Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Great Barrier Reef Model Pipeline: 15th place
Search
Maxwell
February 16, 2022
Science
1
170
Great Barrier Reef Model Pipeline: 15th place
https://www.kaggle.com/c/tensorflow-great-barrier-reef
All I want to use was YOLO-X!
Maxwell
February 16, 2022
Tweet
Share
More Decks by Maxwell
See All by Maxwell
Causal Impact -paper summary-
hoxomaxwell
3
690
Lecture materials at the University of Tokyo School of Medicine
hoxomaxwell
1
110
Kaggle Hungry Geese
hoxomaxwell
1
90
HuBMAP 17th place model pipeline
hoxomaxwell
1
75
LT: Shallow Dive into Bayes Factor
hoxomaxwell
6
1.3k
Kaggle APTOS 2019 @ U-Tokyo Med
hoxomaxwell
1
400
Cornell Birdcall 36th place solution
hoxomaxwell
2
220
Kaggle Bengali.AI 6 th place solution
hoxomaxwell
4
8.2k
Google Colaboratory Shortcuts
hoxomaxwell
2
1k
Other Decks in Science
See All in Science
WeMeet Group - 採用資料
wemeet
0
4.2k
はじめてのバックドア基準:あるいは、重回帰分析の偏回帰係数を因果効果の推定値として解釈してよいのか問題
takehikoihayashi
2
1.1k
240510 COGNAC LabChat
kazh
0
170
ベイズのはなし
techmathproject
0
380
第61回コンピュータビジョン勉強会「BioCLIP: A Vision Foundation Model for the Tree of Life」
x_ttyszk
1
1.6k
The Incredible Machine: Developer Productivity and the Impact of AI
tomzimmermann
0
480
Cross-Media Information Spaces and Architectures (CISA)
signer
PRO
3
30k
Factorized Diffusion: Perceptual Illusions by Noise Decomposition
tomoaki0705
0
300
機械学習を支える連続最適化
nearme_tech
PRO
1
220
ACL読み会2024@名大 REANO: Optimising Retrieval-Augmented Reader Models through Knowledge Graph Generation
takuma_matsubara
0
120
機械学習による確率推定とカリブレーション/probabilistic-calibration-on-classification-model
ktgrstsh
2
340
ガウス過程回帰とベイズ最適化
nearme_tech
PRO
1
130
Featured
See All Featured
GitHub's CSS Performance
jonrohan
1030
460k
JavaScript: Past, Present, and Future - NDC Porto 2020
reverentgeek
47
5.1k
Git: the NoSQL Database
bkeepers
PRO
427
64k
jQuery: Nuts, Bolts and Bling
dougneiner
63
7.6k
How to Create Impact in a Changing Tech Landscape [PerfNow 2023]
tammyeverts
49
2.2k
How to train your dragon (web standard)
notwaldorf
89
5.8k
Visualizing Your Data: Incorporating Mongo into Loggly Infrastructure
mongodb
44
9.4k
CSS Pre-Processors: Stylus, Less & Sass
bermonpainter
356
29k
The Art of Programming - Codeland 2020
erikaheidi
53
13k
Testing 201, or: Great Expectations
jmmastey
41
7.2k
GraphQLとの向き合い方2022年版
quramy
44
13k
10 Git Anti Patterns You Should be Aware of
lemiorhan
PRO
656
59k
Transcript
Copyright 2022 Maxwell_110 Validation strategy - Sequence-based 4 fold CV
- The number of CoTS is close in each fold - Training data is frames with CoTs - Validation data includes frames w/o CoTs Resize up to 2.75 times using progressive learning 1280 720 Augmentation Increasing probability of applying augmentation as progressive learning progresses. - Default YOLO-X augmentations - random resize: (-5, 5) - mosaic / MixUp / hsv / flip: p = 0.6 -> 0.8 - degrees: Not used - translate: 0.1 - mosaic / MixUp scale: (0.5, 1.5) - RandomGamma - RGBShift - Sharpen - GaussNoise Batch Size: 4 GeForce RTX 3080 (x 2) Solution description in Kaggle discussion https://www.kaggle.com/c/tensorflow-great-barrier-reef/discussion/307691 Learning strategy - Progressive learning - Optimizer: default SGD (decay: 5e-4, momentum: 0.9) - LR: .000625 - Scheduler: yoloxwarmcos - min_lr_ratio: 0.1 - EMA: on - warmup_epochs: 5 - max_epoch: 30 TTA Seq-NMS https://arxiv.org/abs/1602.08465 https://github.com/tmoopenn/seq-nms n_frames: 2 confidence threshold: 0.07 linkage threshold: 0.1 nms th: 0.4 Weighted Box Fusion skip box threshold: 0.05 wbf IoU threshold: 0.45 Final confidence threshold: .08 Public LB : 0.607 Private LB : 0.714