Interactions https://www.cs.cornell.edu/~yinlou/papers/lou-kdd13.pdf • InterpretML: A Unified Framework for Machine Learning Interpretability https://arxiv.org/pdf/1909.09223.pdf • Interpretable Machine Learning – A Brief History, State-of-the-Art and Challenges https://arxiv.org/pdf/2010.09337.pdf • 教科書的な • Interpretable Machine Learning A Guide for Making Black Box Models Explainable https://christophm.github.io/interpretable-ml-book/index.html • 動画 • The Science Behind InterpretML: Explainable Boosting Machine https://www.youtube.com/watch?v=MREiHgHgl0k&ab_channel=MicrosoftDeveloper • How to Explain Models with IntepretML Deep Dive https://www.youtube.com/watch?v=WwBeKMQ0-I8&t=964s&ab_channel=MicrosoftDeveloper • その他 • DiCE: 反実仮想サンプルによる機械学習モデルの解釈/説明手法 https://qiita.com/OpenJNY/items/ef885c357b4e0a1551c0 • 一般化線形モデル (GLM) & 一般化加法モデル(GAM) https://www.slideshare.net/DeepLearningLab/glm-gam