Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Great Barrier Reef Model Pipeline: 15th place
Search
Maxwell
February 16, 2022
Science
1
220
Great Barrier Reef Model Pipeline: 15th place
https://www.kaggle.com/c/tensorflow-great-barrier-reef
All I want to use was YOLO-X!
Maxwell
February 16, 2022
Tweet
Share
More Decks by Maxwell
See All by Maxwell
Causal Impact -paper summary-
hoxomaxwell
3
820
Lecture materials at the University of Tokyo School of Medicine
hoxomaxwell
1
140
Kaggle Hungry Geese
hoxomaxwell
1
110
HuBMAP 17th place model pipeline
hoxomaxwell
1
95
LT: Shallow Dive into Bayes Factor
hoxomaxwell
6
1.4k
Kaggle APTOS 2019 @ U-Tokyo Med
hoxomaxwell
1
420
Cornell Birdcall 36th place solution
hoxomaxwell
2
230
Kaggle Bengali.AI 6 th place solution
hoxomaxwell
4
8.5k
Google Colaboratory Shortcuts
hoxomaxwell
2
1k
Other Decks in Science
See All in Science
My Favourite Book in 2024: Get Rid of Your Japanese Accent
lagenorhynque
1
100
Accelerated Computing for Climate forecast
inureyes
PRO
0
110
データベース01: データベースを使わない世界
trycycle
PRO
1
750
サイゼミ用因果推論
lw
1
7.4k
学術講演会中央大学学員会府中支部
tagtag
0
300
04_石井クンツ昌子_お茶の水女子大学理事_副学長_D_I社会実現へ向けて.pdf
sip3ristex
0
570
Hakonwa-Quaternion
hiranabe
1
120
機械学習 - ニューラルネットワーク入門
trycycle
PRO
0
840
データベース02: データベースの概念
trycycle
PRO
2
870
機械学習 - K-means & 階層的クラスタリング
trycycle
PRO
0
1k
統計学入門講座 第4回スライド
techmathproject
0
170
白金鉱業Meetup Vol.16_【初学者向け発表】 数理最適化のはじめの一歩 〜身近な問題で学ぶ最適化の面白さ〜
brainpadpr
11
2.3k
Featured
See All Featured
Raft: Consensus for Rubyists
vanstee
140
7.1k
Keith and Marios Guide to Fast Websites
keithpitt
411
22k
Creating an realtime collaboration tool: Agile Flush - .NET Oxford
marcduiker
31
2.2k
Templates, Plugins, & Blocks: Oh My! Creating the theme that thinks of everything
marktimemedia
31
2.5k
Large-scale JavaScript Application Architecture
addyosmani
512
110k
The Cost Of JavaScript in 2023
addyosmani
51
8.8k
The Language of Interfaces
destraynor
158
25k
The Straight Up "How To Draw Better" Workshop
denniskardys
235
140k
Fireside Chat
paigeccino
38
3.6k
Cheating the UX When There Is Nothing More to Optimize - PixelPioneers
stephaniewalter
283
13k
What’s in a name? Adding method to the madness
productmarketing
PRO
23
3.6k
Art, The Web, and Tiny UX
lynnandtonic
301
21k
Transcript
Copyright 2022 Maxwell_110 Validation strategy - Sequence-based 4 fold CV
- The number of CoTS is close in each fold - Training data is frames with CoTs - Validation data includes frames w/o CoTs Resize up to 2.75 times using progressive learning 1280 720 Augmentation Increasing probability of applying augmentation as progressive learning progresses. - Default YOLO-X augmentations - random resize: (-5, 5) - mosaic / MixUp / hsv / flip: p = 0.6 -> 0.8 - degrees: Not used - translate: 0.1 - mosaic / MixUp scale: (0.5, 1.5) - RandomGamma - RGBShift - Sharpen - GaussNoise Batch Size: 4 GeForce RTX 3080 (x 2) Solution description in Kaggle discussion https://www.kaggle.com/c/tensorflow-great-barrier-reef/discussion/307691 Learning strategy - Progressive learning - Optimizer: default SGD (decay: 5e-4, momentum: 0.9) - LR: .000625 - Scheduler: yoloxwarmcos - min_lr_ratio: 0.1 - EMA: on - warmup_epochs: 5 - max_epoch: 30 TTA Seq-NMS https://arxiv.org/abs/1602.08465 https://github.com/tmoopenn/seq-nms n_frames: 2 confidence threshold: 0.07 linkage threshold: 0.1 nms th: 0.4 Weighted Box Fusion skip box threshold: 0.05 wbf IoU threshold: 0.45 Final confidence threshold: .08 Public LB : 0.607 Private LB : 0.714