Upgrade to Pro — share decks privately, control downloads, hide ads and more …

ChatWorkのリアクティブシステム導入事例から学ぶActor設計プラクティス

 ChatWorkのリアクティブシステム導入事例から学ぶActor設計プラクティス

Actorの設計プラクティスに関して簡単にまとめた資料です

933291444e456bfb511a66a2fa9c6929?s=128

かとじゅん

March 15, 2017
Tweet

More Decks by かとじゅん

Other Decks in Programming

Transcript

  1. ChatWorkのリアクティブシステム導入事 例から学ぶActor設計プラクティス Junichi Kato (@j5ik2o)

  2. 自己紹介 • Scala歴 6年 • サーバサイド開発・設計担当 • 最近やってること ◦ TISさんやセプテーニさんでDDD基礎講座(有償)

    ◦ OAuth2/OpenID Connectのプロバイダ実装
  3. アジェンダ • Falconで採用したアクターの設計がテーマ ◦ Falconのドメインモデル ◦ FYI: CQRS+ESアーキテクチャ ◦ Falcon

    の アーキテクチャ概要 ◦ Falcon の レイヤ化アーキテクチャ ▪ API(Write or Read) ▪ SparrowForwarder ◦ FYI: Actorの特徴 ◦ FYI: Actorヒエラルキーの考え方 ◦ SparrowForwarderのActorヒエラルキー ◦ FYI: レジリエントを作り込む方法 ◦ BackOffSupervisorとその拡張
  4. Falconのドメインモデル • 集中と選択でメッセージとそれにまつわるドメインイベントのみ • すでに成熟しており、議論が紛糾することがなかったので、Actor を使ったモデル駆動設計の議論が主戦場だった。 Message MessageCreated MessageUpdated

  5. FYI: CQRS+ESアーキテクチャ

  6. Falconのアーキテクチャ概要

  7. Falconのレイヤ化アーキテクチャ

  8. API(Write/Read)のアプリケーションアーキテクチャ DAS = Data Access Stream DIPを適用したレイヤ化アーキテクチャ= ヘキサゴナルアーキテクチャ

  9. SparrowForwarderのアプリケーションアーキテクチャ

  10. FYI:Actorの特徴

  11. Actorの特徴(1/2) • メッセージを受信して初めて、利用可能なスレッドを使って反応する。メッセージに反応しないコンポーネントは 貴重なCPU資源を消費しない。 • メッセージに反応するかどうかはコンポーネントが選択でき、送信側と受信側のコンポーネントは、インターフェ イスと時間から分離される。 • アクターは一度に決まった単位のメッセージを処理する。 CPUを頻繁に消費するポーリングとブロッキングを採

    用せず、高スループットにフォーカスするために CPUを解放する。必要に応じた反応が低レイテンシーを導く。
  12. Actorの特徴(2/2) • DispatcherはMailboxにImmutableなメッセージを追加する (Shard Nothing)。ActorはMailboxを経由してメッ セージを順番に取得する 。開発者はDispatcherが利用するスレッドを意識しない。決まった単位のメッセージ を処理している際中は、別のメッセージを処理しないので、非同期境界を意識していれば、同一アクター内で はシングルスレッドのように見える。 •

    Actor数分のスレッド数が必要になるわけではない。 ライトウェイト。2.7百万Actorは1GB程度。スレッドモデル では1GB=4096スレッド程度と考えると大きな差がある。 • DispatcherやMailboxは必要に応じて適切な種類と設定を選ぶことでチューニングが可能。
  13. FYI:Actorヒエラルキーの考え方

  14. ActorSystemのヒエラルキー • 最初にActorSystemが作られる。ActorSystemを使ってSupervisorを作る。 Supervisorが 子アクターを作ることでヒエラルキーを構築する。 • 実際には、アプリケーション用のアクターはuser guardian配下に所属する。

