Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
単位正方形の射影変換の変換係数
Search
Takashi Imagire
August 31, 2020
Science
1
1.2k
単位正方形の射影変換の変換係数
単位正方形からの有理多項式での射影変換における係数の導出
Takashi Imagire
August 31, 2020
Tweet
Share
More Decks by Takashi Imagire
See All by Takashi Imagire
CG学習向けの高校数学+α
imagire
12
9.2k
心理的安全性って結局何なんだろう
imagire
20
14k
Other Decks in Science
See All in Science
Iniciativas independentes de divulgação científica: o caso do Movimento #CiteMulheresNegras
taisso
0
620
テンソル分解を用いた教師なし学習による変数選択法のシングルセルマルチオミックスデータ解析への応用
tagtag
1
110
山形とさくらんぼに関するレクチャー(YG-900)
07jp27
1
240
深層学習を利用して 大豆の外部欠陥を判別した研究事例の紹介
kentaitakura
0
260
HAS Dark Site Orientation
astronomyhouston
0
5.5k
Celebrate UTIG: Staff and Student Awards 2024
utig
0
530
ABEMAの効果検証事例〜効果の異質性を考える〜
s1ok69oo
4
2.2k
butterfly_effect/butterfly_effect_in-house
florets1
1
130
Online Feedback Optimization
floriandoerfler
0
710
重複排除・高速バックアップ・ランサムウェア対策 三拍子そろったExaGrid × Veeam連携セミナー
climbteam
0
150
FOGBoston2024
lcolladotor
0
130
Analysis-Ready Cloud-Optimized Data for your community and the entire world with Pangeo-Forge
jbusecke
0
120
Featured
See All Featured
Intergalactic Javascript Robots from Outer Space
tanoku
270
27k
Unsuck your backbone
ammeep
669
57k
Statistics for Hackers
jakevdp
797
220k
Adopting Sorbet at Scale
ufuk
74
9.1k
Building a Modern Day E-commerce SEO Strategy
aleyda
38
7k
Writing Fast Ruby
sferik
628
61k
How to train your dragon (web standard)
notwaldorf
89
5.8k
Chrome DevTools: State of the Union 2024 - Debugging React & Beyond
addyosmani
3
230
Docker and Python
trallard
43
3.2k
Keith and Marios Guide to Fast Websites
keithpitt
410
22k
A Philosophy of Restraint
colly
203
16k
個人開発の失敗を避けるイケてる考え方 / tips for indie hackers
panda_program
98
18k
Transcript
単位正方形の射影変換の 変換係数 2020/8/31 今給黎 隆
アジェンダ • 背景 • テクスチャ座標から位置座標 • 位置座標からテクスチャ座標
アジェンダ • 背景 • テクスチャ座標から位置座標 • 位置座標からテクスチャ座標
背景 • 四角形を3次元空間に配置すると、ひしゃげた形状に見える。 逆に言えば、ひしゃげた四角形の形状から奥行を含めた3次元 空間の配置を推測することができる • 本資料では、単位正方形と一般的な配置の四角形の対応付けを 行う行列の具体的な値を導出していく • なお、線形の有理多項式の範囲での変換(射影変換)を取り扱う
