Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Data Meshと私
Search
JDSC
August 24, 2021
Technology
0
230
Data Meshと私
JDSCでの勉強会時のスライドです。
JDSC
August 24, 2021
Tweet
Share
More Decks by JDSC
See All by JDSC
JDSC採用ページⅡ
jdsc
0
3.8k
JDSC採用ページ
jdsc
1
86k
Kubeflowで作る共通データ基盤 (道半ば編)
jdsc
1
290
家電製品の異常検知 (Case Study)
jdsc
0
550
鉄道省エネに向けた車上データ活用事例の紹介
jdsc
0
790
InterpretMLと Explainable Boosting Machineのススメ
jdsc
1
3k
Google Cloud Build とAI Platformではじめる軽量MLOps pipelineとAlphaSQL
jdsc
0
490
JDSCの事業・技術
jdsc
0
18k
JDSCの人・カルチャー
jdsc
0
18k
Other Decks in Technology
See All in Technology
自己管理型チームと個人のセルフマネジメント 〜モチベーション編〜
kakehashi
PRO
5
2.6k
1万人を変え日本を変える!!多層構造型ふりかえりの大規模組織変革 / 20260108 Kazuki Mori
shift_evolve
PRO
6
1.2k
「駆動」って言葉、なんかカッコイイ_Mitz
comucal
PRO
0
140
テストセンター受験、オンライン受験、どっちなんだい?
yama3133
0
210
コミュニティが持つ「学びと成長の場」としての作用 / RSGT2026
ama_ch
0
200
人工知能のための哲学塾 ニューロフィロソフィ篇 第零夜 「ニューロフィロソフィとは何か?」
miyayou
0
420
Qiita Bash アドカレ LT #1
okaru
0
180
Node vs Deno vs Bun 〜推しランタイムを見つけよう〜
kamekyame
1
410
AWS re:Invent 2025 を振り返る
kazzpapa3
2
110
困ったCSVファイルの話
mottyzzz
0
130
Oracle Database@Azure:サービス概要のご紹介
oracle4engineer
PRO
3
340
製造業から学んだ「本質を守り現場に合わせるアジャイル実践」
kamitokusari
0
570
Featured
See All Featured
SEOcharity - Dark patterns in SEO and UX: How to avoid them and build a more ethical web
sarafernandez
0
110
Docker and Python
trallard
47
3.7k
ラッコキーワード サービス紹介資料
rakko
0
2M
Rebuilding a faster, lazier Slack
samanthasiow
85
9.3k
Bioeconomy Workshop: Dr. Julius Ecuru, Opportunities for a Bioeconomy in West Africa
akademiya2063
PRO
1
39
Build your cross-platform service in a week with App Engine
jlugia
234
18k
Lessons Learnt from Crawling 1000+ Websites
charlesmeaden
PRO
0
1k
What does AI have to do with Human Rights?
axbom
PRO
0
1.9k
Game over? The fight for quality and originality in the time of robots
wayneb77
1
77
How to Ace a Technical Interview
jacobian
281
24k
Producing Creativity
orderedlist
PRO
348
40k
No one is an island. Learnings from fostering a developers community.
thoeni
21
3.6k
Transcript
Data と Mesh と私 株式会社JDSC エンジニア 秋山 悟志
自己紹介 秋山 悟志 System Engineer(新卒)-> Web Application Engineer-> Data Scientist ->
Data Engineer(今ここ) SEとWAEの間にイラストレータとかもやっていました。
脳が溶けるようなデータパイプラインを設計することになっ た... - 週次運用 ×3(月曜と火曜水曜で処理違う)+日次運用のコンボ - 数理最適モジュール+UI表示モジュール+機械学習モジュール+顧 客側のデータ基盤をそれぞれ連携させる をAirflowといったワークフローエンジンで管理しちゃおう!
今はワンオペ体制なので逆に管理はできるけど.... (いやこれワンオペって...) - 人員や各モジュールをスケールした際に一元管理ってできるか? - BigQueryやらGCSやらで扱うデータモデルが無限に増えると思う。 lake->warehouse->martと いったアーキテクチャで管理できるか? - 複雑化、肥大化するほど、1元管理する人材の負担は計り知れなく増大するし、非効率
それぞれのモジュールは本当は性質が違うはず。 けど現在は Appと顧客データ基盤と私(弊データ基盤) というドメインの切り方でデータフロー図を作ってしまっている。
Data Meshという考え方 Data Meshとは:それぞれのデータ保持するモジュールをマイクロサービス(Service Mesh)とし て捉え、モノリス化したデータ基盤を切り崩していく。 Data Meshの四原則: 1. ドメイン志向で分散型のデータオーナシップとアーキテクチャ
2. プロダクトとしてのデータ 3. セルフサービス型データインフラストラクチャ・アズ・ア・プラットフォーム 4. 連合型(federate)の計算ガバナンス
サイロ化を許容してでもData Meshする? そもそも、サイロ化とは? 他者がデータへアクセスする際にとてつもなくコストがかかる、もしくは不可能である状態をさす。 しかし加工の段階(lake->warehouse->mart)によってドメインを分ける やり方こそが、それぞれの連携を希薄化させるのではないか? 結論:自ドメインのデータをプロダクトとして、責任をもって提 供しよう。
やろうとしていること - datalake->datawarehouse->datamartのアーキからの脱却 - 今までwarehouseでの一元管理を行なった結果、どれだけ用途不明のテーブルが堆積していっただろう か... - 各データエンティティがどのドメインに所属しているか、はっきりさせていきたい。 - それぞれのドメインが提供するデータのバージョニング
- 欲しいスキーマのデータを常に受け取れるように(GlaphQLのような仕組みがあればいいなぁ...) ただし、これらを初手で導入するとなると多分頓挫する。 標準のプロトコルや標準の規約などを実装した上で段階的にこなしていけばいいと考えて いる。 (普通のマイクロサービスだって、初手で導入するよりモノリスだったサービスをリアーキテククトする文脈で 使われることが多いですよね?)
Data Meshにベストプラクティスは(まだ)ない。 - 実ケースに基づくデータのパイプラインを管理するのなら、結局一元管理できた方が良いと思 う - データのガバナンスも含めてこの思想を反映したプラットフォームや実例はない。 俺がベスプラになってやるんだよ!!という気持ち
ご清聴ありがとうございました! 参考: データメッシュの原則と論理アーキテクチャの定義: https://www.infoq.com/jp/news/2021/02/data-mesh-architecture/ Data Mesh Principles and Logical Architecture
https://martinfowler.com/articles/data-mesh-principles.html メルカリが「マイクロサービス」に本気で取り組む理由(前編) https://www.sbbit.jp/article/cont1/35635