Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
自己紹介スライド(2023/8)
Search
Ibuki Nakamura
August 27, 2023
Education
1
370
自己紹介スライド(2023/8)
2023年8月に研究室OB・OG会で使用したLT資料を自己紹介資料として流用しています
Ibuki Nakamura
August 27, 2023
Tweet
Share
More Decks by Ibuki Nakamura
See All by Ibuki Nakamura
たった1人から始めて深層学習によるニュース要約をプロダクトに実装した方法〜ファーストペンギンでやりきる力〜
inakam
1
3.2k
Other Decks in Education
See All in Education
SARA Annual Report 2024-25
sara2023
1
200
Tutorial: Foundations of Blind Source Separation and Its Advances in Spatial Self-Supervised Learning
yoshipon
1
140
2025年度春学期 統計学 第14回 分布についての仮説を検証する ー 仮説検定(1) (2025. 7. 10)
akiraasano
PRO
0
130
2025年度春学期 統計学 第11回 分布の「型」を考える ー 確率分布モデルと正規分布 (2025. 6. 19)
akiraasano
PRO
0
150
プレゼンテーション実践
takenawa
0
12k
マネジメント「される側」 こそ覚悟を決めろ
nao_randd
10
5.4k
日本の教育の未来 を考える テクノロジーは教育をどのように変えるのか
kzkmaeda
1
230
Padlet opetuksessa
matleenalaakso
4
14k
著作権と授業に関する出前講習会/dme-2025-05-01
gnutar
0
210
Pydantic(AI)とJSONの詳細解説
mickey_kubo
0
160
2025年度春学期 統計学 第13回 不確かな測定の不確かさを測る ー 不偏分散とt分布 (2025. 7. 3)
akiraasano
PRO
0
110
実務プログラム
takenawa
0
12k
Featured
See All Featured
Done Done
chrislema
185
16k
The Web Performance Landscape in 2024 [PerfNow 2024]
tammyeverts
8
760
The Art of Delivering Value - GDevCon NA Keynote
reverentgeek
15
1.6k
Product Roadmaps are Hard
iamctodd
PRO
54
11k
The World Runs on Bad Software
bkeepers
PRO
70
11k
[RailsConf 2023 Opening Keynote] The Magic of Rails
eileencodes
29
9.6k
The Illustrated Children's Guide to Kubernetes
chrisshort
48
50k
Automating Front-end Workflow
addyosmani
1370
200k
Balancing Empowerment & Direction
lara
1
550
4 Signs Your Business is Dying
shpigford
184
22k
Build your cross-platform service in a week with App Engine
jlugia
231
18k
Fight the Zombie Pattern Library - RWD Summit 2016
marcelosomers
234
17k
Transcript
ػցֶशͷಓΛΓ ։͍ͯػցֶशͷ ࣄΛͯ͠Δ -JHIUOJOH5BML "VH *#6,*/",".63"
ձһγεςϜ(ୈ։ൃνʔϜ χϑςΟχϡʔε։ൃϦʔμʔςοΫϦʔυ /.BDIJOF-FBSOJOH1SPEVDU&OHJOFFS େֶӃͰਂֶशΛ༻͍ͨಈըೝࣝͷݚڀ %FWFMPQFST4VNNJUొஃऀ ϕετεϐʔΧʔҐɺެื உঁࠞνΞϦʔσΟϯάຊද தଜҏਧ
ੈքେձ͕ϑϩϦμͷσΟζχʔϥϯυͰߦΘΕΔΜͰ͕͢ େձޙʹߦͬͨຊͷΞόλʔͷΞτϥΫγϣϯ͕ΊͬͪΌ໘ന͔ͬͨʜ
ֶੜ࣌
ҰਓশߦಈೝࣝͷͨΊͷ ਂϚϧνλεΫֶशͷݚڀ ઍ༿େֶେֶӃ༥߹ཧֶ ֶใՊֶઐ߈ใՊֶίʔε ຊݚڀࣨதଜҏਧ म࢜ൃද
*#6,*/",".63" Ұਓশࢹө૾ w (PPHMF(MBTTͳͲͰࡱӨ͞Εͨରऀ͔Βͷࢹө૾ w ϥΠϑϩάରऀͷߦಈੳͱͯ͠ͷ׆༻ʹظ Damen, Dima, et
al. "Scaling Egocentric Vision: The EPIC-KITCHENS Dataset." arXiv preprint arXiv:1804.02748 (2018).
