Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Deploying Dask Distributed
Search
Jacob Tomlinson
May 19, 2021
Technology
0
280
Deploying Dask Distributed
Jacob Tomlinson
May 19, 2021
Tweet
Share
More Decks by Jacob Tomlinson
See All by Jacob Tomlinson
EffVer - Version your code by the effort required to upgrade
jacobtomlinson
0
5
Tech Exeter - Intro to Kubernetes 10 Year Update
jacobtomlinson
0
27
Who Builds the PyData Ecosystem?
jacobtomlinson
0
36
The Art of Wrangling Your GPU Python Environments
jacobtomlinson
0
50
Getting science done with accelerated Python computing platforms
jacobtomlinson
0
46
Dask on HPC in 2024 - Lightning Talk
jacobtomlinson
0
60
GPU Acceleration in the PyData community
jacobtomlinson
0
55
Dask on HPC in 2024
jacobtomlinson
0
32
GPU Acceleration in the PyData community
jacobtomlinson
0
38
Other Decks in Technology
See All in Technology
夢の印税生活 / Life on Royalties
tmtms
0
280
Yahoo!広告ビジネス基盤におけるバックエンド開発
lycorptech_jp
PRO
1
230
Rethinking Incident Response: Context-Aware AI in Practice - Incident Buddy Edition -
rrreeeyyy
0
130
知られざるprops命名の慣習 アクション編
uhyo
8
1.5k
プロジェクトマネジメントは不確実性との対話だ
hisashiwatanabe
0
190
ドキュメントはAIの味方!スタートアップのアジャイルを加速するADR
kawauso
3
170
datadog-distribution-of-opentelemetry-collector-intro
tetsuya28
0
240
Gaze-LLE: Gaze Target Estimation via Large-Scale Learned Encoders
kzykmyzw
0
300
AIエージェントの開発に必須な「コンテキスト・エンジニアリング」とは何か──プロンプト・エンジニアリングとの違いを手がかりに考える
masayamoriofficial
0
310
RAID6 を楔形文字で組んで現代人を怖がらせましょう(実装編)
mimifuwa
0
290
LLMエージェント時代に適応した開発フロー
hiragram
1
370
広島銀行におけるAWS活用の取り組みについて
masakimori
0
120
Featured
See All Featured
Imperfection Machines: The Place of Print at Facebook
scottboms
268
13k
[Rails World 2023 - Day 1 Closing Keynote] - The Magic of Rails
eileencodes
36
2.5k
BBQ
matthewcrist
89
9.8k
The Psychology of Web Performance [Beyond Tellerrand 2023]
tammyeverts
49
3k
Sharpening the Axe: The Primacy of Toolmaking
bcantrill
44
2.4k
"I'm Feeling Lucky" - Building Great Search Experiences for Today's Users (#IAC19)
danielanewman
229
22k
ピンチをチャンスに:未来をつくるプロダクトロードマップ #pmconf2020
aki_iinuma
126
53k
Measuring & Analyzing Core Web Vitals
bluesmoon
9
560
The World Runs on Bad Software
bkeepers
PRO
70
11k
Balancing Empowerment & Direction
lara
2
580
Put a Button on it: Removing Barriers to Going Fast.
kastner
60
4k
Practical Orchestrator
shlominoach
190
11k
Transcript
Deployment Workshop Deploying Dask Distributed Jacob Tomlinson
Dask Distributed A centrally managed, distributed, dynamic task scheduler
Dask Overview
None
Worker Worker Worker Scheduler Client Protocols TCP UCX Websocket Dask
components can communicate via a variety of different protocols.
Scheduler Starting a scheduler
Connecting a worker Worker Scheduler
Client Scheduler Worker Connecting a client
Client Scheduler Worker Submitting work
Dask Dashboard
JupyterLab Extension
Cluster Managers Utility classes to simplify cluster creation
Local Cluster Scheduler Worker Worker Worker Worker LocalCluster creates everything
for you. It will break down a large CPU into multiple workers withy multiple threads as this can be more performant.
Client Local Cluster Scheduler Worker Worker Worker Worker
Get logs
Scaling
How do I get more resource? Moving beyond a single
machine
SSH ... You could SSH to a bunch of machines
and start the Dask components manually.
SSHCluster Or you could use SSHCluster which will bootstrap a
cluster for you on a list of machines. All you need is passwordless SSH configured for each machine.
None
Deployment Workshop Thank you! @_jacobtomlinson