Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Decentralized Federated Learning with Blockchain
Search
Yoshio Sugiyama
July 14, 2022
Technology
0
1.2k
Decentralized Federated Learning with Blockchain
非中央集権な連合学習について
Yoshio Sugiyama
July 14, 2022
Tweet
Share
More Decks by Yoshio Sugiyama
See All by Yoshio Sugiyama
AIの本格活用を加速させるPrivate LLM
imokuri
0
130
Other Decks in Technology
See All in Technology
Nx × AI によるモノレポ活用 〜コードジェネレーター編〜
puku0x
0
720
マルチプロダクト×マルチテナントを支えるモジュラモノリスを中心としたアソビューのアーキテクチャ
disc99
1
600
Cloud WANの基礎から応用~少しだけDeep Dive~
masakiokuda
3
110
Claude Codeから我々が学ぶべきこと
oikon48
10
2.8k
Strands Agents & Bedrock AgentCoreを1分でおさらい
minorun365
PRO
8
370
AIエージェントを現場で使う / 2025.08.07 著者陣に聞く!現場で活用するためのAIエージェント実践入門(Findyランチセッション)
smiyawaki0820
7
1.2k
僕たちが「開発しやすさ」を求め 模索し続けたアーキテクチャ #アーキテクチャ勉強会_findy
bengo4com
0
2.5k
【新卒研修資料】数理最適化 / Mathematical Optimization
brainpadpr
28
13k
Delegate authentication and a lot more to Keycloak with OpenID Connect
ahus1
0
220
Amazon Q と『音楽』-ゲーム音楽もAmazonQで作成してみた感想-
senseofunity129
0
160
Claude CodeでKiroの仕様駆動開発を実現させるには...
gotalab555
3
1.1k
工業高校で学習したとあるエンジニアのキャリアの話
shirayanagiryuji
0
110
Featured
See All Featured
Optimizing for Happiness
mojombo
379
70k
A better future with KSS
kneath
239
17k
ReactJS: Keep Simple. Everything can be a component!
pedronauck
667
120k
Building Adaptive Systems
keathley
43
2.7k
Principles of Awesome APIs and How to Build Them.
keavy
126
17k
Dealing with People You Can't Stand - Big Design 2015
cassininazir
367
26k
The Success of Rails: Ensuring Growth for the Next 100 Years
eileencodes
46
7.6k
[RailsConf 2023 Opening Keynote] The Magic of Rails
eileencodes
30
9.6k
RailsConf & Balkan Ruby 2019: The Past, Present, and Future of Rails at GitHub
eileencodes
139
34k
Exploring the Power of Turbo Streams & Action Cable | RailsConf2023
kevinliebholz
34
6k
Build your cross-platform service in a week with App Engine
jlugia
231
18k
The Invisible Side of Design
smashingmag
301
51k
Transcript
杉山 禎夫 ディープラーニングで実現するイノベーション 非中央集権の連合学習
自己紹介
本日のお話 非中央集権の連合学習とは 連合学習の懸念とは 連合学習とは
自社だけだと足りないので、 他社と一緒にできないだろうか。 プライバシー保護の観点から 容易に移動できません。 地理的に離れた場所にあります。 もし、学習に使いたいデータが、、
各拠点で学習した結果を 集めてモデルを更新 • よさそう • 連合学習 といいます データを集めて学習 • 一箇所に集めるの大変
• プライバシー保護に懸念 各拠点で個別に学習 • データを活かせていない • 精度に課題 こんなアプローチがありそうです
リーダーがモデルを 用意 モデルをエッジに配 布 エッジで学習 学習結果をリーダー に集約 リーダーが学習結果 をマージ マージした学習結果
でモデルを更新 を繰り返します。 連合学習とは 学習結果をリー ダーに返却 リーダーのモデル をエッジに配布 エッジで学習 エッジで学習 エッジで学習 学習結果を マージして、 モデルを更新
• 学習結果から学習 データを推測 • 恣意的なモデルの マージ • 最終的なモデルは リーダーが所持 •
リーダーが 単一障害点 連合学習の懸念 中央集権的なリーダーの存在 学習結果をリー ダーに返却 リーダーのモデル をエッジに配布 エッジで学習 エッジで学習 エッジで学習 学習結果を マージして、 モデルを更新
連合学習の懸念
エッジで学習 非中央集権の連合学習に必要なもの エッジで学習 エッジで学習 エッジで学習 考えられる要件 • エッジ間を で接続 •
学習に参加しているエッジの把握 • マージ担当者の動的な選択 • 学習状況の記録、共有 • 最終的なモデルはエッジに の特徴 • データは各システムで保持 • リーダー不在 • 改ざんが非常に困難 • 記録は消せない
ディープラーニングに使用したいデータが、地理的に離れた場所にある、プライバシー保 護の観点からデータの共有が困難であるときなどに、連合学習というアプローチがありま す。 一般的な連合学習は、プライバシーの保護などに懸念があります。 連合学習を非中央集権 とすることで、連合学習の懸念が解消できます。 非中央集権の連合学習の実現には学習状況の共有方法などクリアすべき課題があります。 非中央集権の連合学習の課題の解決には、 が有効と考えられています。 まとめ
コミュニティ版 無料 と エンタープライズ版 があります 含むすべてのコンポー ネントはコンテナで動きます や のコードに 入れるだけで使えます
宣伝 エッジで学習 を使った 非中央集権 の連合学習のソリューションです。
None