*#6,*/",".63" ݚڀഎܠ Ұਓশߦಈೝࣝʹ͓͚Δਂֶशͷ ΫϥεͷΈ߹Θͤരൃ σʔληοτͷෆ ϚϧνλεΫֶश
*#6,*/",".63" ຊݚڀͰఏҊ͢ΔΞʔΩςΫνϟ தؒͰͷ༥߹ʹΑΔਂಛྔͷ౷߹ ମͱಈ࡞ͷग़ྗͷϚϧνλεΫֶश छྨͷϞσϧ͕λεΫد༩͢ΔεΩοϓߏ
*#6,*/",".63" ೝࣝ݁Ռ
ݱࡏͷۀ
$PQZSJHIU/*'5:$PSQPSBUJPO"MM3JHIUT3FTFSWFE χϑςΟχϡʔε ΞάϦήʔγϣϯܕχϡʔεϝσΟΞͷ։ൃ 1$ εϚϗ ΞϓϦ
$PQZSJHIU/*'5:$PSQPSBUJPO"MM3JHIUT3FTFSWFE ৽γεςϜͷҠߦ
$PQZSJHIU/*'5:$PSQPSBUJPO"MM3JHIUT3FTFSWFE ϚΠχϑςΟ !OJGUZͷαʔϏεΛͬͱۙʹշదʹɻ ೝূɺϓογϡ௨ɺαʔϏε"1*ͷूͳͲͷόοΫΤϯυશൠΛ୲
ͪΐͬͱ͚ͩมͳ ੜ͖ํΛհ͠·͢
νΞϦʔσΟϯάຊදʹͳͬͨ w େֶੜ͔ΒνΞϦʔσΟϯά ʹؔΘΓ͡Ίͨ w ࣮உࢠͷνΞϦʔσΟϯά ͱ͍͏ͷ͕ଘࡏ͢Δ w
ʹॴଐνʔϜ͕ຊද ʹͳͬͨ͜ͱͰɺͦͷ࣌ʹબख ͩͬͨࣗຊදʹ w ֶදজͯ͠Βͬͨ w ਤॻΧʔυສԁΒͬͨ
୯७ʹνΞϦʔσΟϯά͕Γ͔ͨͬͨ w νΞϦʔσΟϯά͕ଓ͚ΒΕͦ͏ ͱ͍͏ߟ͚͑ͩͰχϑςΟʹೖࣾ w ฏۉۀ͕࣌ؒ࣌ؒ w ී௨࣌ؒ͘Β͍Β͍͠ wݚڀΛੜ͔͢ͱ͍͏ߟ͑
શ͘ͳ͔ͬͨ wকع"*͕͖Ͱݚڀલ͔Βڵຯ͕ ͋ͬͨͷͰɺझຯͰͰ͖ΔͩΖ͏ ͱࢥ͍ͬͯͨ wʮχϑςΟͰຊʹ͍͍ͷ͔ʁʯ ͱຊઌੜʹݺΕͨ
8&#ΤϯδχΞͷษڧΛΊͬͪΌͨ͠ w %PDLFSͲ͜Ζ͔(JUͷ͍ํ͢ΒΒͳ ͔ͬͨͷͰɺΊͪΌΊͪΌษڧͨ͠ w %PDLFS (JU "84 5FSSBGPSNʜ w
