Upgrade to Pro — share decks privately, control downloads, hide ads and more …

Contrasting and combining Wasserstein and Fishe...

Avatar for Jia-Jie Zhu Jia-Jie Zhu
August 18, 2025
11

Contrasting and combining Wasserstein and Fisher-Rao gradient flows for relative entropy minimization

Jia-Jie Zhu

ICSP 2025 invited session

Avatar for Jia-Jie Zhu

Jia-Jie Zhu

August 18, 2025
Tweet

More Decks by Jia-Jie Zhu

Transcript

  1. Contrasting and combining Wasserstein and Fisher-Rao gradient fl ows for

    relative entropy minimization Jia-Jie Zhu Weierstrass Institute for Applied Analysis and Stochastics Berlin, Germany 
 July 31st 17th ICSP Conference École des Ponts, IP Paris SPP2298 
 open positions (KTH Stockholm/TU Darmstadt)
  2. Invited sessions on Monday, July 28 • Taiji Suzuki (U

    Tokyo) • Austin Stromme (ENSAE/CREST) • Thomas Möllenhoff (RIKEN Tokyo) Thursday, July 31 • Ya-Ping Hsieh (ETH Zurich) • Young-Heon Kim (UBC) • Jia-Jie Zhu (WIAS Berlin) Synergy between Stochastic Optimization, Dynamics, Sampling, Inference, and Optimal Transport
  3. This talk is based on the joint works with Alexander

    Mielke Mielke-Z. Hellinger-Kantorovich Gradient Flows: Global Exponential Decay of Entropy Functionals. arXiv preprint Z. Inclusive KL Minimization: A Wasserstein-Fisher-Rao Gradient Flow Perspective. arXiv preprint Gladin-Dvurechensky-Mielke-Z. Interaction-Force Transport Gradient Flows. NeurIPS 2024 Z-Mielke. Kernel Approximation of Fisher-Rao Gradient Flows. arXiv preprint Liero-Mielke-Tse-Z. Evolution of Gaussians in the HK-Boltzmann gradient fl ow. arXiv preprint
  4. Deep generative models Previouis view of DGM (static) [Goodfellow et

    al. 2014...] min ω D(ωdata|gω#PZ ) New view of DGM (dynamic) Simulate an S/O/PDE [Chen et al. 2018, Song et al. 2021] ˙ Xt = →↑εt (Xt ), for some learned ↑εt, e.g. NN Perspective: flow and evolution of prob. measures
  5. Robust learning under distribution shifts [Z. et al. AISTATS 2021,

    AISTATS 2023, ...] Empirical risk minimization min ω 1 N N i=1 ω(ε, [xi , yi ]) xi , yi → P 0 : data sample. ε: learning parameter e.g. DNN weights. What if the test data distribution shifts from P 0 ? Distributionally robust optimization (DRO) min ω sup µ→A↑P E µω(ε, [X, Y ]) A = µ ↑ P D(µ| ˆ PN ) ↓ ϑ ˆ PN = 1 N N i=1 ϖxi : empirical dist. D: divergence between measures Wasserstein DRO: exploit c-transforms of special loss functions in ML [Esfahani-Kuhn et al., etc.] Distributionally robust optimization and learning
  6. Output (model) • Sampling / Generative models: Produce new draws