0,0 1,1 00 , 00 11 , 11 10 , 10 01 , 01 = + + + ℎ + 1 = + + + ℎ + 1 ここで、スケーリングを一意に定めるため 分母の定数の項を1と置いた
アジェンダ • 背景 • テクスチャ座標から位置座標 • 位置座標からテクスチャ座標
テクスチャ座標から位置座標 • 四角形を再分割して表示する場合を考える。四角形の頂点の変 換が与えられた際に、パースを考慮して四角形を分割して表示 していく。この場合、テクスチャ座標を等間隔に分割して、各 テクスチャ座標から、位置を求める処理を行うので、テクス チャ座標から位置座標への変換を求める • 射影変換のaからhの8つの定数を求めていく。自由度は8つの為、 4点の2次元座標の対応がわかれば、定数を求めることができる
0,0 1,1 00 , 00 11 , 11 10 , 10 01 , 01 = + + + ℎ + 1 = + + + ℎ + 1
行列形式での定式化 • 先ほどの射影変換を行列で表記する • 有理化の処理を統一的に記述するために次のように表記する • この問題は一般的には下記の行列方程式をa~hについて解けばよい ′ ′ ′
= ℎ 1 1 ′ = ′ ′ ′ = ′ ′ ′′ ′′ ′ = ℎ 1 1 0 ′0 1 ′1 2 ′2 3 ′3 0 ′0 1 ′1 2 ′2 3 ′3 ′0 ′1 ′2 ′3 = ℎ 1 0 1 2 3 0 1 2 3 1 1 1 1
本資料での問題の具体化 • しかしながら、先の行列方程式は、非正方行列の方程式であり、 明示的に解くのが難しい。 • 今回は、下の単位正方形を異なる四角形に変換する問題とする 0,0 1,1 00 ,
00 11 , 11 10 , 10 01 , 01 0,0 → 00 , 00 1,0 → 10 , 10 0,1 → 01 , 01 1,1 → 11 , 11 00 ′00 00 ′00 ′00 = 1 10 ′10 10 ′10 ′10 = + + + 1 01 ′01 01 ′01 ′01 = + + ℎ + 1 11 ′11 11 ′11 ′11 = + + + + + ℎ + 1 ′ ′ ′ = ℎ 1 1
係数、c, f • cとfは、原点の変換から直接求めることができる 0,0 → 00 , 00 00
′00 00 ′00 ′00 = 1 = 00 , = 00 ′00 = 1
W座標の関係式 • 求めた c とfを他の座標の対応関係に代入する • 前の2式の和が3つ目の式になるので、次の関係式が得られる • これをwを列ベクトルとして式を整理すると、下記になる •
逆行列を求めれば、w座標を求めることができる 10 ′10 − 00 10 ′10 − 00 ′10 − 1 = , 01 ′01 − 00 01 ′01 − 00 ′01 − 1 = ℎ , 11 ′11 − 00 11 ′11 − 00 ′11 − 1 = + + + ℎ 11 ′11 − 00 11 ′11 − 00 ′11 − 1 = + + + ℎ = 10 ′10 + 01 ′01 − 200 10 ′10 + 01 ′01 − 200 ′10 + ′01 − 2 11 11 1 ′ 11 = 10 01 −00 10 01 −00 1 1 −1 ′10 ′01 1 ′10 ′01 1 = 10 01 −00 10 01 −00 1 1 −1 −1 11 11 1 ′ 11 11 ′11 11 ′11 ′11 = 10 ′10 + 01 ′01 − 00 10 ′10 + 01 ′01 − 00 ′10 + ′01 − 1
10 01 −00 10 01 −00 1 1 −1 1
0 0 0 1 0 0 0 1 = 10 01 00 10 01 00 1 1 1 1 0 0 0 1 0 0 0 −1 = 10 − 00 01 − 00 00 10 − 00 01 − 00 00 0 0 1 1 0 0 0 1 0 1 1 −1 = 1 01 − 00 00 10−00 10−00 01 − 00 00 0 0 1 1 10−00 0 0 0 1 0 1 10−00 1 −1 = 1 0 0 10−00 10−00 01 − 00 − 10−00 10−00 (01 − 00 ) 00 − 10−00 10−00 00 0 0 1 1 10−00 − 01−00 10−00 − 00 10−00 0 1 0 1 10−00 1 − 01−00 10−00 −1 − 00 10−00 = 1 0 0 10−00 10−00 ∆ 10−00 0010−1000 10−00 0 0 1 1 