εΫϥϜ։ൃษڧ w ࠷ۙɺೝఆεΫϥϜϚελʔʹͳͬͨ w ࠓҰ௨Γѻ͑ΔΑ͏ʹͳͬͨʢͣʣ w ࠷ۙ"[VSFΛ͑ΔΑ͏ʹͳΓ͍ͨͱࢥͬ ͯɺձࣾʹަবத w ΤϯδχΞͷ৽ਓڭҭʹੵۃతʹೖ͍ͬͯ ͘Α͏ʹ͍ͯ͠Δ w ։ൃΠϯλʔϯͰաڈ࠷ߴͷຬΛग़ͨ͠
Ջͳ࣌ؒʹউखʹػցֶशΛ͍ͬͯͨ wχϑςΟ*41ࣄۀͱ͍͏͜ͱ͋ΓɺܦӦج൫͕൫ੴ w Πϯλʔωοτճઢ͕ಥવܹݮ͢Δͱ͍͏͜ͱͳ͍ w རӹιϑτΣΞࣄۀͱ͔ͯ͠ͳΓߴ͍ wۀ࣌ؒͷΛ͖ͳ͜ͱʹ͍͍ͯͯͱ͍͏੍͕ ࣗͷࣄۀ෦ʹ͋ͬͨ w(PPHMFͷϧʔϧΛਅࣅ੍ͨ͠ɻࠓࣗͷνʔϜͰউखʹ࠾༻͍ͯ͠Δɻ
wػցֶशָͦ͠͏ͱࢥͬͯΒ͑ͦ͏ͳ͜ͱΛͬͨ w͖ͦ͏ͳঁ༏ΛϨίϝϯυͯ͘͠ΕΔαʔϏε wΤϯδχΞ͚ػցֶशݚम wڝഅ"*Λ࡞ͬͯɺ࣮ࡍʹ͓ۚΛ͔͚Δʢෛ͚ͨʣ
ػցֶशεϖγϟϦετʹબΕͨ w χϑςΟͷ/ͱ͍͏੍Ͱɺػցֶशε ϖγϟϦετʹબΕͨ w :BIPPͷࠇଳͱಉ੍͡ w ϓϩμΫτʹػցֶशʹಋೖ͢Δ͜ͱΛ ϛογϣϯʹ׆ಈ w
χϡʔεͷ"*ཁ w ࣾφϨοδͷ$IBU(15Ͱͷݕࡧ w ෆਖ਼Ϣʔβʔݕ w ྑ͍ͯ͘͠Δ"84ͷਓʹʮதଜ͞Μ ػցֶशͷ෦ॺͰ͢ΑͶʁʯͱݴΘΕΔ w ࣮୯ಠͰػցֶशΛ͍ͬͯΔ෦ॺͳ͍
%FWFMPQFST4VNNJUͰ͠·ͨ͠ IUUQTDPEF[JOFKQEFWPOMJOFBSDIJWFTFTTJPO %FWFMPQFST4VNNJUϕετεϐʔΧʔҐެื
݁ہԿΛ͍ͯ͠Δͷʁ wνΞϦʔσΟϯάࢦಋΛଓ͚͍ͯΔ🤸 w νʔϜΛࢦಋ͠ͳ͕Βɺ͜ͷલશࠃେձͷ৹ࠪһͨ͠ w ͕ࣗϓϨΠϠʔΛΔͷલʹҾୀ wχϑςΟχϡʔεͷ։ൃϦʔμʔ݉εΫϥϜϚελʔ💻 w ࠷ߴͷ։ൃڥΛٻΊ͍ͯͨΒ͍ͭͷؒʹ্ཱ͔͕͕͍ͬͯͨ wػցֶशʹ݁ہࠓͰؔΘ͍ͬͯΔ🤖
w"*ྲྀߦͰ͋Δ͕࣮Ͱ͖Δਓ͕গͳ͘ɺ͖͕ߴͯࣾ͡ͰϙδγϣϯΛऔΕͨ wࠓ$IBU(15ͰاۀσʔλΛѻ͏ͨΊͷ3"(ύλʔϯΛࢥҊத