    xi → ω • Inference: Approximate ω by a parametric family, e.g. ω(x) ↑ N x| ˆ m, ˆ S Input (access to the target) • samples: yi → ω (target distribution) • score function: V (x) = ↑ log ω(x), ω(x) ↓ e→V (x), Output (model) • Sampling / Generative models: Produce new draws xi → ω • Inference: Approximate ω by a parametric family, e.g. ω(x) ↔ N x| ˆ m, ˆ S Goal: General-purpose optimization over (probability) measures Type of applications of modeling a measure π find ω = argmin µ→A↑P F(µ) as optimization problems over (prob.) measures <latexit sha1_base64="aKuOcfxwCWQ5tLSWDB06t0jg+cA=">AAAMJnicjVbrbtxEFHa5FodLCz/5c9oSVMQ23aQ3hLRSk6ZNG7UltElTNY6isX28nu54xsyMs0ktvwHiOXgAHoAn4B9C8AsJHoQz493sbi4S/rGenTnnm3P9juNScGO73T/PvfX2O+++9/75D8K5Dz/6+JMLFz99YVSlE9xKlFD6ZcwMCi5xy3Ir8GWpkRWxwO14cM+db++jNlzJTXtY4m7B+pJnPGGWtvYuPI1WHm/dhwfQg0gXq3vRPtNlzr/tRVxaGP2DSGBmr0aZZkkdpWlUVI1/l7yJNO/n9ito/+5duNJd6PoHTi4WR4srdy89+2nh6x/3N/Yuhr9GqUqqAqVNBDNmZ7Fb2k7OZKoqu1vH5AvqBuYhUxpG26YDUlmIKy5SE87DKQhHmmHYqlJUDEmgdqrotSqDJUsGrI91mWYlvc34Ii4TUaVc9oFOjMMwuRqCM4GnOIEwaNt7VOniWXspfwpKgsFEyRRMohFlzweqCU/oTBCbMyGVFIdjmdCZMw/P0YIRTjfl5LvLsDepj6pAqw/rkpWohzy1eW/pzmJRdMDv5Ojs6C11bxRFM8LyJigfGmBliTLlB8ciVFTCckYxQZlg47VWkeKtEZgQUCpjOBUdjEWgr1VVeovI0qc4XB4d1Hhg6QJMm1POpNIFE01rVbSK2b1Ka0rbCYHTTyfQLuv8ADaVgoLJQ/qxORla5ixGa4AcSynJMGoNaGEXwkjiMFEFqaRRTq+DutvMbMbjzdAFx+ZY4E6pVZ+qy8RM96hFKPquD3drlwZVKuriJpwO5TjCsipi1FN1Oi0UKzWwLG5rYrK/YxImsLe0WycJp+oyJxTLflYKZSeKo/+Cx5pRWaTMotsYuTBWOzC0whln68j7J8k+andLwY2z9m2SaeeaaKxMkN73+gldojkTvpkowbDJxMDVfhW3AiHAd1TfFHTY1EyaUmkqPWqWNc1cMi08EGponH4UkfATluREcfAYmZauL52sR+BvPJWFhM4qmyt9ZOo6Z9fWOcKrvGo6EBJOlCllfRvxNxhuI6f0W02cAY+kIcMqi97i5ZK4lypkWTJxaLjxtz23KskZiSWGoFZQE+d2YA21KzAX7Mi3b6J5aT3+PKwwV2dUX6+Vo9Oh0gMDQ25zOlsWeECwREhPOIoBdmCD7aOA1f1KY5JTRw8OO/7i+30yaU1QXLyXLoEufkD0nHEh/HK9ouDcsnkHlrpLN/0WifKxV07+GREg00lOzFFwyTRcpixRgil8VFPkHi28d5c7sP1o+TlEX8LDLWgddRf7zPU1o4lAY2Df57y+mRRNlLfrb9y6pc6xnNlpGehGUuzWGe9f/0FfG2JsuMWFUvYbR7jL6evKWCBbYITq3R6hAjMgEamrPVmNp5uZLd/x9mynSWZjHh9roRqp8ej+Ykz21hEi5cHtubxNyw7JDTJ7FpaqOGGenT0bE/wj6c0fW3HpUniCO2lW+15d5YY5omzlW+YAoo4wKtgAGYXYkjFTY4KsKoXL+bS0Iy8aL84GcJOrqZv/o5IjS6+7JvDy7YWKLNHOMv+1AAnlQh11VZRiRn3nPzTqYU4h8lJN/WxtpamXbt2ighv9NEDx3KDiBS8HXmcWwKjMbrvDI/2uU21/SN+NNRJpAWjIU73S3ONEllSYsl9xk/vYZVoVUB5d5YynQeJEwFNWe7eZikh7f0wJcXOJqithcp+Zpo77vSm3wNuwMiXWOnEMZ8LyxwA6kPV7sSB9V1wPnBh4OZi62hW3o6gzwNtZ5CWaegzXgWOGzsPTidwZSDQpqBTSY1DeyanHU9GRXAvl+4KKiPiOnwwjERfVF05wU6bJOXbYzOLen5I7w0Si3yqxlMmz7fNQbW2qDMYK5DkKN51omgs+oABXglqHPkSIaY1vSpKSpJL5BoF22prTusQ1hPuApqagq6SaVnBA66/o2irLTmcc+uZdPP6Fe3LxYmlh8fbC7e/p4/eLoH3OB58Hl4OrwWJwJ7gbPAw2gq0gCX4J/gr+Cf6d+3nut7nf5/5oRd86N9L5LJh55v7+D/n7QsY=</latexit> F = Dω := ω dµ dε dε
  7. Kantorovich-Wasserstein distance and optimal transport “Euclidean distance” between probability measures

    p-th order Kantorovich-Wasserstein distance be- tween (probability) measures µ 0 , µ 1 on X → Rd with p finite moments is defined through the Kantorovich problem W p p (µ 0 , µ 1 ) := min |x 0 ↑ x 1| p d! ω(1) # ! = µ 0 , ω(2) # ! = µ 1 T [Peyr´ e and Cuturi, 2019] Dynamic formulation: Benamou-Brenier W 2 2 (µ 0 , µ 1 ) = min 1 0 ↓↔ε↓2 L2 µ dt ϑtµ = ↑div (µ↔ε), µ(0) = µ 0 , µ(1) = µ 1
  8. Hellinger (Fisher-Rao) distance over M+ He2(µ 0 , µ 1

