Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Data Meshと私
Search
JDSC
August 24, 2021
Technology
0
230
Data Meshと私
JDSCでの勉強会時のスライドです。
JDSC
August 24, 2021
Tweet
Share
More Decks by JDSC
See All by JDSC
JDSC採用ページⅡ
jdsc
0
3.9k
JDSC採用ページ
jdsc
1
91k
Kubeflowで作る共通データ基盤 (道半ば編)
jdsc
1
290
家電製品の異常検知 (Case Study)
jdsc
0
560
鉄道省エネに向けた車上データ活用事例の紹介
jdsc
0
800
InterpretMLと Explainable Boosting Machineのススメ
jdsc
1
3k
Google Cloud Build とAI Platformではじめる軽量MLOps pipelineとAlphaSQL
jdsc
0
500
JDSCの事業・技術
jdsc
0
18k
JDSCの人・カルチャー
jdsc
0
18k
Other Decks in Technology
See All in Technology
配列に見る bash と zsh の違い
kazzpapa3
1
140
制約が導く迷わない設計 〜 信頼性と運用性を両立するマイナンバー管理システムの実践 〜
bwkw
3
920
クレジットカード決済基盤を支えるSRE - 厳格な監査とSRE運用の両立 (SRE Kaigi 2026)
capytan
6
2.7k
広告の効果検証を題材にした因果推論の精度検証について
zozotech
PRO
0
160
Bill One急成長の舞台裏 開発組織が直面した失敗と教訓
sansantech
PRO
2
360
Agile Leadership Summit Keynote 2026
m_seki
1
590
[CV勉強会@関東 World Model 読み会] Orbis: Overcoming Challenges of Long-Horizon Prediction in Driving World Models (Mousakhan+, NeurIPS 2025)
abemii
0
130
Azure Durable Functions で作った NL2SQL Agent の精度向上に取り組んだ話/jat08
thara0402
0
180
SREのプラクティスを用いた3領域同時 マネジメントへの挑戦 〜SRE・情シス・セキュリティを統合した チーム運営術〜
coconala_engineer
2
640
AIエージェントを開発しよう!-AgentCore活用の勘所-
yukiogawa
0
150
Sansan Engineering Unit 紹介資料
sansan33
PRO
1
3.8k
FinTech SREのAWSサービス活用/Leveraging AWS Services in FinTech SRE
maaaato
0
130
Featured
See All Featured
How to make the Groovebox
asonas
2
1.9k
The Director’s Chair: Orchestrating AI for Truly Effective Learning
tmiket
1
96
The Limits of Empathy - UXLibs8
cassininazir
1
210
What Being in a Rock Band Can Teach Us About Real World SEO
427marketing
0
170
Why Your Marketing Sucks and What You Can Do About It - Sophie Logan
marketingsoph
0
73
Paper Plane (Part 1)
katiecoart
PRO
0
4.1k
4 Signs Your Business is Dying
shpigford
187
22k
CoffeeScript is Beautiful & I Never Want to Write Plain JavaScript Again
sstephenson
162
16k
Bioeconomy Workshop: Dr. Julius Ecuru, Opportunities for a Bioeconomy in West Africa
akademiya2063
PRO
1
54
Why You Should Never Use an ORM
jnunemaker
PRO
61
9.7k
The MySQL Ecosystem @ GitHub 2015
samlambert
251
13k
Writing Fast Ruby
sferik
630
62k
Transcript
Data と Mesh と私 株式会社JDSC エンジニア 秋山 悟志
自己紹介 秋山 悟志 System Engineer(新卒)-> Web Application Engineer-> Data Scientist ->
Data Engineer(今ここ) SEとWAEの間にイラストレータとかもやっていました。
脳が溶けるようなデータパイプラインを設計することになっ た... - 週次運用 ×3(月曜と火曜水曜で処理違う)+日次運用のコンボ - 数理最適モジュール+UI表示モジュール+機械学習モジュール+顧 客側のデータ基盤をそれぞれ連携させる をAirflowといったワークフローエンジンで管理しちゃおう!
今はワンオペ体制なので逆に管理はできるけど.... (いやこれワンオペって...) - 人員や各モジュールをスケールした際に一元管理ってできるか? - BigQueryやらGCSやらで扱うデータモデルが無限に増えると思う。 lake->warehouse->martと いったアーキテクチャで管理できるか? - 複雑化、肥大化するほど、1元管理する人材の負担は計り知れなく増大するし、非効率
それぞれのモジュールは本当は性質が違うはず。 けど現在は Appと顧客データ基盤と私(弊データ基盤) というドメインの切り方でデータフロー図を作ってしまっている。
Data Meshという考え方 Data Meshとは:それぞれのデータ保持するモジュールをマイクロサービス(Service Mesh)とし て捉え、モノリス化したデータ基盤を切り崩していく。 Data Meshの四原則: 1. ドメイン志向で分散型のデータオーナシップとアーキテクチャ
2. プロダクトとしてのデータ 3. セルフサービス型データインフラストラクチャ・アズ・ア・プラットフォーム 4. 連合型(federate)の計算ガバナンス
サイロ化を許容してでもData Meshする? そもそも、サイロ化とは? 他者がデータへアクセスする際にとてつもなくコストがかかる、もしくは不可能である状態をさす。 しかし加工の段階(lake->warehouse->mart)によってドメインを分ける やり方こそが、それぞれの連携を希薄化させるのではないか? 結論:自ドメインのデータをプロダクトとして、責任をもって提 供しよう。
やろうとしていること - datalake->datawarehouse->datamartのアーキからの脱却 - 今までwarehouseでの一元管理を行なった結果、どれだけ用途不明のテーブルが堆積していっただろう か... - 各データエンティティがどのドメインに所属しているか、はっきりさせていきたい。 - それぞれのドメインが提供するデータのバージョニング
- 欲しいスキーマのデータを常に受け取れるように(GlaphQLのような仕組みがあればいいなぁ...) ただし、これらを初手で導入するとなると多分頓挫する。 標準のプロトコルや標準の規約などを実装した上で段階的にこなしていけばいいと考えて いる。 (普通のマイクロサービスだって、初手で導入するよりモノリスだったサービスをリアーキテククトする文脈で 使われることが多いですよね?)
Data Meshにベストプラクティスは(まだ)ない。 - 実ケースに基づくデータのパイプラインを管理するのなら、結局一元管理できた方が良いと思 う - データのガバナンスも含めてこの思想を反映したプラットフォームや実例はない。 俺がベスプラになってやるんだよ!!という気持ち
ご清聴ありがとうございました! 参考: データメッシュの原則と論理アーキテクチャの定義: https://www.infoq.com/jp/news/2021/02/data-mesh-architecture/ Data Mesh Principles and Logical Architecture
https://martinfowler.com/articles/data-mesh-principles.html メルカリが「マイクロサービス」に本気で取り組む理由(前編) https://www.sbbit.jp/article/cont1/35635