Upgrade to PRO for Only $50/Year—Limited-Time Offer! 🔥
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Great Barrier Reef Model Pipeline: 15th place
Search
Maxwell
February 16, 2022
Science
1
220
Great Barrier Reef Model Pipeline: 15th place
https://www.kaggle.com/c/tensorflow-great-barrier-reef
All I want to use was YOLO-X!
Maxwell
February 16, 2022
Tweet
Share
More Decks by Maxwell
See All by Maxwell
Causal Impact -paper summary-
hoxomaxwell
3
890
Lecture materials at the University of Tokyo School of Medicine
hoxomaxwell
1
150
Kaggle Hungry Geese
hoxomaxwell
1
120
HuBMAP 17th place model pipeline
hoxomaxwell
1
110
LT: Shallow Dive into Bayes Factor
hoxomaxwell
6
1.4k
Kaggle APTOS 2019 @ U-Tokyo Med
hoxomaxwell
1
430
Cornell Birdcall 36th place solution
hoxomaxwell
2
240
Kaggle Bengali.AI 6 th place solution
hoxomaxwell
4
8.7k
Google Colaboratory Shortcuts
hoxomaxwell
2
1.1k
Other Decks in Science
See All in Science
Hakonwa-Quaternion
hiranabe
1
160
白金鉱業Meetup_Vol.20 効果検証ことはじめ / Introduction to Impact Evaluation
brainpadpr
2
1.4k
深層学習を用いた根菜類の個数カウントによる収量推定法の開発
kentaitakura
0
210
データベース08: 実体関連モデルとは?
trycycle
PRO
0
1k
会社でMLモデルを作るとは @電気通信大学 データアントレプレナーフェロープログラム
yuto16
1
410
データマイニング - グラフ埋め込み入門
trycycle
PRO
1
120
Optimization of the Tournament Format for the Nationwide High School Kyudo Competition in Japan
konakalab
0
130
データベース04: SQL (1/3) 単純質問 & 集約演算
trycycle
PRO
0
1.1k
力学系から見た現代的な機械学習
hanbao
3
3.4k
Performance Evaluation and Ranking of Drivers in Multiple Motorsports Using Massey’s Method
konakalab
0
120
知能とはなにかーヒトとAIのあいだー
tagtag
0
160
HajimetenoLT vol.17
hashimoto_kei
1
100
Featured
See All Featured
Art, The Web, and Tiny UX
lynnandtonic
303
21k
Making the Leap to Tech Lead
cromwellryan
135
9.6k
Bootstrapping a Software Product
garrettdimon
PRO
307
120k
Mobile First: as difficult as doing things right
swwweet
225
10k
Designing for Performance
lara
610
69k
We Have a Design System, Now What?
morganepeng
54
7.9k
Scaling GitHub
holman
464
140k
Performance Is Good for Brains [We Love Speed 2024]
tammyeverts
12
1.3k
For a Future-Friendly Web
brad_frost
180
10k
Helping Users Find Their Own Way: Creating Modern Search Experiences
danielanewman
31
3k
The Art of Delivering Value - GDevCon NA Keynote
reverentgeek
16
1.8k
Chrome DevTools: State of the Union 2024 - Debugging React & Beyond
addyosmani
9
1k
Transcript
Copyright 2022 Maxwell_110 Validation strategy - Sequence-based 4 fold CV
- The number of CoTS is close in each fold - Training data is frames with CoTs - Validation data includes frames w/o CoTs Resize up to 2.75 times using progressive learning 1280 720 Augmentation Increasing probability of applying augmentation as progressive learning progresses. - Default YOLO-X augmentations - random resize: (-5, 5) - mosaic / MixUp / hsv / flip: p = 0.6 -> 0.8 - degrees: Not used - translate: 0.1 - mosaic / MixUp scale: (0.5, 1.5) - RandomGamma - RGBShift - Sharpen - GaussNoise Batch Size: 4 GeForce RTX 3080 (x 2) Solution description in Kaggle discussion https://www.kaggle.com/c/tensorflow-great-barrier-reef/discussion/307691 Learning strategy - Progressive learning - Optimizer: default SGD (decay: 5e-4, momentum: 0.9) - LR: .000625 - Scheduler: yoloxwarmcos - min_lr_ratio: 0.1 - EMA: on - warmup_epochs: 5 - max_epoch: 30 TTA Seq-NMS https://arxiv.org/abs/1602.08465 https://github.com/tmoopenn/seq-nms n_frames: 2 confidence threshold: 0.07 linkage threshold: 0.1 nms th: 0.4 Weighted Box Fusion skip box threshold: 0.05 wbf IoU threshold: 0.45 Final confidence threshold: .08 Public LB : 0.607 Private LB : 0.714