    ) = 4· ωµ 0 ωε → ωµ 1 ωε 2 dε, µ 0 , µ 1 << ε Dynamic formulation: Benamou-Brenier He2(µ 0 , ϑ 0 ) = min µ,ωt 1 0 ↑ϖt↑2 L2 µ dt ˙ µ = →µ · ϖt, µ(0) = µ 0 , µ(1) = µ 1 . <latexit sha1_base64="+BlNQz8Diqn7MXG3doZ3T3EWXh0=">AAAOWnicjVdbc9vGFWastkmQRo3TvvXlxK4yUkspFGMnbWY4EzmKb61T17KjTARFswAOgI0Wu+jugpSC4K/0pb+qM/0xPbsARJCSZooHcrk45zv3C6NScGMnk/+8dWfjF7/81dvvvBu89+v3N3/zwd0PvzWq0jG+iZVQ+ruIGRRc4hvLrcDvSo2siAQeR+dfuffHc9SGK/naXpZ4WrBM8pTHzNLV2d07/wZ6nqBK0PAY4krP0QTuLoww47Jmgmfyj42/6p8tCAtmc13U244THr/agSaEFZpQYGrDevVuAInJKqZ/nyhL0BV8DDPYhfCCux/jMLyF8oJ7yrrebRoIU83i/enP/vpn+GEKe6vCUSY3iw41z3K7t26iZVntzNt9ii39EqHzx2HFBPyVSau0mvM4B+dhSJUuvoBtgwgnLziKc4TwY4LDCxul9fd7DUwn04enjg4StIwLsxM4iZXhMgObI8RCGUx2HRIYJSoXK2CRmmNwS2A66/tfT/GH6TY572wydp/7OzAbmBeaqjyrt6fwJwjLnO/QibxdGr4zezB0zU0xpFsuracOkwQ8+hrB7s0M+RXDZJgqrffDoVwXiqGzzz64P9mb+AeuH/a7w/1R97w8uxv8izIkrgqUNhbMmJP9SWnHOZOJquxpHVGFoG7I5y4I3bUZg6SsiiouEhNswQ0IV5xB0LJSrRmiQO1Y0XNVBksWn7MM6zJJS/o2vSAuY1ElLsj0xjgMk6sFOBV4gksIg7aVo0oX+dpT+bdAeWAwVjIBE2tEOfPea4JrPEvE5lZIJcVlTxM4dbbgCC0Y4XgTTra7vuFVylAVaPVlXbIS9YInNp9NP98vijH4mxydHrPp5NOiaDosr4LyrgFWlhRQfrHmoaISljPyCcoYG891iORvjcCEgFIZw6mVQU8CmVZV6TUiTb/BxUH3oqbqIgGutK+/k1RHTDStVuEhpl9VWlPYrhHc/HYJ7aLOL+C1UlAweQmuC5KiZc4itIYKGBMKMnQNF1rYvSCUuIhVQSxJmNPXRT1pVi6j/jJwzqEOUOBJqVVG2WUipmdU3OR9191PaxcGVSqaDU0wdGXvYVkVEepBng6JIqXOLYvanFjen5iYCZxNT+s45pRd5hpjmaWlUHbJ2P0WPNKM0iJhFt1FZ0LPdmHohCvG1qG3T5J+Td13Rf9t4qFxTdgzE6S3vX5BQjSnnuuKiQIMr5k4d7lfRS0B9Y2/U