10−00 − 01−00 10−00 − 00 10−00 0 1 0 1 10−00 10−01 10−00 − 10 10−00 ∆= 01 10 − 10 01 + 00 (01 − 10 ) + (10 − 01 )00 = 1 0 0 10 − 00 10 − 00 1 00 10 − 10 00 10 − 00 0 0 1 1 10 − 00 − 01 − 00 ∆ − 00 10 − 00 0 10 − 00 ∆ 0 1 10 − 00 10 − 01 ∆ − 10 10 − 00 吐き出し法で逆行列を求めていく × (−1) −1 −1 ÷ (10 − 00 ) −(01 − 00 ) −00 整頓 ÷ ∆ 10 − 00
1 0 0 10 − 00 10 − 00 1
00 10 − 10 00 10 − 00 0 0 1 1 10 − 00 − 01 − 00 ∆ − 00 10 − 00 0 10 − 00 ∆ 0 1 10 − 00 10 − 01 ∆ − 10 10 − 00 1 0 0 0 1 0 0 0 1 01 − 00 ∆ − 01 − 00 ∆ 01 00 − 00 01 ∆ − 10 − 00 ∆ 10 − 00 ∆ 10 00 − 00 10 ∆ 01 − 10 ∆ 10 − 01 ∆ 01 10 − 10 01 ∆ = 1 0 0 0 1 0 0 0 1 01 ∆ − 01 ∆ 01 00 − 00 01 ∆ − 10 ∆ 10 ∆ 10 00 − 00 10 ∆ ∆ − ∆ 01 10 − 10 01 ∆ 1 0 0 0 1 0 0 0 1 1 10 − 00 + 01 − 00 ∆ 10 − 00 10 − 00 − 01 − 00 ∆ − 00 10 − 00 + 01 − 00 ∆ 00 10 − 10 00 10 − 00 − 10 − 00 ∆ 10 − 00 ∆ − 00 10 − 10 00 ∆ 1 10 − 00 − 10 − 01 ∆ 10 − 00 10 − 00 10 − 01 ∆ − 10 10 − 00 − 10 − 01 ∆ 00 10 − 10 00 10 − 00 − 00 10 − 10 00 10 − 00 − 10 − 00 10 − 00 ∆= 01 10 − 10 01 + 00 (01 − 10 ) + (10 − 01 )00 ∆ + 01 − 00 10 − 00 = 01 10 − 10 01 + 00 01 − 10 + 10 − 01 00 + 01 − 00 10 − 00 = 01 10 − 10 01 + 00 01 − 10 + 10 − 01 00 + 01 10 − 01 00 − 00 10 + 00 00 = (10 − 00 )(01 − 00 ) −00 ∆ + 01 − 00 00 10 − 10 00 = −00 01 10 + 00 10 01 − 00 00 01 − 10 − 00 10 − 01 00 + 01 − 00 00 10 − 10 00 = −00 01 10 + 00 10 01 − 00 00 01 − 10 − 00 10 − 01 00 + 01 00 10 − 01 10 00 − 00 00 10 + 00 10 00 = 10 − 00 01 00 − (10 − 00 )01 00 = (10 − 00 )(01 00 − 00 01 ) −10 ∆ − 10 − 01 00 10 − 10 00 = −10 01 10 + 10 10 01 − 10 00 01 − 10 − 10 10 − 01 00 − 10 − 01 00 10 − 10 00 = −10 01 10 + 10 10 01 − 10 00 01 − 10 − 10 10 − 01 00 − 10 00 10 + 10 10 00 + 01 00 10 − 01 10 00 = 00 − 10 10 01 + (10 − 00 )10 01 = (10 − 00 )(01 10 − 10 01 ) ∆ − 10 − 01 10 − 00 = 01 10 − 10 01 + 00 01 − 10 + 10 − 01 00 − 10 − 01 10 − 00 = 01 10 − 10 01 + 00 01 − 10 + 10 − 01 00 − 10 10 + 10 00 + 01 10 − 01 00 = (10 − 00 )(01 − 10 ) こ れ ら 結 果 を 代 入 = − 00 = − 00 = 01 − 10 = 01 − 10 ここで下記を導入した
′10 ′01 1 = 01 ∆ − 01 ∆ 01
