Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Kubeflowで作る共通データ基盤 (道半ば編)
Search
JDSC
August 19, 2021
Technology
1
180
Kubeflowで作る共通データ基盤 (道半ば編)
合同勉強会での資料です。
JDSC
August 19, 2021
Tweet
Share
More Decks by JDSC
See All by JDSC
JDSC採用ページⅡ
jdsc
0
1.9k
JDSC採用ページ
jdsc
1
37k
Data Meshと私
jdsc
0
180
家電製品の異常検知 (Case Study)
jdsc
0
470
鉄道省エネに向けた車上データ活用事例の紹介
jdsc
0
650
InterpretMLと Explainable Boosting Machineのススメ
jdsc
1
2.1k
Google Cloud Build とAI Platformではじめる軽量MLOps pipelineとAlphaSQL
jdsc
0
390
JDSCの事業・技術
jdsc
0
18k
JDSCの人・カルチャー
jdsc
0
18k
Other Decks in Technology
See All in Technology
AWS⼊社という選択肢、⾒えていますか
iwamot
2
1.1k
メールサーバ管理者のみ知る話
hinono
1
110
リンクアンドモチベーション ソフトウェアエンジニア向け紹介資料 / Introduction to Link and Motivation for Software Engineers
lmi
4
300k
20241108_CS_LLMMT
shigashiyama
0
260
The Role of Developer Relations in AI Product Success.
giftojabu1
0
110
ノーコードデータ分析ツールで体験する時系列データ分析超入門
negi111111
0
350
Terraform未経験の御様に対してどの ように導⼊を進めていったか
tkikuchi
2
380
いろんなものと両立する Kaggleの向き合い方
go5paopao
2
1.1k
ドメインの本質を掴む / Get the essence of the domain
sinsoku
2
140
VideoMamba: State Space Model for Efficient Video Understanding
chou500
0
140
Evangelismo técnico: ¿qué, cómo y por qué?
trishagee
0
320
SREの組織類型に応じた リーダシップの考察
kenta_hi
PRO
1
640
Featured
See All Featured
Keith and Marios Guide to Fast Websites
keithpitt
409
22k
RailsConf 2023
tenderlove
29
900
Mobile First: as difficult as doing things right
swwweet
222
8.9k
Typedesign – Prime Four
hannesfritz
40
2.4k
We Have a Design System, Now What?
morganepeng
50
7.2k
GraphQLの誤解/rethinking-graphql
sonatard
67
10k
BBQ
matthewcrist
85
9.3k
How To Stay Up To Date on Web Technology
chriscoyier
788
250k
Easily Structure & Communicate Ideas using Wireframe
afnizarnur
191
16k
Put a Button on it: Removing Barriers to Going Fast.
kastner
59
3.5k
Helping Users Find Their Own Way: Creating Modern Search Experiences
danielanewman
29
2.3k
StorybookのUI Testing Handbookを読んだ
zakiyama
26
5.2k
Transcript
Kubeflowで作る共通データ基盤 (道半ば編)
自己紹介 - 石井 正浩 - SIerとか携帯屋さんとかを経て現職 - 朝起きたら”ものもらい”ができてて左目が あかない
今日話すこと - データ基盤開発の課題 - Kubeflow on GKEやってみた
CloudStorage (DataLake) 分析にいきつくまでのデータ基盤の構成はだいたい一緒 お客様の データ置き場 定期的に更新さ れるデータ 自社領域に コピー (Datalake)
DWH (data warehouse) データ取り込み (warehousing) 分析/モデリング 開始 DWH (datamart) 取り込むストレージが千差万別 (GCS, S3, Box, SFTP, ...) スケジュールは顧客次第 取り込める形へ変換 データの外形的な異常がないか検査 スキーマ生成 分析用マートを作成するための大量の SQL
個別 vs 共通 個別に作るときの課題 - 案外大変 - 同じことやってる割に、毎回同じような工 数かかる(データエンジニア1人張り付き 1ヶ月とか)
- 一度や二度ならともかく、何回かやると 飽きる(個人の感想です) - ビジネス上の価値を作るのはあとの フェーズなので、ここは小さくしたい - 案件単位で実装だととっちらかる - 技術スタックが異なってしまう - 同じ機能が微妙に異なる実装で行われ る 共通化するときの課題 - 権限制御ミスると死ぬ - A社にB社のデータが見えてしまった・・・ (さすがにやったことはない ) - 計算リソースの想定がしにくい - 利用者が増えれば増えたぶんだけ、 スケールさせたい - 一方で利用者が少ないとき (時間帯)は 小さくしておきたい
Kubeflow on GKE
Kubeflow ※Kubeflow公式ページより https://www.kubeflow.org/docs/started/kubeflow-overview/
Kubeflow Pipelineの開発 - PipelineのworkflowそのものはPythonで記述 - コンテナレベルの制御 (例えばサイドカーの設定とか )をしたいときはkubernetesの Python SDKを使う
- コンテナ内の処理はもちろん何で書いても良い - データ処理と親和性の高い Pythonを使うもよし - gcloudみたいなコマンドラインツールを走らせるもよし Pipeline(Python) 処理1 処理2 定義 (yaml) 定義 (yaml) 処理3 処理2 定義 (yaml) 定義 (yaml)
Kubeflow Pipelineの登録と実行 - 登録: UI or API経由で可能 - API経由の場合、マルチテナント環境だと少し面倒・・・ (というか、もはやバグ
) - https://github.com/kubeflow/kfctl/issues/140#issuecomment-719894529 - 実行 - 必要なパラメータをその場その場で渡して実行 - 実行ごとにProfileをわけることが可能 Pipeline (Python) yaml Compile 登録 Pipeline UserA UserB Profile A Profile B ※ multi user環境の場合 Param Param
workload identity ※GoogleCloud公式ページより https://cloud.google.com/kubernetes-engine/docs/how-to/workload-identity
workload identityとKubeflow Profile Kubeflow Profile ≒ Kubernetes namespace UserA用に権限設定されたGCP ServiceAccount
BigQuery A_dataset ServiceAccount Profile: UserA コンテナ B_dataset Mapping (workload identity) GCS A_bucket B_bucket GKE(kubernetes) ServiceAccount Profile: UserB コンテナ
まとめ - Kubeflow on GKE、良いところばっかり書きましたが辛いところも多そうです - ドキュメントはout-of-date感たっぷり、英語しかない - 一度謎に壊れたときは作り直す以外なかった (逆に言えばそういう前提で作っておくと良さそ
う) - ただ、 - GKEと組み合わせたときの使い勝手はなかなか良い - 今回の使い方にはまあハマってそう - なんとなくミライを感じる