warmup_epochs: 5 - max_epoch: 30 TTA Seq-NMS https://arxiv.org/abs/1602.08465 https://github.com/tmoopenn/seq-nms n_frames: 2 confidence threshold: 0.07 linkage threshold: 0.1 nms th: 0.4 Weighted Box Fusion skip box threshold: 0.05 wbf IoU threshold: 0.45 Final confidence threshold: .08 Public LB : 0.607 Private LB : 0.714