00 − 00 01 ∆ − 10 ∆ 10 ∆ 10 00 − 00 10 ∆ ∆ − ∆ 01 10 − 10 01 ∆ 11 11 1 ′ 11 1 = ∆ − ∆ 01 10 − 10 01 ∆ 11 11 1 ′ 11 ∆= 01 10 − 10 01 + 00 01 − 10 + 10 − 01 00 = 01 10 − 10 01 + 00 01 − 10 + 00 10 − 01 + 00 00 − 00 00 = 01 − 00 10 − 00 − 10 − 00 01 − 00 = 01 10 − 10 01 3行目を抽出する ′ 11 = ∆ 01 − 10 11 + 10 − 01 11 + 01 10 − 10 01 = ∆ 01 10 − 10 01 = ∆ Ξ この結果を1,2行目に代入すると ′ 10 ′ 01 = 01 −01 01 00 − 00 01 −10 10 10 00 − 00 10 11 11 1 1 Ξ = 1 Ξ +01 11 − 01 11 + 01 00 − 00 01 −10 11 + 10 11 + 10 00 − 00 10 = 1 Ξ +01 11 − 01 11 −10 11 + 10 11 W座標値の導出 = 11 − = 11 − 但し、 Ξ = 01 10 − 10 01
g, h • 元の式 より、 ′を具体的な値として代入する 10 ′10 − 00
10 ′10 − 00 ′10 − 1 = , 01 ′01 − 00 01 ′01 − 00 ′01 − 1 = ℎ , ℎ = ′10 − 1 ′01 − 1 = 1 Ξ +01 11 − 01 11 −10 11 + 10 11 − 1 +01 11 − 01 11 − 01 10 − 10 01 = + −01 + 11 11 − −01 + 11 11 − 01 11 − 10 + 11 − 10 01 = +10 01 − 10 01 −10 11 + 10 11 − 01 10 − 10 01 = − −10 + 11 11 + −10 + 11 11 − 11 − 01 10 + 10 11 − 01 = −01 10 + 01 10 ℎ = 1 Ξ +10 01 − 10 01 −01 10 + 01 10
a,b,c,d • 残りの係数も関係式から具体的に求めることができる = 10 ′ 10 − 00 10
′ 10 − 00 , = 01 ′ 01 − 00 01 ′ 01 − 00 , 10 + 01 − 00 11 − 01 − 00 11 + 01 00 − 00 01 − 00 01 10 − 10 01 + 11 10 − 01 + 01 − 10 11 = 10 − 00 (11 01 − 01 11 ) + 11 − 01 (00 10 − 10 00 ) 10 + 01 − 00 11 − 01 − 00 11 + 01 00 − 00 01 − 00 01 10 − 10 01 + 11 10 − 01 + 01 − 10 11 = + 01 − 00 10 11 − 01 − 00 10 11 + 01 10 00 − 00 10 01 − 01 00 10 + 10 00 01 − 00 11 10 − 01 − 00 01 − 10 11 = 11 − 01 00 10 − 00 10 + (10 − 00 )(01 11 − 11 01 ) 01 − 10 − 00 11 + 10 − 00 11 + 10 00 − 00 10 − 00 01 10 − 10 01 + 11 10 − 01 + 01 − 10 11 = − 10 − 00 01 11 + 10 − 00 01 11 + 10 01 00 − 00 01 10 − 00 01 10 + 00 10 01 − 11 00 10 − 01 − 01 − 10 00 11 = 11 − 10 (00 01 − 00 01 ) + (01 − 00 )(11 10 − 11 10 ) 01 − 10 − 00 11 + 10 − 00 11 + 10 00 − 00 10 − 00 01 10 − 10 01 + 11 10 − 01 + 01 − 10 11 = 01 − 00 11 10 − 10 11 + 11 − 10 00 01 − 01 00 = 1 Ξ 10 (11 01 − 01 11 ) + 01 (00 10 − 10 00 ) 01 00 10 − 00 10 + 10 (01 11 − 11 01 ) 10 (00 01 − 00 01 ) + 01 (11 10 − 11 10 ) 01 11 10 − 10 11 + 10 00 01 − 01 00 ,
