Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Decentralized Federated Learning with Blockchain
Search
Sponsored
·
Ship Features Fearlessly
Turn features on and off without deploys. Used by thousands of Ruby developers.
→
Yoshio Sugiyama
July 14, 2022
Technology
0
1.3k
Decentralized Federated Learning with Blockchain
非中央集権な連合学習について
Yoshio Sugiyama
July 14, 2022
Tweet
Share
More Decks by Yoshio Sugiyama
See All by Yoshio Sugiyama
AIの本格活用を加速させるPrivate LLM
imokuri
0
220
Other Decks in Technology
See All in Technology
SRE Enabling戦記 - 急成長する組織にSREを浸透させる戦いの歴史
markie1009
0
130
SREチームをどう作り、どう育てるか ― Findy横断SREのマネジメント
rvirus0817
0
320
配列に見る bash と zsh の違い
kazzpapa3
3
160
マーケットプレイス版Oracle WebCenter Content For OCI
oracle4engineer
PRO
5
1.6k
生成AIを活用した音声文字起こしシステムの2つの構築パターンについて
miu_crescent
PRO
3
210
Greatest Disaster Hits in Web Performance
guaca
0
270
2026年、サーバーレスの現在地 -「制約と戦う技術」から「当たり前の実行基盤」へ- /serverless2026
slsops
2
260
We Built for Predictability; The Workloads Didn’t Care
stahnma
0
140
量子クラウドサービスの裏側 〜Deep Dive into OQTOPUS〜
oqtopus
0
130
Agent Skils
dip_tech
PRO
0
120
Context Engineeringが企業で不可欠になる理由
hirosatogamo
PRO
3
620
SREが向き合う大規模リアーキテクチャ 〜信頼性とアジリティの両立〜
zepprix
0
460
Featured
See All Featured
Practical Orchestrator
shlominoach
191
11k
svc-hook: hooking system calls on ARM64 by binary rewriting
retrage
1
100
DevOps and Value Stream Thinking: Enabling flow, efficiency and business value
helenjbeal
1
100
The Pragmatic Product Professional
lauravandoore
37
7.1k
Lightning talk: Run Django tests with GitHub Actions
sabderemane
0
120
The Invisible Side of Design
smashingmag
302
51k
Leading Effective Engineering Teams in the AI Era
addyosmani
9
1.6k
Bioeconomy Workshop: Dr. Julius Ecuru, Opportunities for a Bioeconomy in West Africa
akademiya2063
PRO
1
54
Dominate Local Search Results - an insider guide to GBP, reviews, and Local SEO
greggifford
PRO
0
78
Sam Torres - BigQuery for SEOs
techseoconnect
PRO
0
190
世界の人気アプリ100個を分析して見えたペイウォール設計の心得
akihiro_kokubo
PRO
66
37k
It's Worth the Effort
3n
188
29k
Transcript
杉山 禎夫 ディープラーニングで実現するイノベーション 非中央集権の連合学習
自己紹介
本日のお話 非中央集権の連合学習とは 連合学習の懸念とは 連合学習とは
自社だけだと足りないので、 他社と一緒にできないだろうか。 プライバシー保護の観点から 容易に移動できません。 地理的に離れた場所にあります。 もし、学習に使いたいデータが、、
各拠点で学習した結果を 集めてモデルを更新 • よさそう • 連合学習 といいます データを集めて学習 • 一箇所に集めるの大変
• プライバシー保護に懸念 各拠点で個別に学習 • データを活かせていない • 精度に課題 こんなアプローチがありそうです
リーダーがモデルを 用意 モデルをエッジに配 布 エッジで学習 学習結果をリーダー に集約 リーダーが学習結果 をマージ マージした学習結果
でモデルを更新 を繰り返します。 連合学習とは 学習結果をリー ダーに返却 リーダーのモデル をエッジに配布 エッジで学習 エッジで学習 エッジで学習 学習結果を マージして、 モデルを更新
• 学習結果から学習 データを推測 • 恣意的なモデルの マージ • 最終的なモデルは リーダーが所持 •
リーダーが 単一障害点 連合学習の懸念 中央集権的なリーダーの存在 学習結果をリー ダーに返却 リーダーのモデル をエッジに配布 エッジで学習 エッジで学習 エッジで学習 学習結果を マージして、 モデルを更新
連合学習の懸念
エッジで学習 非中央集権の連合学習に必要なもの エッジで学習 エッジで学習 エッジで学習 考えられる要件 • エッジ間を で接続 •
学習に参加しているエッジの把握 • マージ担当者の動的な選択 • 学習状況の記録、共有 • 最終的なモデルはエッジに の特徴 • データは各システムで保持 • リーダー不在 • 改ざんが非常に困難 • 記録は消せない
ディープラーニングに使用したいデータが、地理的に離れた場所にある、プライバシー保 護の観点からデータの共有が困難であるときなどに、連合学習というアプローチがありま す。 一般的な連合学習は、プライバシーの保護などに懸念があります。 連合学習を非中央集権 とすることで、連合学習の懸念が解消できます。 非中央集権の連合学習の実現には学習状況の共有方法などクリアすべき課題があります。 非中央集権の連合学習の課題の解決には、 が有効と考えられています。 まとめ
コミュニティ版 無料 と エンタープライズ版 があります 含むすべてのコンポー ネントはコンテナで動きます や のコードに 入れるだけで使えます
宣伝 エッジで学習 を使った 非中央集権 の連合学習のソリューションです。
None