Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
鉄道省エネに向けた車上データ活用事例の紹介
Search
JDSC
July 29, 2021
Technology
0
720
鉄道省エネに向けた車上データ活用事例の紹介
第2回合同勉強会の資料です。
鉄道省エネに向けた車上データ活用事例の紹介
- あるいは、私が鉄道車両データと省エネ最適化を悪魔合体させるまで
JDSC
July 29, 2021
Tweet
Share
More Decks by JDSC
See All by JDSC
JDSC採用ページⅡ
jdsc
0
3.5k
JDSC採用ページ
jdsc
1
60k
Data Meshと私
jdsc
0
200
Kubeflowで作る共通データ基盤 (道半ば編)
jdsc
1
260
家電製品の異常検知 (Case Study)
jdsc
0
500
InterpretMLと Explainable Boosting Machineのススメ
jdsc
1
2.4k
Google Cloud Build とAI Platformではじめる軽量MLOps pipelineとAlphaSQL
jdsc
0
460
JDSCの事業・技術
jdsc
0
18k
JDSCの人・カルチャー
jdsc
0
18k
Other Decks in Technology
See All in Technology
25分で解説する「最小権限の原則」を実現するための AWS「ポリシー」大全
opelab
10
2.3k
Amplifyとゼロからはじめた AIコーディング 成果と展望
mkdev10
1
380
エンジニア向け技術スタック情報
kauche
1
110
OAuth/OpenID Connectで実現するMCPのセキュアなアクセス管理
kuralab
5
900
Uniadex__公開版_20250617-AIxIoTビジネス共創ラボ_ツナガルチカラ_.pdf
iotcomjpadmin
0
150
GeminiとNotebookLMによる金融実務の業務革新
abenben
0
180
Snowflake Summit 2025 データエンジニアリング関連新機能紹介 / Snowflake Summit 2025 What's New about Data Engineering
tiltmax3
0
270
CI/CDとタスク共有で加速するVibe Coding
tnbe21
0
230
OpenHands🤲にContributeしてみた
kotauchisunsun
0
290
Create a Rails8 responsive app with Gemini and RubyLLM
palladius
0
140
Amazon Bedrockで実現する 新たな学習体験
kzkmaeda
1
410
AIエージェント最前線! Amazon Bedrock、Amazon Q、そしてMCPを使いこなそう
minorun365
PRO
12
4.3k
Featured
See All Featured
Side Projects
sachag
455
42k
個人開発の失敗を避けるイケてる考え方 / tips for indie hackers
panda_program
107
19k
We Have a Design System, Now What?
morganepeng
53
7.6k
Large-scale JavaScript Application Architecture
addyosmani
512
110k
What’s in a name? Adding method to the madness
productmarketing
PRO
22
3.5k
Unsuck your backbone
ammeep
671
58k
Code Review Best Practice
trishagee
68
18k
Music & Morning Musume
bryan
46
6.6k
The Straight Up "How To Draw Better" Workshop
denniskardys
233
140k
Into the Great Unknown - MozCon
thekraken
39
1.9k
Connecting the Dots Between Site Speed, User Experience & Your Business [WebExpo 2025]
tammyeverts
4
200
Become a Pro
speakerdeck
PRO
28
5.4k
Transcript
Confidential © Japan Data Science Consortium. All rights reserved. 1
鉄道省エネに向けた車上データ活 用事例の紹介 あるいは、私が鉄道車両データと省エネ最適化を悪魔合体させるまで 2021年 6月22日 株式会社JDSC
Confidential © Japan Data Science Consortium. All rights reserved. 2
• 株式会社JDSC • データサイエティスト 横田 将尭(よこた まさたか) • 略歴メーカー R&D => JDSCでデータサイエンティストやってます。 自己紹介 -2014.3 東京大学大学院(修士) BMI実装に向けた 可塑性誘発に関する検討 2014.4-2017.8 電機メーカー@茨城 鉄道車両の省エネ運転 車上データ分析 本日のコンテンツ 2017.9-2020.4 自動車会社 @東京 自動運転車向け画像処理DNNの開発 2020.5 JDSC 小売向け需要予測・発注最適化ツールの開発
Confidential © Japan Data Science Consortium. All rights reserved. 3
鉄道 省エネ運転xデータを中心にR&Dに従事 • Why 鉄道x車両データ • Why 鉄道x省エネ運転 • 省エネ運転のアプローチ • 机上計算ベース • 実測データベース 主なトピック
Confidential © Japan Data Science Consortium. All rights reserved. 4
車両をセンサーとして、鉄道サービスの利用状況をセンシング (個人情報は含まない) Why 鉄道x車上データ 車上機器の利用状況 地上機器の利用状況 鉄道サービスの利用状況 https://www.hbm.com/jp/6207/white-paper-efficiency-and-loss-mapping-of-ac-motors/ https://mansionmarket-lab.com/commuter-rush
Confidential © Japan Data Science Consortium. All rights reserved. 5
Why 鉄道x省エネ運転 省エネ機器の導入 vs 運用の改善 運転:自動運転システムのアップデート or 運転士への運転支援 省エネがこれまで重視されていなかった分改善代が大きい 入れてしまえば 効果は確実 ハード導入を伴い高コスト 低コスト:ソフトの変更・導入で済む ただし効果は状況次第 社内外の論文・報告書の枕詞が 東日本大震災を機に...省エネが... 入社(2014年)当時、鉄道の省エネが熱かった
Confidential © Japan Data Science Consortium. All rights reserved. 6
省エネ運転計画のアプローチ1 机上計算 基本の運転手順 加速→定速運転 →惰行(アクセルオフ)→ブレーキ 速度制限があれば一旦原則して再加速 運転上の調整ポイント 最高速度 アクセルオフポイントの変更 簡略化した物理モデルにおける 変分法ベースの導出 解法例 探索空間(位置・速度・残時 間)を離散化 離散化誤差を除いた近似解を 動的計画法で導出 ヒューリスティック ←の調整ポイントを 逐次的に更新していく
Confidential © Japan Data Science Consortium. All rights reserved. 7
机上計算の苦しみと解決アプローチ https://www.jreast.co.jp/development/tech/pdf_63/tech-63-31-34.pdf (国内における)課題 • 机上計算結果が現場の運用と 異なることも多く、信じてその通りに操作してもらう ことがなかなか難しい。 • そもそも現状の運用が一定でなく、 統一も難しいため、全員が納得する基準作成が困難 過去の運転データ履歴を使用 • 過去の自分達のオペレーションということで 信頼されやすい • データソースを分けることで グループごとの運用を反映可
Confidential © Japan Data Science Consortium. All rights reserved. 8
省エネ運転計画のアプローチ2 データ活用 パターンの履歴を無加工で使うだけでは、 個人技から抜けられない →組み合わせでより良いパターンの提示 https://www.jreast.co.jp/development/tech/pdf_63/tech-63-31-34.pdf
Confidential © Japan Data Science Consortium. All rights reserved. 9
適用結果 平均10%以上の省エネ効果 理論的に効果が出ることはわかっていたが、 実適用できたことが大きな成果 https://www.jreast.co.jp/development/tech/pdf_63/tech-63-31-34.pdf
Confidential © Japan Data Science Consortium. All rights reserved. 10
• 鉄道分野におけるデータ活用事例として車上データ測定データに 基づく省エネ運転の取り組みを紹介。 • 実運用データの利用はシステムの現場に対する親和性を高める上で結構有効。 まとめ
Confidential © Japan Data Science Consortium. All rights reserved. 11
本ファイルの内容の一部、または全部を無断で転用・転載することを禁じます。