• 有理多項式の射影変換 において、単位正方形とその頂点の対応が で与えられる場合、係数a,b,…,hは下記となる ℎ = 1 Ξ +10 01
− 10 01 −01 10 + 01 10 = 00 , = 00 , = 1 Ξ 10 (11 01 − 01 11 ) + 01 (00 10 − 10 00 ) 01 00 10 − 00 10 + 10 (01 11 − 11 01 ) 10 (00 01 − 00 01 ) + 01 (11 10 − 11 10 ) 01 11 10 − 10 11 + 10 00 01 − 01 00 , まとめ 00 , 00 , 10 , 10 , 01 , 01 , 11 , 11 = + + + ℎ + 1 = + + + ℎ + 1 = 11 − = 11 − Ξ = 01 10 − 10 01 = − 00 = − 00 但し、
アジェンダ • 背景 • テクスチャ座標から位置座標 • 位置座標からテクスチャ座標
位置座標からテクスチャ座標 • ソフトウェアでレンダリングを行う際は、位置座標からテクス チャ座標を求めてサンプリングを行わなければならない。 • 個々では、先ほどと反対に、位置座標からのテクスチャ座標の 導出を行う • 射影変換の逆変換も射影変換になるので、同じパラメータの表 記を用いて、この後の計算を進める
• なお、先ほどの変換行列の逆行列を 直接求めても同じ結果が得られる (はずである…) 00 , 00 11 , 11 10 , 10 01 , 01 0,0 1,1 = + + + ℎ + 1 = + + + ℎ + 1
頂点の変換 • 今回の射影変換を行列で表記すると、 次のように書ける • 四角形の4隅の頂点を変換する式は、 次のように書ける 1 = ℎ
1 0 0 1 = ℎ 1 00 00 00 00 00 1 1 1 = ℎ 1 11 11 11 11 11 1 0 1 = ℎ 1 10 10 10 10 10 0 1 1 = ℎ 1 01 01 01 01 01 00 , 00 11 , 11 10 , 10 01 , 01 0,0 1,1
= − 00 = − 00 0 0 1 =
ℎ 1 0 0 00 1 1 1 = ℎ 1 11 11 11 11 11 1 0 1 = ℎ 1 10 10 10 10 10 0 1 1 = ℎ 1 01 01 01 01 01 原点を合わせる • 今後の計算を簡単にするために、 を原点において考える • この相対座標に関する射影変換として再定式化を行うと、新た な射影変化は下記で書ける • 元の変換から導出した式ではないため、a~hは前頁の値と一致しない 00 , 00 (1)
0 0 1 = ℎ 1 0 0 00 =
00 00 00 00 = 1 1 1 1 = 0 0 ℎ 1 11 11 11 11 11 1 0 1 = 0 0 ℎ 1 10 10 10 10 10 0 1 1 = 0 0 ℎ 1 01 01 01 01 01 (1)式の(0,0)に関する変換の右辺を計算する この式から、c, f, が計算できる = 0 = 0 (2) 00 (2)式を(1)の他の式に代入すると、次の式が得られる (3) c, f の導出
1 1 1 = 0 0 ℎ 1 11 11
11 11 11 1 0 1 = 0 0 ℎ 1 10 10 10 10 10 0 1 1 = 0 0 ℎ 1 01 01 01 01 01 1 1 1 = 10 10 10 10 10 01 01 01 01 01 11 11 11 11 11 ℎ 1 1 0 1 = 10 10 10 10 01 01 01 01 11 11 11 11 0 1 1 = 10 10 10 10 01 01 01 01 11 11 11 11 10 −1 01 −1 11 −1 = 10 10 1 01 01 1 11 11 1 ℎ 1 10 −1 0 11 −1 = 10 10 01 01 11 11 0 01 −1 11 −1 = 10 10 01 01 11 11 W座標のベクトル化 • (3)式を行ごとにまとめる (3)式 行ごとにまとめる W座標を左辺に移行する(各行のw座標値で両辺を割る) (4)
10 −1 0 11 −1 = 10 10 01 01
