Upgrade to PRO for Only $50/Year—Limited-Time Offer! 🔥
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Kubeflowで作る共通データ基盤 (道半ば編)
Search
JDSC
August 19, 2021
Technology
1
290
Kubeflowで作る共通データ基盤 (道半ば編)
合同勉強会での資料です。
JDSC
August 19, 2021
Tweet
Share
More Decks by JDSC
See All by JDSC
JDSC採用ページⅡ
jdsc
0
3.8k
JDSC採用ページ
jdsc
1
84k
Data Meshと私
jdsc
0
230
家電製品の異常検知 (Case Study)
jdsc
0
550
鉄道省エネに向けた車上データ活用事例の紹介
jdsc
0
790
InterpretMLと Explainable Boosting Machineのススメ
jdsc
1
2.9k
Google Cloud Build とAI Platformではじめる軽量MLOps pipelineとAlphaSQL
jdsc
0
490
JDSCの事業・技術
jdsc
0
18k
JDSCの人・カルチャー
jdsc
0
18k
Other Decks in Technology
See All in Technology
Bedrock AgentCore Memoryの新機能 (Episode) を試してみた / try Bedrock AgentCore Memory Episodic functionarity
hoshi7_n
2
1.9k
普段使ってるClaude Skillsの紹介(by Notebooklm)
zerebom
8
2.2k
Strands AgentsとNova 2 SonicでS2Sを実践してみた
yama3133
1
1.9k
20251218_AIを活用した開発生産性向上の全社的な取り組みの進め方について / How to proceed with company-wide initiatives to improve development productivity using AI
yayoi_dd
0
670
New Relic 1 年生の振り返りと Cloud Cost Intelligence について #NRUG
play_inc
0
240
松尾研LLM講座2025 応用編Day3「軽量化」 講義資料
aratako
6
3.7k
AR Guitar: Expanding Guitar Performance from a Live House to Urban Space
ekito_station
0
230
Microsoft Agent Frameworkの可観測性
tomokusaba
1
110
Oracle Database@Azure:サービス概要のご紹介
oracle4engineer
PRO
2
200
ActiveJobUpdates
igaiga
1
320
AI駆動開発ライフサイクル(AI-DLC)の始め方
ryansbcho79
0
190
ペアーズにおけるAIエージェント 基盤とText to SQLツールの紹介
hisamouna
2
1.7k
Featured
See All Featured
How to optimise 3,500 product descriptions for ecommerce in one day using ChatGPT
katarinadahlin
PRO
0
3.4k
Neural Spatial Audio Processing for Sound Field Analysis and Control
skoyamalab
0
130
The Invisible Side of Design
smashingmag
302
51k
Heart Work Chapter 1 - Part 1
lfama
PRO
3
35k
How to train your dragon (web standard)
notwaldorf
97
6.5k
Context Engineering - Making Every Token Count
addyosmani
9
550
実際に使うSQLの書き方 徹底解説 / pgcon21j-tutorial
soudai
PRO
196
70k
The Illustrated Children's Guide to Kubernetes
chrisshort
51
51k
What's in a price? How to price your products and services
michaelherold
246
13k
Agile Leadership in an Agile Organization
kimpetersen
PRO
0
57
SEO for Brand Visibility & Recognition
aleyda
0
4.1k
HU Berlin: Industrial-Strength Natural Language Processing with spaCy and Prodigy
inesmontani
PRO
0
110
Transcript
Kubeflowで作る共通データ基盤 (道半ば編)
自己紹介 - 石井 正浩 - SIerとか携帯屋さんとかを経て現職 - 朝起きたら”ものもらい”ができてて左目が あかない
今日話すこと - データ基盤開発の課題 - Kubeflow on GKEやってみた
CloudStorage (DataLake) 分析にいきつくまでのデータ基盤の構成はだいたい一緒 お客様の データ置き場 定期的に更新さ れるデータ 自社領域に コピー (Datalake)
DWH (data warehouse) データ取り込み (warehousing) 分析/モデリング 開始 DWH (datamart) 取り込むストレージが千差万別 (GCS, S3, Box, SFTP, ...) スケジュールは顧客次第 取り込める形へ変換 データの外形的な異常がないか検査 スキーマ生成 分析用マートを作成するための大量の SQL
個別 vs 共通 個別に作るときの課題 - 案外大変 - 同じことやってる割に、毎回同じような工 数かかる(データエンジニア1人張り付き 1ヶ月とか)
- 一度や二度ならともかく、何回かやると 飽きる(個人の感想です) - ビジネス上の価値を作るのはあとの フェーズなので、ここは小さくしたい - 案件単位で実装だととっちらかる - 技術スタックが異なってしまう - 同じ機能が微妙に異なる実装で行われ る 共通化するときの課題 - 権限制御ミスると死ぬ - A社にB社のデータが見えてしまった・・・ (さすがにやったことはない ) - 計算リソースの想定がしにくい - 利用者が増えれば増えたぶんだけ、 スケールさせたい - 一方で利用者が少ないとき (時間帯)は 小さくしておきたい
Kubeflow on GKE
Kubeflow ※Kubeflow公式ページより https://www.kubeflow.org/docs/started/kubeflow-overview/
Kubeflow Pipelineの開発 - PipelineのworkflowそのものはPythonで記述 - コンテナレベルの制御 (例えばサイドカーの設定とか )をしたいときはkubernetesの Python SDKを使う
- コンテナ内の処理はもちろん何で書いても良い - データ処理と親和性の高い Pythonを使うもよし - gcloudみたいなコマンドラインツールを走らせるもよし Pipeline(Python) 処理1 処理2 定義 (yaml) 定義 (yaml) 処理3 処理2 定義 (yaml) 定義 (yaml)
Kubeflow Pipelineの登録と実行 - 登録: UI or API経由で可能 - API経由の場合、マルチテナント環境だと少し面倒・・・ (というか、もはやバグ
) - https://github.com/kubeflow/kfctl/issues/140#issuecomment-719894529 - 実行 - 必要なパラメータをその場その場で渡して実行 - 実行ごとにProfileをわけることが可能 Pipeline (Python) yaml Compile 登録 Pipeline UserA UserB Profile A Profile B ※ multi user環境の場合 Param Param
workload identity ※GoogleCloud公式ページより https://cloud.google.com/kubernetes-engine/docs/how-to/workload-identity
workload identityとKubeflow Profile Kubeflow Profile ≒ Kubernetes namespace UserA用に権限設定されたGCP ServiceAccount
BigQuery A_dataset ServiceAccount Profile: UserA コンテナ B_dataset Mapping (workload identity) GCS A_bucket B_bucket GKE(kubernetes) ServiceAccount Profile: UserB コンテナ
まとめ - Kubeflow on GKE、良いところばっかり書きましたが辛いところも多そうです - ドキュメントはout-of-date感たっぷり、英語しかない - 一度謎に壊れたときは作り直す以外なかった (逆に言えばそういう前提で作っておくと良さそ
う) - ただ、 - GKEと組み合わせたときの使い勝手はなかなか良い - 今回の使い方にはまあハマってそう - なんとなくミライを感じる