Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
AI 人工智慧學校分享
Search
blue chen
April 20, 2018
0
370
AI 人工智慧學校分享
blue chen
April 20, 2018
Tweet
Share
More Decks by blue chen
See All by blue chen
RelaJet Caption
iamblue
0
80
The future of hearing device - 聽覺領域新的機會及挑戰
iamblue
2
210
20180918-Digitime 導入MCU設計 催熟智慧語音辨識應用市場
iamblue
0
180
Pixnet hackthon - workshop
iamblue
0
81
Javascript -Full stack 物聯網開發
iamblue
0
95
MCS Lite 私有雲物聯網開發
iamblue
0
270
Blockchain for IoT 應用
iamblue
1
180
2017.01.16 Embedded system
iamblue
0
64
microlattice.js ( World of tech 2016 )
iamblue
1
270
Featured
See All Featured
Learning to Love Humans: Emotional Interface Design
aarron
273
40k
Music & Morning Musume
bryan
46
6.2k
StorybookのUI Testing Handbookを読んだ
zakiyama
27
5.3k
Creating an realtime collaboration tool: Agile Flush - .NET Oxford
marcduiker
26
1.9k
Reflections from 52 weeks, 52 projects
jeffersonlam
347
20k
Designing on Purpose - Digital PM Summit 2013
jponch
116
7k
The Art of Programming - Codeland 2020
erikaheidi
53
13k
Chrome DevTools: State of the Union 2024 - Debugging React & Beyond
addyosmani
2
170
実際に使うSQLの書き方 徹底解説 / pgcon21j-tutorial
soudai
169
50k
Refactoring Trust on Your Teams (GOTO; Chicago 2020)
rmw
32
2.7k
Writing Fast Ruby
sferik
628
61k
Fontdeck: Realign not Redesign
paulrobertlloyd
82
5.3k
Transcript
洞洞 ⾒見見 未 來來 Deep learning on MicroControllerUnit Blue Chen
(
[email protected]
) 2018/04/20 ⼈人⼯工智慧學校
NN Layer Output Input 算法上的幾個關鍵 轉換 轉換 1. FFT (audio)
2. MFCC (audio) 3. RGB resize (vision) 4. Object detection (vision) 5. Face detection (vision) 1. IFFT (audio) 2. IMFCC (audio) 1. Model Size 2. Memory size 3. int / float (HW 加速)
NN Layer Output Input 以視覺辨識為例例 轉換 轉換 最後輸出 N x
1 維度
以聲⾳音輸出為例例 NN Layer Output Input 轉換 轉換
NN Layer Output Input 軟體 Support Effort 很龐⼤大 (先不論 AI
model 設計) 轉換 轉換 1.OS driver porting 2. 轉換器算法 3. openCV/ open VX 4. Dlib 5. FFmpeg (streaming) Coretex A - Android NN Coretex M - CMSIS NN 1. IFFT, IMFCC… 2. Trigger Application 極度不成熟 缺少比較新的 layer support Porting 底層⼈人才稀少 後續應⽤用層 ⼜又是另外⼀一層 Know how
不要隨便便說⾃自⼰己是 AI 公司 真正的 AI 公司,本質是超強的軟體團隊
Training Deployment RelaJet Zoo (各種模型) RelaJet 團隊開發架構 (視覺為例例) Caffe OpenCV
Linux OS Win/Mac Android OS IOS Tensorflow Theano Keras Caffe2 Caffe Pytorch … etc Base on Cortex A / X86 powerful platform OpenVX Base on CortexM 單⼼心片架構系統 語⾔言層 C / C++ C / C++ python/Js/ .. etc C / C++
One more thing….
RelaJet C series https://www.relajet.com/c-series
We provide 1. Vision tool 2. Tensorflow / Caffe /
Caffe2 / Keras model transfer tool 3. Capture Image and video tool 4. Training model tool RelaJet Omnism 全知 platform USD 79
Cifar10
聽覺產品敬請期待! Mail:
[email protected]
FB/ Line / Wechat ID: iambluechen
13 www.relajet.com