36T0+G1ZtKUSlPqUbE80cwF08JjoRbG8fuh8oLFOQ1O+BsyLV1dOlqPwH/yAzIgdFbZXOkrVZ9ztvucI3yfV80YAsIJU6WsLyP+EwbHyCn8VlPPgGfSkGKV9UMBDkqa6JQhB5KJS8ONl3ZkVZwzIosNQT1CTZN8TANZuwRzzg59+caal9bjb8Ej5vKM8utH5TrrQulzAwtuc3p3IPCCYKkhtaNnDC/ZHAUcziuNcU4VfX459oK/zkilJ4L84q10AWw7fThPuRD++Lwi5zy0+diNrAf+ikh5b5Wjf0UNkGmafUdYcMk03KMoUYDJfZRTZB4dvHX3xnD87ODIzcKnb6A11An2kcs0o/kQ1+Hcx7x+EBdNmLfnP7tz2zp7OnPSdqBP4+K0Tnn2yT/17gIjwy3ulTJrXMM9SH6sjPXjtEP1ZneowAxIRKpq36z6ncmspm9/vVppktmIR2slVCMVHskv+mZvXUOkOLg7F7ch7YLMILVXYSmLY+a7s+/GBP9MevV7LT76KLjWO2kD9LV6yA1zjbKlbzsHUOsIaFM7R0YutqTMYEyQVqVwMR9Su+ZF48WvG25yNXXz/7DkyJJPXBF4+lagIk2008zvoLRYGquuqipMMKW68+trvcjJRZ6qqV89edTU04cPKeG6j8ZtRi8pecHTgedZBTAqtcfu5RX/xLG2H41f5o6IpAWgIU/5SnOPU7OkxJRZxU3ufZdqVUB5JcopT4PEdktZ0ck2A4+08iMKiJtLlF0xk3NmmjrKZgOz2oXy0YCsNWINZ9nl1wDGkGazSBC/S67Hjgw8HQxEu+R2LeoW8HYWeYqm7uHGsKboFnyzpLsFiSYFpUKyBtWs7nzgW9EVXQvl64KSiPodv+5GalyUX7jETZgm49hls4r79YDuFhWp/VaxpUjerp+HanNTpdAzkOUo3HSiaS44be5RJah0aBGhTmt8URKVJJbUFwi009bcVCWuINzfMioKEiXVkIE22v31/fX64dvp3v5ne5/9Y3r/yz90u+07o9+P7o22R/ujz0dfjp6OXo7ejOKNYGOy8ZeNL97/7+adzXc332tJ77zV8fx2tPJs/u5/xxDGbw==</latexit> Geodesic curves    ˙ µ = →ωµ, ˙ ω = →1 2 |ω|2. Dual Kantorovich type form: (see [Mielke & Z. 2025] for details) 1 2 He 2 (µ0, µ1) = sup (2+ω)(2→ε)=4 ε dµ1 → ϑ dµ0 . Mielke-Z. Hellinger-Kantorovich Gradient Flows: Global Exponential Decay of Entropy Functionals.
  9. Otto-Wasserstein gradient flow Generalizing the Euclidean geometry Rd , →·→

