Upgrade to PRO for Only $50/Year—Limited-Time Offer! 🔥
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
AWS SDKのClientはFactory経由で作ろう
Search
TomoyaIwata
September 26, 2023
Programming
1
960
AWS SDKのClientは Factory経由で作ろう
「緊急開催!サーバーレス座談会 in JAWS-UG 大阪」にてLTさせて頂いた際の資料です
https://jawsugosaka.doorkeeper.jp/events/162714
TomoyaIwata
September 26, 2023
Tweet
Share
More Decks by TomoyaIwata
See All by TomoyaIwata
Lambdaの常識はどう変わる?!re:Invent 2025 before after
iwatatomoya
1
670
Aurora DSQLはサーバーレスアーキテクチャの常識を変えるのか
iwatatomoya
1
1.9k
これでLambdaが不要に?!Step FunctionsのJSONata対応について
iwatatomoya
2
6.1k
Qdrantでベクトルデータベースに入門してみよう
iwatatomoya
0
1.6k
詳解 AWS Lambdaコールドスタート
iwatatomoya
2
3k
真のサーバーレスへ向けたAuroraの進化Aurora Limitless Database
iwatatomoya
1
4.9k
OpentelemetryでアプリケーションのObservabilityを強化しよう
iwatatomoya
0
1.2k
AWS Lambdaは俺が作った
iwatatomoya
2
3k
SnapStartの未来についての期待と妄想
iwatatomoya
1
1.4k
Other Decks in Programming
See All in Programming
AIの誤りが許されない業務システムにおいて“信頼されるAI” を目指す / building-trusted-ai-systems
yuya4
6
3.8k
新卒エンジニアのプルリクエスト with AI駆動
fukunaga2025
0
230
生成AIを利用するだけでなく、投資できる組織へ
pospome
2
370
從冷知識到漏洞,你不懂的 Web,駭客懂 - Huli @ WebConf Taiwan 2025
aszx87410
2
2.8k
Findy AI+の開発、運用におけるMCP活用事例
starfish719
0
1.4k
Context is King? 〜Verifiability時代とコンテキスト設計 / Beyond "Context is King"
rkaga
10
1.3k
Claude Codeの「Compacting Conversation」を体感50%減! CLAUDE.md + 8 Skills で挑むコンテキスト管理術
kmurahama
1
540
大規模Cloud Native環境におけるFalcoの運用
owlinux1000
0
150
実は歴史的なアップデートだと思う AWS Interconnect - multicloud
maroon1st
0
220
手が足りない!兼業データエンジニアに必要だったアーキテクチャと立ち回り
zinkosuke
0
770
ゲームの物理 剛体編
fadis
0
360
著者と進める!『AIと個人開発したくなったらまずCursorで要件定義だ!』
yasunacoffee
0
150
Featured
See All Featured
Building Better People: How to give real-time feedback that sticks.
wjessup
370
20k
Balancing Empowerment & Direction
lara
5
810
Deep Space Network (abreviated)
tonyrice
0
18
Docker and Python
trallard
47
3.7k
Agile that works and the tools we love
rasmusluckow
331
21k
Facilitating Awesome Meetings
lara
57
6.7k
The innovator’s Mindset - Leading Through an Era of Exponential Change - McGill University 2025
jdejongh
PRO
1
63
Taking LLMs out of the black box: A practical guide to human-in-the-loop distillation
inesmontani
PRO
3
1.9k
We Are The Robots
honzajavorek
0
110
Why Your Marketing Sucks and What You Can Do About It - Sophie Logan
marketingsoph
0
39
Building a Modern Day E-commerce SEO Strategy
aleyda
45
8.3k
Designing Dashboards & Data Visualisations in Web Apps
destraynor
231
54k
Transcript
AWS SDKのClientは Factory経由で作ろう クラスメソッド株式会社 岩⽥ 智哉 1
2 ⾃⼰紹介 l クラスメソッド株式会社 サーバーサイドエンジニア l 2023 Japan AWS Top
Engineer l 2023 Japan AWS All Certifications Engineer l 前⼗字靭帯再建⼿術リハビリ中 岩⽥ 智哉
3 ⾔いたいこと AWS SDKのClientは Factory経由で作ろう
4 LambdaとEC2/ECSの違い リクエストとコンピューティング環境がN:1 リクエストとコンピューティング環境が1:1
5 リクエストとコンピューティング環境が1:1だと… ソケット ソケット ソケット ソケット DynamoDB等のAWSサービス ソケット ソケット Lambda実⾏環境で⽣成するソケットは1つで⼗分
(なことが多い)
6 これらを意識すると AWS SDKのClientの扱いが 最適化できる
7 良くない例1 import boto3 class TableA: def __init__(self): self._client =