͍͖͍͖ͱͨ͠νʔϜΛͭ͘Δ wݩʑମૢڝٕΛ͍ͬͯͯɺࣗڀۃͷݸਓओٛͩͬͨ🤸 w ଞਓʹཔΒͣҰਓͰಥ͖ਐΈɺڠྗཧղΛಘΒΕͳ͍͜ͱଟ͔ͬͨ w ݸਓతͳܦݧͱͯ͠ ࣗউखͳਓपΓʹଟ͘ɺෆຬΛײ͡Δ͜ͱଟʑ͋ͬͨ wνΞϦʔσΟϯάͱ͍͏ڀۃͷूஂεϙʔπʹग़ձͬͨ📣 w ୭͕͚ܽͯԋཱٕ͕͠ͳ͍ͱ͍͏ҙຯͰɺਅͷूஂεϙʔπͩͱߟ͍͑ͯΔ
w ଞऀΛԠԉࣗ͠Ԡԉ͞ΕΔͱ͍͏ʮνΞεϐϦοτʯͷਫ਼ਆΛΊ͍ͨͱࢥ͏Α͏ʹͳͬͨ wʮεΫϥϜʯʹΑΔ͍͖͍͖ͱͨ͠νʔϜΛ࡞Δ🏉 w ͕ࣗେ͖ͳΤϯδχΞϦϯάͷੈքͰྑ͍ूஂɾྑ͍νʔϜΛ࡞Γ͍ͨͱࢥ͏Α͏ʹ w ͠ੲͷࣗͷΑ͏ʹνʔϜϫʔΫ͕ඞཁͳ͍ͱײ͍ͯ͡Δਓ͕͍ͨͱͯ͠ɺ ਓͱڠྗͨ͠ΓԿ͔Λୡ͢Δָ͠͞ັྗΛײͯ͡ཉ͍͠ͱ͍͏ؾ࣋ͪ͋Δ
ͦΜͳੜ͖ํ͔Βͷ ब׆ΞυόΠε
$PQZSJHIU/*'5:$PSQPSBUJPO"MM3JHIUT3FTFSWFE ίϛϡχέʔγϣϯΛڪΕͳ͍ اۀͷจԽΛഽͰΔ ษڧձͳͲʹࢀՃͯ͠ɺࣾʹͲ͏͍͏ਓ͕͍Δͷ͔Λͬͯ΄͍͠ ԿΛ͍ͬͯΔ͔ΑΓձࣾͷจԽɾงғؾ͕ࣗʹ߹͍ͬͯΔ͔ͷํ͕େࣄ BXTXBLBSBO5PLZP ϞμϯϑϩϯτΤϯυษڧձ σʔλੳج൫%FWFMPQFST/JHIU
$PQZSJHIU/*'5:$PSQPSBUJPO"MM3JHIUT3FTFSWFE ຊʹΓ͍ͨ͜ͱΛߟ͑Δ ͕ࣗେࣄʹ͍ͨ͜͠ͱΛ͑ͯ͘ΕΔձࣾʹߦ͜͏ ࣗࣾձਓʹͳ͔ͬͯΒνΞϦʔσΟϯάʹܞΘΓ͔ͨͬͨ ϥΠϑɾϫʔΫɾόϥϯεΛҰ൪ʹߟ͍͑ͯΔχϑςΟ͕߹͍ͬͯͨ
$PQZSJHIU/*'5:$PSQPSBUJPO"MM3JHIUT3FTFSWFE $POOFDUUIFEPUT ͱ͕ͭͳ͕Δ͜ͱΛ৴͡Δ ࠓͰ͖Δ͜ͱɾࠓ͍ͬͯΔ͜ͱ͖ͬͱʹཱͭ .*36 ݚڀܴࣨձʢ݄ʣ ւಓͷϏΞΨʔσϯͰઌੜՏͱ