Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
About Spectral Clustering
Search
Shunya Ueta
October 16, 2014
Research
0
2.9k
About Spectral Clustering
Spectral Clusteringというクラスタリング手法についての基本的な説明のスライドです。
@MMA_LAB
Shunya Ueta
October 16, 2014
Tweet
Share
More Decks by Shunya Ueta
See All by Shunya Ueta
20分で分かる Human-in-the-Loop 機械学習におけるアノテーションとヒューマンコンピューターインタラクションの真髄
hurutoriya
5
3.4k
Query Understanding for Search Engines. Chap2 Query Classification
hurutoriya
0
450
Introducing "Challenges and research opportunities in eCommerce search and recommendations"
hurutoriya
0
270
Auto Content Moderation in C2C e-Commerce at OpML20
hurutoriya
0
670
TFX: A tensor flow-based production-scale machine learning platform
hurutoriya
0
270
Applied machine learning at facebook a datacenter infrastructure perspective HPCA18
hurutoriya
0
240
machine learning tips in the python world PRMLer Night
hurutoriya
1
690
パターン認識と機械学習 第1章 #PRML学ぼう PRML輪講 #2 / PRML Seminar 2 go to introduction in machine learning
hurutoriya
1
3.1k
複数人でコードを書く際のFist Step
hurutoriya
0
390
Other Decks in Research
See All in Research
国際論文を出そう!ICRA / IROS / RA-L への論文投稿の心構えとノウハウ / RSJ2025 Luncheon Seminar
koide3
6
4.6k
AWSで実現した大規模日本語VLM学習用データセット "MOMIJI" 構築パイプライン/buiding-momiji
studio_graph
2
510
在庫管理のための機械学習と最適化の融合
mickey_kubo
3
1.1k
【輪講資料】Moshi: a speech-text foundation model for real-time dialogue
hpprc
3
670
心理言語学の視点から再考する言語モデルの学習過程
chemical_tree
2
580
近似動的計画入門
mickey_kubo
4
1k
AIによる画像認識技術の進化 -25年の技術変遷を振り返る-
hf149
7
4k
時系列データに対する解釈可能な 決定木クラスタリング
mickey_kubo
2
940
2025年度人工知能学会全国大会チュートリアル講演「深層基盤モデルの数理」
taiji_suzuki
25
18k
SSII2025 [SS1] レンズレスカメラ
ssii
PRO
2
1.1k
まずはここから:Overleaf共同執筆・CopilotでAIコーディング入門・Codespacesで独立環境
matsui_528
2
490
SSII2025 [SS2] 横浜DeNAベイスターズの躍進を支えたAIプロダクト
ssii
PRO
7
4k
Featured
See All Featured
Code Reviewing Like a Champion
maltzj
525
40k
Building Flexible Design Systems
yeseniaperezcruz
328
39k
Measuring & Analyzing Core Web Vitals
bluesmoon
9
580
Fight the Zombie Pattern Library - RWD Summit 2016
marcelosomers
234
17k
Responsive Adventures: Dirty Tricks From The Dark Corners of Front-End
smashingmag
252
21k
Raft: Consensus for Rubyists
vanstee
140
7.1k
jQuery: Nuts, Bolts and Bling
dougneiner
64
7.9k
Cheating the UX When There Is Nothing More to Optimize - PixelPioneers
stephaniewalter
285
13k
Designing Dashboards & Data Visualisations in Web Apps
destraynor
231
53k
The Pragmatic Product Professional
lauravandoore
36
6.9k
4 Signs Your Business is Dying
shpigford
184
22k
The Psychology of Web Performance [Beyond Tellerrand 2023]
tammyeverts
49
3k
Transcript
About Spectral Clustering Univ. of Tsukuba MMA Lab Shunya
Ueta
目次 1. Spectral Graph 1. About 2. Graph
Laplacian Matrix 3. 応用例 2. Spectral Clustering 3. 実装 2
About Spectral Graph 歴史: 1950年代~ 目的:
グラフの特徴とグラフの固有値・固有ベクトル を結びつける 応用例: Spectral Clustering 画像領域分割 3
Graph Laplacian matrix 4 定義: 4 2 3
5 1 [ 0 1 0 1 0 ] [ 1 0 1 1 0 ] [ 0 1 0 0 1 ] [ 1 1 0 0 1 ] [ 0 0 1 1 0 ] [ 2 0 0 0 0 ] [ 0 3 0 0 0 ] [ 0 0 2 0 0 ] [ 0 0 0 3 0 ] [ 0 0 0 0 2 ] AG DG G n頂点無向グラフ G = (V, E) : AG : DG : Gの近接行列 Gの次数行列 LG = DG AG ラプラシアン行列 [ 2 -‐1 0 -‐1 0 ] [ -‐1 3 -‐1 -‐1 0 ] [ 0 -‐1 2 0 -‐1 ] [ -‐1 -‐1 0 3 -‐1 ] [ 0 0 -‐1 -‐1 2 ] LG = =
Spectral Graphの応用例 画像領域分割 : 画素毎の類似画像 5
Spectral Graphの応用例 画像領域分割 6
Spectral Grapth の応用例 Spectral Clustering 7
Spectral Clustering 8 P次元 n 個 .
. . 目的 p次元のデータn個を kクラスタに分類したい グラフ表現 データをグラフで表す Laplacian matrix グラフの行列表現 n n 対称行列 固有値集合(スペクトラム)を求める 固有ベクトルを小さいものから k番目までを選定 k n
Graph Laplacian matrix 9 定義: 4 2 3
5 1 [ 0 1 0 1 0 ] [ 1 0 1 1 0 ] [ 0 1 0 0 1 ] [ 1 1 0 0 1 ] [ 0 0 1 1 0 ] [ 2 0 0 0 0 ] [ 0 3 0 0 0 ] [ 0 0 2 0 0 ] [ 0 0 0 3 0 ] [ 0 0 0 0 2 ] AG DG G n頂点無向グラフ G = (V, E) : AG : DG : Gの近接行列 Gの次数行列 LG = DG AG ラプラシアン行列 [ 2 -‐1 0 -‐1 0 ] [ -‐1 3 -‐1 -‐1 0 ] [ 0 -‐1 2 0 -‐1 ] [ -‐1 -‐1 0 3 -‐1 ] [ 0 0 -‐1 -‐1 2 ] LG = =
ProperLes of Laplacian matrix 10 1. Lは部分対角優位行列なので全ての固有値は 0 以上
2. L の最小固有値は 0 であり、対応する固有ベクトルは全要素1の n 次元ベクトル 3. 固有値0の個数はグラフの連結部の数 連結部A 連結部B Laplacian matrix グラフの行列表現 対称行列 A B 1 1 1 0 0 0 I 0 = x x 固有値 対角行列
ProperLes of Laplacian matrix 11 1. Lは部分対角優位行列なので全ての固有値は 0 以上
2. L の最小固有値は 0 であり、対応する固有ベクトルは全要素1の n 次元ベクトル 3. 固有値0の個数はグラフの連結部の数 連結部A 連結部B Laplacian matrix グラフの行列表現 対称行列 A B 0 0 0 1 1 1 I 0 = x x 固有値 対角行列
Spectral Clustering 12 理想的なグラフ状態 各行に対して各列の要素が クラスタを示している
k n 1 1 0 0 0 0 0 1 0 0 i番目の行はあるデータX_i が所属するクラスタを 示している 0 0 0 1 1