boto3.client('dynamodb') def put_item(self, item): self._client.put_item(TableName='tableA', Item=item) class TableB: def __init__(self, client): self._client = boto3.client('dynamodb') def put_item(self, item): self._client.put_item(TableName='tableB', Item=item) def handler(event, context): table_a = TableA() table_a.put_item({'foo': 'bar’}) table_b = TableB() table_b.put_item({'hoge': 'fuga'})
8 何が良くないのか︖
9 よくある解決策 class TableA: def __init__(self, client): self._client = client
def put_item(self, item): self._client.put_item(TableName='tableA', Item=item) class TableB: def __init__(self, client): self._client = client def put_item(self, item): self._client.put_item(TableName='tableB', Item=item) import boto3 client = boto3.client('dynamodb’) def handler(event, context): table_a = TableA(client) table_a.put_item({'foo': 'bar'}) table_b = TableB(client) table_b.put_item({'hoge': 'fuga'})
10 そうはいっても • 現実世界のアプリはもっと複雑。呼び出し階層も深くなる • 呼び出し先の呼び出し先の呼び出し先…にclientを伝搬するのは⾯倒 • clientの処理化処理はもっと⾊々やることがある import boto3
client = boto3.client('dynamodb’) def handler(event, context): table_a = TableA(client) table_a.put_item({'foo': 'bar'}) table_b = TableB(client) table_b.put_item({'hoge': 'fuga'})
11 提案 Factoryクラスを使おう︕
12 実装例(簡易版) import boto3 class Boto3ClientFactory: # ⽣成したclientクラスのインスタンスをクラス変数に保持しておく _clients =
{} @classmethod def get_singleton_client(cls, service_name, **kwargs): # 対象サービスのclientクラスを⽣成済みならクラス変数のキャッシュから返却 # 複数リージョンを扱う場合はキャッシュキーにリージョンを含めるなど追加の考慮が必要 if service_name in cls._clients: return cls._clients[service_name] client = boto3.client(service_name, **kwargs) cls._clients[service_name] = client return client
13 Factoryクラスの追加実装例 • タイムアウト値の調整 • デフォルト値はLambda実⾏環境の設定値としては不適切 • connect_timeout:60, read_timeout:60 •
Event Systemを利⽤したフックの登録 • API呼び出し前にパラメータをクラス変数に保存 • 例外キャッチ時にクラス変数に保存したパラメータをログ出⼒ • ⾮シングルトンなclientクラス⽣成処理 • たまにはPromise.All的な実装が必要になることもある
14 Factoryクラスの利⽤例 client = Boto3ClientFactory.get_singleton_client('dynamodb') def handler(event, context): table_a =
TableA(client) table_a.put_item({'foo': 'bar'}) table_b = TableB(client) table_b.put_item({'hoge': 'fuga'}) def foo(): bar() def bar(): baz() def baz(): client = Boto3ClientFactory.get_singleton_client('dynamodb') table_a = TableA(client) table_a.put_item({'foo': 'bar'}) def handler(event, context): foo() タイムアウト値など適切に設定された clientクラスが1発で取得可能 呼び出し階層の深いところまでclientクラ スを引き回さなくて良くなる
15 Provisioned Concurrency利⽤時の注意 Boto3ClientFactory.get_singleton_client('dynamodb’) def handler(event, context): … Init処理の中でclientクラスの⽣成を「空打ち」しておく
16 初回のClientクラス⽣成処理は重い https://github.com/boto/botocore/blob/40d6219947f4d047088cbeb80f8f222f599f9c7c/botocore/loaders.py • 初回のclientクラス⽣成時はJSONファイルを読み込んで動的にクラスを⽣成するので「重い」 • 2回⽬以後はキャッシュを使う • Init処理の中でclientクラス向けのキャッシュを「暖気」することでProvisioned Concurrencyに最適化
https://github.com/boto/botocore/blob/40d6219947f4d047088cbeb80f8f222f599f9c7c/botocore/data/dynamo db/2012-08-10/service-2.json
17 以上 ありがとうございました
18