  15. アクターヒエラルキーの目的 • スーパバイザのライフタイムは、子アクターが存 在する間と同じ。親によって作られた子アクター は、スーパバイザの監督下に置かれる。スーパ バイザの責任はすべての子アクターが終了した 時に終わる。 • クラッシュする可能性が高いアクターは、可能な 限りヒエラルキーの下層に配置すべき。下層で

    起きた障害は、上位までのヒエラルキーが管理 ・エスカレーションが可能。最上位が障害を起こ した場合は、最上位のアクターの再起動もしく はアクターシステムのシャットダウンが必要にな る。
  16. アクターヒエラルキーの実装パターン1 • 利点は、各アクターが相互に直接通信するこ と。スーパバイザは監督業務とインスタンス作 成のみ。 • 欠点は、再起動しか使えないことと、メッセージ がデッドレターに送られて失われてしまうこと。 親のスーパーバイザはメッセージフローから分 離してしまう。

  17. アクターヒエラルキーの実装パターン2 • スーパバイザは単なる生成や監督ではなく、間 接参照として、すべてのメッセージを単に透過 的にフォワードする。スーパバイザは子を終了 したり、他のアクターとは無関係に新しいもの を生み出したりできる。 • 先の例と比べてメッセージフローのギャップが ない。

  18.  SparrowForwarder内部設計 ココの話

  19. SparrowForwarderのActorヒエラルキー • このモデルは、SQSなどでも利用できる。 • Exponential BackOff機能を備えた Supervisorを経由してメッセージを透過的 に扱う。 • 下位層のActorはいつでもクラッシュしても

    よい。上位はクラッシュしてはならない。 • KafkaComsumerActorがエラーを起こした 場合はSupervisorが指数関数的な BackOffを掛けてリトライを自動的に行う。 • APIExecutorも同様に振る舞うが、 Kafka へのポーリング間隔が延びると Consumer に異常があったと見なされセッションタイム アウトが起こり、リバランスが起こってしま う。この場合はAPIExecutor側でBackOff せずに全体のフローを最初からやり直す 方がよい。現在はAPIExecutorSupervisor は利用していない。
  20. FYI:レジリエントを作り込む方法

  21. Supervisorを実装する

  22. 子アクターを実装する

  23. Supervisor経由で実行する

  24. Supervisor経由での実行結果

  25. akkaのBackOff Supervisor • データ送信処理が失敗して再送信するときに、失敗回数が増えるに連れて再送信す るまでの待ち時間を指数関数的に増やす仕組みを exponential backoff という。 • SupervisorにExponential

    Backoffを付加するakka標準API ◦ 子アクターが停止もしくは再起動した時にBackoffする ◦ Supervisorにメッセージを送ると子アクターに転送される ◦ ただし、子アクターが開始・停止のイベントがとれない
  26. BackOffSupervisorの拡張(1/3) • akkaからフォークした拡張(本家でも改善中なのでご参考程度に) → https://git.io/vyotj • 子アクターの開始と停止をフックできる • 以下はハンドラーを指定する方法

  27. BackOff Supervisorの拡張(2/3) • ハンドラーの代わりにアクターを指定する方法

  28. BackOff Supervisorの拡張(3/3) • Backoff機能付きSupervisor を自前で作る方法 • Supervisor自身がBackoff Retryが可能

  29. まとめ • ActorRefは疎結合になるので、依存の方向性に気をつけながら、レイ ヤー化アーキテクチャを作る(Propsファクトリとメッセージの依存を間 違えなければまず問題が起きることはない)。静的型配線したいなら、 akka-streamを検討する価値はある。 • Actorの自己回復力(BackOffSupervisor)をいかした設計は、運用負 荷が下がる。これがActorのすべてと言ってもいいすぎではない。 •

    でもActorの設計は難しい。Actorヒエラルキーなしはあまり意味がな い。歯を食いしばってActorのコンセプトを学びましょう…。
  30. ご静聴ありがとうございました。