Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Decentralized Federated Learning with Blockchain
Search
Yoshio Sugiyama
July 14, 2022
Technology
0
1.3k
Decentralized Federated Learning with Blockchain
非中央集権な連合学習について
Yoshio Sugiyama
July 14, 2022
Tweet
Share
More Decks by Yoshio Sugiyama
See All by Yoshio Sugiyama
AIの本格活用を加速させるPrivate LLM
imokuri
0
210
Other Decks in Technology
See All in Technology
2025年の医用画像AI/AI×medical_imaging_in_2025_generated_by_AI
tdys13
0
320
BidiAgent と Nova 2 Sonic から考える音声 AI について
yama3133
2
150
あの夜、私たちは「人間」に戻った。 ── 災害ユートピア、贈与、そしてアジャイルの再構築 / 20260108 Hiromitsu Akiba
shift_evolve
PRO
0
500
_第4回__AIxIoTビジネス共創ラボ紹介資料_20251203.pdf
iotcomjpadmin
0
180
Introduction to Sansan for Engineers / エンジニア向け会社紹介
sansan33
PRO
5
60k
モノタロウ x クリエーションラインで実現する チームトポロジーにおける プラットフォームチーム・ ストリームアラインドチームの 効果的なコラボレーション
creationline
0
590
1万人を変え日本を変える!!多層構造型ふりかえりの大規模組織変革 / 20260108 Kazuki Mori
shift_evolve
PRO
6
1k
kintone開発のプラットフォームエンジニアの紹介
cybozuinsideout
PRO
0
470
#22 CA × atmaCup 3rd 1st Place Solution
yumizu
1
130
Redshift認可、アップデートでどう変わった?
handy
1
130
業務の煩悩を祓うAI活用術108選 / AI 108 Usages
smartbank
9
20k
国井さんにPurview の話を聞く会
sophiakunii
1
350
Featured
See All Featured
Build your cross-platform service in a week with App Engine
jlugia
234
18k
The SEO Collaboration Effect
kristinabergwall1
0
320
How to Think Like a Performance Engineer
csswizardry
28
2.4k
Tell your own story through comics
letsgokoyo
0
780
The Organizational Zoo: Understanding Human Behavior Agility Through Metaphoric Constructive Conversations (based on the works of Arthur Shelley, Ph.D)
kimpetersen
PRO
0
210
CSS Pre-Processors: Stylus, Less & Sass
bermonpainter
359
30k
Easily Structure & Communicate Ideas using Wireframe
afnizarnur
194
17k
Leo the Paperboy
mayatellez
1
1.3k
Unsuck your backbone
ammeep
671
58k
Technical Leadership for Architectural Decision Making
baasie
0
200
Highjacked: Video Game Concept Design
rkendrick25
PRO
1
260
Lightning Talk: Beautiful Slides for Beginners
inesmontani
PRO
1
420
Transcript
杉山 禎夫 ディープラーニングで実現するイノベーション 非中央集権の連合学習
自己紹介
本日のお話 非中央集権の連合学習とは 連合学習の懸念とは 連合学習とは
自社だけだと足りないので、 他社と一緒にできないだろうか。 プライバシー保護の観点から 容易に移動できません。 地理的に離れた場所にあります。 もし、学習に使いたいデータが、、
各拠点で学習した結果を 集めてモデルを更新 • よさそう • 連合学習 といいます データを集めて学習 • 一箇所に集めるの大変
• プライバシー保護に懸念 各拠点で個別に学習 • データを活かせていない • 精度に課題 こんなアプローチがありそうです
リーダーがモデルを 用意 モデルをエッジに配 布 エッジで学習 学習結果をリーダー に集約 リーダーが学習結果 をマージ マージした学習結果
でモデルを更新 を繰り返します。 連合学習とは 学習結果をリー ダーに返却 リーダーのモデル をエッジに配布 エッジで学習 エッジで学習 エッジで学習 学習結果を マージして、 モデルを更新
• 学習結果から学習 データを推測 • 恣意的なモデルの マージ • 最終的なモデルは リーダーが所持 •
リーダーが 単一障害点 連合学習の懸念 中央集権的なリーダーの存在 学習結果をリー ダーに返却 リーダーのモデル をエッジに配布 エッジで学習 エッジで学習 エッジで学習 学習結果を マージして、 モデルを更新
連合学習の懸念
エッジで学習 非中央集権の連合学習に必要なもの エッジで学習 エッジで学習 エッジで学習 考えられる要件 • エッジ間を で接続 •
学習に参加しているエッジの把握 • マージ担当者の動的な選択 • 学習状況の記録、共有 • 最終的なモデルはエッジに の特徴 • データは各システムで保持 • リーダー不在 • 改ざんが非常に困難 • 記録は消せない
ディープラーニングに使用したいデータが、地理的に離れた場所にある、プライバシー保 護の観点からデータの共有が困難であるときなどに、連合学習というアプローチがありま す。 一般的な連合学習は、プライバシーの保護などに懸念があります。 連合学習を非中央集権 とすることで、連合学習の懸念が解消できます。 非中央集権の連合学習の実現には学習状況の共有方法などクリアすべき課題があります。 非中央集権の連合学習の課題の解決には、 が有効と考えられています。 まとめ
コミュニティ版 無料 と エンタープライズ版 があります 含むすべてのコンポー ネントはコンテナで動きます や のコードに 入れるだけで使えます
宣伝 エッジで学習 を使った 非中央集権 の連合学習のソリューションです。
None