11 11 0 01 −1 11 −1 = 10 10 01 01 11 11 = − 01 01 = − 10 10 = 10 − 01 01 10 −1 10 −1 = 01 10 01 − 01 10 10 −1 = 01 ∆ 10 −1 = 01 − 10 10 01 −1 01 −1 = − 10 10 01 − 01 10 10 −1 = − 10 ∆ 01 −1 11 −1 = 11 − 01 01 11 = 11 − 01 01 11 01 ∆ 10 −1 = 11 01 − 01 11 ∆ 10 −1 11 −1 = 11 − 10 10 11 = 11 − 10 10 11 −10 ∆ 01 −1 = − 11 10 − 10 11 ∆ 01 −1 ∆= 10 01 − 01 10 (4)式の左辺が0の行から、パラメータの関係式を導出する (4)式 2行目と1行目から、a,b とd,eの関係式を得る (5) (4)式の一つ目の第1行と二つ目の第2行に(5)式を代入すると、a, d とw座標の関係が得られる (6) (7) ここで、表記を簡潔にするためにΔを導入した。 (4)式の一つ目と二つ目の第3行目に(5)式を代入すると、 11 −1に関する2つの式が得られる (8)
• (8)式を一部書き換える • (1,1)に対応する座標への相対ベクトルを導入する • 下記の関係式 • を用いて(8)式を書き換えると、次のように書き換えらえる 11 01
− 01 11 = 11 01 − 01 01 + 01 01 − 01 11 = 01 01 − 01 01 11 10 − 10 11 = 11 10 − 10 10 + 10 10 − 10 11 = 10 10 − 10 10 11 −1 = 11 01 − 01 11 ∆ 10 −1 = 01 01 − 01 01 ∆ 10 −1 11 −1 = − 11 10 − 10 11 ∆ 01 −1 = − 10 10 − 10 10 ∆ 01 −1 = 11 − = 11 − (1,1)に対応する座標からの相対座標表記 (9) (10) (11)
• (4)式の定数項を移行してgとhに関する式を導出する • (12)式を1,2行目と3行目に分ける • (13)式をgとhについて解くと、次の形に変形できる 10 −1 01 −1
11 −1 = 10 10 1 01 01 1 11 11 1 ℎ 1 10 −1 − 1 01 −1 − 1 11 −1 − 1 = 10 10 01 01 11 11 ℎ ℎ = 10 10 01 01 −1 10 −1 − 1 01 −1 − 1 = 1 10 01 − 01 10 01 −10 −01 10 10 −1 − 1 01 −1 − 1 = 1 ∆ 01 −10 −01 10 10 −1 − 1 01 −1 − 1 10 −1 − 1 01 −1 − 1 = 10 10 01 01 ℎ 11 −1 = 11 + 11 ℎ + 1 g, h を導出する式の構築 (12) (13) (14) (15)
11 を導出する式 • (14)式に(15)式を代入する 11 −1 = 11 + 11
ℎ + 1 = 11 11 ℎ + 1 = 11 11 1 ∆ 01 −10 −01 10 10 −1 − 1 01 −1 − 1 + 1 = 1 ∆ 11 01 − 01 11 10 11 − 11 10 10 −1 − 1 01 −1 − 1 + 1 = 1 ∆ 01 01 − 01 01 10 10 − 10 10 10 −1 − 1 01 −1 − 1 + 1 (14)式 (15)式を代入 (10)式を利用 (16)
11 の導出 • (16)式に(11)式(を01 −1, 10 −1について解いた式)を代入する • 上記式をまとめ直すと、次の結果が得らえる 11
−1 = 1 ∆ 01 01 − 01 01 10 10 − 10 10 01 01 − 01 01 ∆ −1 11 −1 − 1 − 10 10 − 10 10 ∆ −1 11 −1 − 1 + 1 = 01 01 − 01 01 01 01 − 01 01 − 10 10 − 10 10 10 10 − 10 10 11 −1 − 01 01 − 01 01 ∆ − 10 10 − 10 10 ∆ + 1 11 −1 = 01 01 − 01 01 ∆ − 10 10 − 10 10 ∆ − 1 -1 1 (17)
分子の計算 • (17)式の分子を変形する • ここで、対角頂点への差分ベクトルを導入した • (18)式を(17)式に代入すると、 11 の明示的な形が得られる 01
01 − 01 01 − 10 10 − 10 10 − ∆ = 01 01 − 01 01 − 10 10 + 10 10 − 10 01 + 01 10 = 11 − 01 01 − 01 11 − 01 − 10 10 + 10 10 − 10 01 + 01 10 = 10 01 − 01 10 − 10 10 + 10 10 = 10 − 10 = 01 − 10 = 01 − 10 11 −1 = 10 − 10 ∆ (18) (19) (20)
