Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Great Barrier Reef Model Pipeline: 15th place
Search
Maxwell
February 16, 2022
Science
1
230
Great Barrier Reef Model Pipeline: 15th place
https://www.kaggle.com/c/tensorflow-great-barrier-reef
All I want to use was YOLO-X!
Maxwell
February 16, 2022
Tweet
Share
More Decks by Maxwell
See All by Maxwell
Causal Impact -paper summary-
hoxomaxwell
3
900
Lecture materials at the University of Tokyo School of Medicine
hoxomaxwell
1
170
Kaggle Hungry Geese
hoxomaxwell
1
130
HuBMAP 17th place model pipeline
hoxomaxwell
1
120
LT: Shallow Dive into Bayes Factor
hoxomaxwell
6
1.4k
Kaggle APTOS 2019 @ U-Tokyo Med
hoxomaxwell
1
430
Cornell Birdcall 36th place solution
hoxomaxwell
2
250
Kaggle Bengali.AI 6 th place solution
hoxomaxwell
4
8.8k
Google Colaboratory Shortcuts
hoxomaxwell
2
1.1k
Other Decks in Science
See All in Science
Rashomon at the Sound: Reconstructing all possible paleoearthquake histories in the Puget Lowland through topological search
cossatot
0
330
検索と推論タスクに関する論文の紹介
ynakano
1
110
(メタ)科学コミュニケーターからみたAI for Scienceの同床異夢
rmaruy
0
150
凸最適化からDC最適化まで
santana_hammer
1
350
データマイニング - コミュニティ発見
trycycle
PRO
0
190
【論文紹介】Is CLIP ideal? No. Can we fix it?Yes! 第65回 コンピュータビジョン勉強会@関東
shun6211
5
2.2k
知能とはなにかーヒトとAIのあいだー
tagtag
PRO
0
130
データベース08: 実体関連モデルとは?
trycycle
PRO
0
1k
デジタルアーカイブの教育利用促進を目指したメタデータLOD基盤に関する研究 / Research on a Metadata LOD Platform for Promoting Educational Uses of Digital Archives
masao
0
130
2025-05-31-pycon_italia
sofievl
0
130
機械学習 - K近傍法 & 機械学習のお作法
trycycle
PRO
0
1.3k
データマイニング - グラフ構造の諸指標
trycycle
PRO
0
240
Featured
See All Featured
Testing 201, or: Great Expectations
jmmastey
46
7.8k
Cheating the UX When There Is Nothing More to Optimize - PixelPioneers
stephaniewalter
287
14k
From Legacy to Launchpad: Building Startup-Ready Communities
dugsong
0
120
I Don’t Have Time: Getting Over the Fear to Launch Your Podcast
jcasabona
34
2.6k
The Limits of Empathy - UXLibs8
cassininazir
1
200
sira's awesome portfolio website redesign presentation
elsirapls
0
100
30 Presentation Tips
portentint
PRO
1
180
Building Experiences: Design Systems, User Experience, and Full Site Editing
marktimemedia
0
360
Docker and Python
trallard
47
3.7k
Beyond borders and beyond the search box: How to win the global "messy middle" with AI-driven SEO
davidcarrasco
0
33
AI in Enterprises - Java and Open Source to the Rescue
ivargrimstad
0
1.1k
Learning to Love Humans: Emotional Interface Design
aarron
274
41k
Transcript
Copyright 2022 Maxwell_110 Validation strategy - Sequence-based 4 fold CV
- The number of CoTS is close in each fold - Training data is frames with CoTs - Validation data includes frames w/o CoTs Resize up to 2.75 times using progressive learning 1280 720 Augmentation Increasing probability of applying augmentation as progressive learning progresses. - Default YOLO-X augmentations - random resize: (-5, 5) - mosaic / MixUp / hsv / flip: p = 0.6 -> 0.8 - degrees: Not used - translate: 0.1 - mosaic / MixUp scale: (0.5, 1.5) - RandomGamma - RGBShift - Sharpen - GaussNoise Batch Size: 4 GeForce RTX 3080 (x 2) Solution description in Kaggle discussion https://www.kaggle.com/c/tensorflow-great-barrier-reef/discussion/307691 Learning strategy - Progressive learning - Optimizer: default SGD (decay: 5e-4, momentum: 0.9) - LR: .000625 - Scheduler: yoloxwarmcos - min_lr_ratio: 0.1 - EMA: on - warmup_epochs: 5 - max_epoch: 30 TTA Seq-NMS https://arxiv.org/abs/1602.08465 https://github.com/tmoopenn/seq-nms n_frames: 2 confidence threshold: 0.07 linkage threshold: 0.1 nms th: 0.4 Weighted Box Fusion skip box threshold: 0.05 wbf IoU threshold: 0.45 Final confidence threshold: .08 Public LB : 0.607 Private LB : 0.714