Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
About Spectral Clustering
Search
Shunya Ueta
October 16, 2014
Research
0
2.9k
About Spectral Clustering
Spectral Clusteringというクラスタリング手法についての基本的な説明のスライドです。
@MMA_LAB
Shunya Ueta
October 16, 2014
Tweet
Share
More Decks by Shunya Ueta
See All by Shunya Ueta
20分で分かる Human-in-the-Loop 機械学習におけるアノテーションとヒューマンコンピューターインタラクションの真髄
hurutoriya
5
2.8k
Query Understanding for Search Engines. Chap2 Query Classification
hurutoriya
0
360
Introducing "Challenges and research opportunities in eCommerce search and recommendations"
hurutoriya
0
230
Auto Content Moderation in C2C e-Commerce at OpML20
hurutoriya
0
550
TFX: A tensor flow-based production-scale machine learning platform
hurutoriya
0
220
Applied machine learning at facebook a datacenter infrastructure perspective HPCA18
hurutoriya
0
200
machine learning tips in the python world PRMLer Night
hurutoriya
1
650
パターン認識と機械学習 第1章 #PRML学ぼう PRML輪講 #2 / PRML Seminar 2 go to introduction in machine learning
hurutoriya
1
2.8k
複数人でコードを書く際のFist Step
hurutoriya
0
360
Other Decks in Research
See All in Research
LLM 시대의 Compliance: Safety & Security
huffon
0
600
博士学位論文予備審査 / Scaling Telemetry Workloads in Cloud Applications: Techniques for Instrumentation, Storage, and Mining
yuukit
1
1.7k
ドローンやICTを活用した持続可能なまちづくりに関する研究
nro2daisuke
0
140
移動ビッグデータに基づく地理情報の埋め込みベクトル化
tam1110
0
240
A Segment Anything Model based weakly supervised learning method for crop mapping using Sentinel-2 time series images
satai
3
130
アプリケーションから知るモデルマージ
maguro27
0
260
書き手はどこを訪れたか? - 言語モデルで訪問行動を読み取る -
hiroki13
0
140
Leveraging LLMs for Unsupervised Dense Retriever Ranking (SIGIR 2024)
kampersanda
2
310
PostgreSQLにおける分散トレーシングの現在 - 第50回PostgreSQLアンカンファレンス
seinoyu
0
230
Weekly AI Agents News! 10月号 プロダクト/ニュースのアーカイブ
masatoto
1
200
言語と数理の交差点:テキストの埋め込みと構造のモデル化 (IBIS 2024 チュートリアル)
yukiar
5
1.1k
【NLPコロキウム】Stepwise Alignment for Constrained Language Model Policy Optimization (NeurIPS 2024)
akifumi_wachi
3
530
Featured
See All Featured
The Art of Delivering Value - GDevCon NA Keynote
reverentgeek
10
1.3k
Building a Modern Day E-commerce SEO Strategy
aleyda
38
7.1k
ピンチをチャンスに:未来をつくるプロダクトロードマップ #pmconf2020
aki_iinuma
114
50k
Thoughts on Productivity
jonyablonski
69
4.5k
What's in a price? How to price your products and services
michaelherold
244
12k
[Rails World 2023 - Day 1 Closing Keynote] - The Magic of Rails
eileencodes
33
2.1k
Music & Morning Musume
bryan
46
6.3k
Bootstrapping a Software Product
garrettdimon
PRO
306
110k
Principles of Awesome APIs and How to Build Them.
keavy
126
17k
CSS Pre-Processors: Stylus, Less & Sass
bermonpainter
356
29k
Statistics for Hackers
jakevdp
797
220k
Raft: Consensus for Rubyists
vanstee
137
6.8k
Transcript
About Spectral Clustering Univ. of Tsukuba MMA Lab Shunya
Ueta
目次 1. Spectral Graph 1. About 2. Graph
Laplacian Matrix 3. 応用例 2. Spectral Clustering 3. 実装 2
About Spectral Graph 歴史: 1950年代~ 目的:
グラフの特徴とグラフの固有値・固有ベクトル を結びつける 応用例: Spectral Clustering 画像領域分割 3
Graph Laplacian matrix 4 定義: 4 2 3
5 1 [ 0 1 0 1 0 ] [ 1 0 1 1 0 ] [ 0 1 0 0 1 ] [ 1 1 0 0 1 ] [ 0 0 1 1 0 ] [ 2 0 0 0 0 ] [ 0 3 0 0 0 ] [ 0 0 2 0 0 ] [ 0 0 0 3 0 ] [ 0 0 0 0 2 ] AG DG G n頂点無向グラフ G = (V, E) : AG : DG : Gの近接行列 Gの次数行列 LG = DG AG ラプラシアン行列 [ 2 -‐1 0 -‐1 0 ] [ -‐1 3 -‐1 -‐1 0 ] [ 0 -‐1 2 0 -‐1 ] [ -‐1 -‐1 0 3 -‐1 ] [ 0 0 -‐1 -‐1 2 ] LG = =
Spectral Graphの応用例 画像領域分割 : 画素毎の類似画像 5
Spectral Graphの応用例 画像領域分割 6
Spectral Grapth の応用例 Spectral Clustering 7
Spectral Clustering 8 P次元 n 個 .
. . 目的 p次元のデータn個を kクラスタに分類したい グラフ表現 データをグラフで表す Laplacian matrix グラフの行列表現 n n 対称行列 固有値集合(スペクトラム)を求める 固有ベクトルを小さいものから k番目までを選定 k n
Graph Laplacian matrix 9 定義: 4 2 3
5 1 [ 0 1 0 1 0 ] [ 1 0 1 1 0 ] [ 0 1 0 0 1 ] [ 1 1 0 0 1 ] [ 0 0 1 1 0 ] [ 2 0 0 0 0 ] [ 0 3 0 0 0 ] [ 0 0 2 0 0 ] [ 0 0 0 3 0 ] [ 0 0 0 0 2 ] AG DG G n頂点無向グラフ G = (V, E) : AG : DG : Gの近接行列 Gの次数行列 LG = DG AG ラプラシアン行列 [ 2 -‐1 0 -‐1 0 ] [ -‐1 3 -‐1 -‐1 0 ] [ 0 -‐1 2 0 -‐1 ] [ -‐1 -‐1 0 3 -‐1 ] [ 0 0 -‐1 -‐1 2 ] LG = =
ProperLes of Laplacian matrix 10 1. Lは部分対角優位行列なので全ての固有値は 0 以上
2. L の最小固有値は 0 であり、対応する固有ベクトルは全要素1の n 次元ベクトル 3. 固有値0の個数はグラフの連結部の数 連結部A 連結部B Laplacian matrix グラフの行列表現 対称行列 A B 1 1 1 0 0 0 I 0 = x x 固有値 対角行列
ProperLes of Laplacian matrix 11 1. Lは部分対角優位行列なので全ての固有値は 0 以上
2. L の最小固有値は 0 であり、対応する固有ベクトルは全要素1の n 次元ベクトル 3. 固有値0の個数はグラフの連結部の数 連結部A 連結部B Laplacian matrix グラフの行列表現 対称行列 A B 0 0 0 1 1 1 I 0 = x x 固有値 対角行列
Spectral Clustering 12 理想的なグラフ状態 各行に対して各列の要素が クラスタを示している
k n 1 1 0 0 0 0 0 1 0 0 i番目の行はあるデータX_i が所属するクラスタを 示している 0 0 0 1 1