10 、 01 の導出 • (11)式(を01 −1, 10 −1について解いた式)に(20)式を代入する •
式を整理すると、次の解が得られる 10 −1 = + 01 01 − 01 01 ∆ −1 11 −1 = ∆ 01 01 − 01 01 1 ∆ 10 − 10 ) 01 −1 = − 10 10 − 10 10 ∆ −1 11 −1 = −∆ 10 10 − 10 10 1 ∆ 10 − 10 ) 10 −1 = + 10 − 10 01 01 − 01 01 01 −1 = − 10 − 10 10 10 − 10 10 (21)
g, hの導出 • g,h を求めるために、愚痴の量を計算する 10 −1 − 1 =
+ 10 − 10 01 01 − 01 01 − 1 = 10 − 10 − 01 01 + 01 01 01 01 − 01 01 01 −1 − 1 = − 10 − 10 10 10 − 10 10 − 1 = −10 + 10 − 10 10 + 10 10 10 10 − 10 10 10 − 10 − 01 01 + 01 01 = 11 − 10 01 − 10 − 01 − 10 11 − 10 − 11 − 01 01 + 01 11 − 01 = 11 − 10 01 − 11 − 10 10 − 01 11 − 10 + 10 11 − 10 − 11 − 01 01 + 01 11 − 01 = −10 01 − 11 10 + 10 01 + 10 11 = 10 01 − 10 10 10 −1 − 1 = 10 01 − 10 10 01 01 − 01 01 −10 + 10 − 10 10 + 10 10 = −10 01 − 10 + 10 + 01 − 10 + 10 10 = −10 01 + 01 10 = 10 01 − 10 10 01 −1 − 1 = − 10 01 − 01 10 10 10 − 10 10 (22)
• (15)式に(22)式を代入する • 行列を適応する ℎ = 1 ∆ 01 −10
−01 10 10 −1 − 1 01 −1 − 1 = 1 ∆ 01 −10 −01 10 + 10 01 − 10 10 01 01 − 01 01 − 10 01 − 01 10 10 10 − 10 10 = 1 ∆ +01 10 01 − 01 10 01 01 − 01 01 − 10 01 10 − 01 10 10 10 − 10 10 ℎ = 1 ∆ −01 10 01 − 01 10 01 01 − 01 01 + 10 01 10 − 01 10 10 10 − 10 10 g, hの導出 (23)
• (6)式に、(21)式を適応する • (5)式に、(24)式を代入する = + 01 ∆ 10 −1
= 01 ∆ 10 − 10 01 01 − 01 01 = − 10 ∆ 01 −1 = 10 ∆ 10 − 10 10 10 − 10 10 = − 01 01 = − 01 ∆ 10 − 10 01 01 − 01 01 = − 10 10 = − 10 ∆ 01 − 01 10 10 − 10 10 a, b, d,e の導出 (24) (25)
• 有理多項式の射影変換 において、単位正方形とその頂点の対応が 00 , 00 , 10 , 10
, 01 , 01 , 11 , 11 で与えられる場合、係数a,b,…,hと各頂点でのw座標は下記となる まとめ 1 = 0 0 ℎ 1 = 0 0 ℎ 1 ( − 00 ) − 00 = −00 − 00 −00 − 00 ℎ 1 − 00 − ℎ00 = − 00 = − 00 = 1 + − 00 + ℎ( − 00 ) −1 = 11 − = 11 − = 1 ∆ +01 10 01 − 01 10 01 01 − 01 01 − 10 01 10 − 01 10 10 10 − 10 10 ℎ = 1 ∆ −01 10 01 − 01 10 01 01 − 01 01 + 10 01 10 − 01 10 10 10 − 10 10 ∆= 10 01 − 01 10 = − 01 ∆ 10 − 10 01 01 − 01 01 = − 10 ∆ 10 − 10 10 10 − 10 10 = 01 ∆ 10 − 10 01 01 − 01 01 = 10 ∆ 10 − 10 10 10 − 10 10 = 01 − 10 = 01 − 10 但し、