Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
About Spectral Clustering
Search
Shunya Ueta
October 16, 2014
Research
0
2.9k
About Spectral Clustering
Spectral Clusteringというクラスタリング手法についての基本的な説明のスライドです。
@MMA_LAB
Shunya Ueta
October 16, 2014
Tweet
Share
More Decks by Shunya Ueta
See All by Shunya Ueta
20分で分かる Human-in-the-Loop 機械学習におけるアノテーションとヒューマンコンピューターインタラクションの真髄
hurutoriya
5
3.2k
Query Understanding for Search Engines. Chap2 Query Classification
hurutoriya
0
430
Introducing "Challenges and research opportunities in eCommerce search and recommendations"
hurutoriya
0
260
Auto Content Moderation in C2C e-Commerce at OpML20
hurutoriya
0
640
TFX: A tensor flow-based production-scale machine learning platform
hurutoriya
0
270
Applied machine learning at facebook a datacenter infrastructure perspective HPCA18
hurutoriya
0
230
machine learning tips in the python world PRMLer Night
hurutoriya
1
680
パターン認識と機械学習 第1章 #PRML学ぼう PRML輪講 #2 / PRML Seminar 2 go to introduction in machine learning
hurutoriya
1
3k
複数人でコードを書く際のFist Step
hurutoriya
0
390
Other Decks in Research
See All in Research
20250624_熊本経済同友会6月例会講演
trafficbrain
1
430
電力システム最適化入門
mickey_kubo
1
730
EarthMarker: A Visual Prompting Multimodal Large Language Model for Remote Sensing
satai
3
360
Delta Airlines® Customer Care in the U.S.: How to Reach Them Now
bookingcomcustomersupportusa
PRO
0
100
生成的推薦の人気バイアスの分析:暗記の観点から / JSAI2025
upura
0
210
ASSADS:ASMR動画に合わせて撫でられる感覚を提示するシステムの開発と評価 / ec75-shimizu
yumulab
1
420
データxデジタルマップで拓く ミラノ発・地域共創最前線
mapconcierge4agu
0
190
Type Theory as a Formal Basis of Natural Language Semantics
daikimatsuoka
1
250
SSII2025 [SS2] 横浜DeNAベイスターズの躍進を支えたAIプロダクト
ssii
PRO
7
3.7k
【輪講資料】Moshi: a speech-text foundation model for real-time dialogue
hpprc
3
440
研究テーマのデザインと研究遂行の方法論
hisashiishihara
5
1.5k
心理言語学の視点から再考する言語モデルの学習過程
chemical_tree
2
450
Featured
See All Featured
[Rails World 2023 - Day 1 Closing Keynote] - The Magic of Rails
eileencodes
35
2.4k
Navigating Team Friction
lara
187
15k
Mobile First: as difficult as doing things right
swwweet
223
9.7k
Done Done
chrislema
184
16k
Optimising Largest Contentful Paint
csswizardry
37
3.3k
Building Applications with DynamoDB
mza
95
6.5k
Fireside Chat
paigeccino
37
3.5k
The Pragmatic Product Professional
lauravandoore
35
6.7k
For a Future-Friendly Web
brad_frost
179
9.8k
Speed Design
sergeychernyshev
32
1k
BBQ
matthewcrist
89
9.7k
The Cult of Friendly URLs
andyhume
79
6.5k
Transcript
About Spectral Clustering Univ. of Tsukuba MMA Lab Shunya
Ueta
目次 1. Spectral Graph 1. About 2. Graph
Laplacian Matrix 3. 応用例 2. Spectral Clustering 3. 実装 2
About Spectral Graph 歴史: 1950年代~ 目的:
グラフの特徴とグラフの固有値・固有ベクトル を結びつける 応用例: Spectral Clustering 画像領域分割 3
Graph Laplacian matrix 4 定義: 4 2 3
5 1 [ 0 1 0 1 0 ] [ 1 0 1 1 0 ] [ 0 1 0 0 1 ] [ 1 1 0 0 1 ] [ 0 0 1 1 0 ] [ 2 0 0 0 0 ] [ 0 3 0 0 0 ] [ 0 0 2 0 0 ] [ 0 0 0 3 0 ] [ 0 0 0 0 2 ] AG DG G n頂点無向グラフ G = (V, E) : AG : DG : Gの近接行列 Gの次数行列 LG = DG AG ラプラシアン行列 [ 2 -‐1 0 -‐1 0 ] [ -‐1 3 -‐1 -‐1 0 ] [ 0 -‐1 2 0 -‐1 ] [ -‐1 -‐1 0 3 -‐1 ] [ 0 0 -‐1 -‐1 2 ] LG = =
Spectral Graphの応用例 画像領域分割 : 画素毎の類似画像 5
Spectral Graphの応用例 画像領域分割 6
Spectral Grapth の応用例 Spectral Clustering 7
Spectral Clustering 8 P次元 n 個 .
. . 目的 p次元のデータn個を kクラスタに分類したい グラフ表現 データをグラフで表す Laplacian matrix グラフの行列表現 n n 対称行列 固有値集合(スペクトラム)を求める 固有ベクトルを小さいものから k番目までを選定 k n
Graph Laplacian matrix 9 定義: 4 2 3
5 1 [ 0 1 0 1 0 ] [ 1 0 1 1 0 ] [ 0 1 0 0 1 ] [ 1 1 0 0 1 ] [ 0 0 1 1 0 ] [ 2 0 0 0 0 ] [ 0 3 0 0 0 ] [ 0 0 2 0 0 ] [ 0 0 0 3 0 ] [ 0 0 0 0 2 ] AG DG G n頂点無向グラフ G = (V, E) : AG : DG : Gの近接行列 Gの次数行列 LG = DG AG ラプラシアン行列 [ 2 -‐1 0 -‐1 0 ] [ -‐1 3 -‐1 -‐1 0 ] [ 0 -‐1 2 0 -‐1 ] [ -‐1 -‐1 0 3 -‐1 ] [ 0 0 -‐1 -‐1 2 ] LG = =
ProperLes of Laplacian matrix 10 1. Lは部分対角優位行列なので全ての固有値は 0 以上
2. L の最小固有値は 0 であり、対応する固有ベクトルは全要素1の n 次元ベクトル 3. 固有値0の個数はグラフの連結部の数 連結部A 連結部B Laplacian matrix グラフの行列表現 対称行列 A B 1 1 1 0 0 0 I 0 = x x 固有値 対角行列
ProperLes of Laplacian matrix 11 1. Lは部分対角優位行列なので全ての固有値は 0 以上
2. L の最小固有値は 0 であり、対応する固有ベクトルは全要素1の n 次元ベクトル 3. 固有値0の個数はグラフの連結部の数 連結部A 連結部B Laplacian matrix グラフの行列表現 対称行列 A B 0 0 0 1 1 1 I 0 = x x 固有値 対角行列
Spectral Clustering 12 理想的なグラフ状態 各行に対して各列の要素が クラスタを示している
k n 1 1 0 0 0 0 0 1 0 0 i番目の行はあるデータX_i が所属するクラスタを 示している 0 0 0 1 1