    to (P, W 2 ) Otto-Wasserstein gradient flow [Otto, 1996, 2001] µk+1 ↑ argmin µ→P F(µ) + 1 2ω W 2 2(µ, µk ) (JKO) Continuous-time (ω ↓ 0) gradient flow equation εtµ = ↔div µ↗ ϑF ϑµ [µ] PDE has a gradient structure:        Measure Space : P or M+ Energy functional : F (e.g. KL) Dissipation Geometry : W 2 or He The merit of the right gradient flow formulation of a dissipative evolution equa- tion is that it separates energetics and kinetics: The energetics endow the state space with a functional, the kinetics endow the state space with a (Rie- mannian) geometry via the metric tensor. [Otto 2001]
  10. Sampling as (interacting) particle systems <latexit sha1_base64="PYhLJ/USON3LpVJCT7S4X5Mvy5E=">AAANnHiclVfrcttEFHbD3RCg8JMZ5vQSplA3OIYWhhnPNGna0tJCaNKkQ5TJrKQjafFqV91dxUmFeBTeiwfgPTi7kmI7aWZAP2z57LlfvrMOC8GNHQ7/vrT0xptvvf3Ou+/13/9g+cOPPr78ya5RpY7weaSE0i9CZlBwic8ttwJfFBpZHgrcCyf33PneEWrDldyxJwUe5CyVPOERs0Q6vHzpH4AgxJTLipSVuTT1/s5BH+gJGkI1XL0dWDy2Ux7brG6PUFrUXKb+5xMmUzziErY373vCCvwZRNxiURXsSHBluRkN1+4Yq6KMGcujVk1jGF+W3puvavBkf5Qzm+m8iusXhxbGcKsKJAsFq3dvEOFLCKyZ47FwE6rg2f1NCMxLbatRfYZh79C2JlHGcwZbb6//dmiv/wAbWk0lZxJy5Y7/ZxYeqMkE9a0twWQ0ga02FW2MTPC0s+fJBdOWM0HBBXkJ49ODLo5NFJa5sxpuBpuPdiEQmNgbnrtJBRBN8zSjbMxCm9nxP7uaHn58bbg69A+cf1lrX6712mfr8HL/ryBWUZlTiJFgxuyvDQs7yJiMVWkPqpB6DHVNuUuUhpZsBiCVhbDkIjb9FXiNhlPJfr8RpW41Po1OFL1UabBg0YSlWBVxUtC36QxxGYkypowDnRinw2RqCs4FHuNMhUHb2FGFq2TlufwpKAkGIyVjMJFGlGOfw7p/Tmamsb5QpZLipOPpO3dWYBstGOFkY06xu8nzLqWocrT6hEaiQO3baDz6bi3PB+ApGTo/xqPhN3let7q8C8qnBlhRUEX58ZkM5aWgPqKcoIyw9lKbSPnWCEwIKJQxnMAAOhZItSoL7xF5+jNO19uDipqbDGBcv+ZMKp0zUTdeUW8m90qtqWznGF5/OlPtqs6PYUcpyJk8ATeh5GiRsRBpYimwmIoMLWRBo3a1H0icRionkTjI6Ou4GtYLxLAj9l1ybIY57hdapdRdJmR6nGgqncfHg8qVQRWK0LXuz6eyy7As8xD1XJ/OM4VKTSwLm56Y0fdNxASORwdVFHHqLnNOsEiTQig7E2x/Cx5qRm0RM8JLIrQhdGLHht5wIdgq8PFJ8q+uPCiFSfNtovng6qATJpU+9uopc4DFhB8mKjDsMDFxvV+GDQMBxy/U35R02NFMmkJpaj0aloeauWJaeCDU1Dj5ICDmpyzKaPXAE2Raurl0vF4Df+Uxtk/aWWkzpU9dfczZrccc4besrAfQJz1BopT1Y8RfYX8POZXfasIMeCRpXdjSovd4vaCdSB2yLpk4Mdx4a9unW8WQqg3UtAsH8BC1azCX7MCPb6R5Yb3+Fdhgrs+ov35XnEKaKj0xMOU2o7N1gceklgDpKUcxwQFssSMUsHlUaowymujJycAbvp+SSw8F5cVH6QpYNUh8lHAh/OvjkpJz22YDGA1H33oSsfIuKsf/jACQ6Sgj5Mi5ZBquUpWowJQ+6ikKj158dFcHsPdofRuCL+DH59AE6gz7yqWaFRmPquDI17z6NsrrIGvev3fvDXR2fGa/QaBvovygSnj69Ut9a4qhoaW9Wsi0doC7Hv9eGgvkC7RafditVmAGJCJNtQer7tZhFtu3Iy9OmmQ25OGZEaqQBo/s5x3YWweIVAdHc3Wb551SGOT2olrq4oh5dPZoTOofSe9+58WVK/1z2Ekr0s/qJjfMAWXD3yAHEHT06RYxQUYptuTM3Jogrwrhaj7P7cCL1ovzAdzmqqv6v4hkyOKv3RB4/sagIk+088zf4iCiWqjTqQpiTGju/AWwmmaUIs9VV88ebtTV6PZtarj2o3Y3nC1qXvB84GUWFRiV2D13eCo/dKLNR+2vSNvE0iigJU/9SnuPE1hSY8q05CbzuUu0yqE4NeWcp0XiWMBDVmPbzGWksR9SQdxeou6KmDxipq7CdDwXVnNN25hja4I4o2eG8mcUDCBJx3RniiauuR44NvB8MGfaNbeDqAuUN7vIc9RVp24AZxxdgZ9nfBdook1BrRCfUVXD4uOh6JSvUeXngpqI8I6fTyMBF/UXzvTGTFNw7KRe1Ht/ju8CFwl+y8hSJS/2z6tqelMl0AlQ5CjcdqJtLviEElwKGh26iBDSGj+UxCVJJPEDAs22Na+bEjcQ7o8NDQWZkmpegG60a2fvr+dfdkera3dW7/w6unb3enu3fbf3We9q70Zvrfdd727vx95W73kvWnqypJeqpT+WP1/eXP5p+WnDunSplfm0t/As7/4Luvuwpg==</latexit> Langevin SDE dXt

    = →↑V (Xt )dt + ↓ 2dWt Fokker-Planck PDE ωtµ = !µ + div (µ↑V ) <latexit sha1_base64="d+fE6Unb8qIInebfMY4LSC6GewM=">AAAMP3icjVZbc9w0FN6UW3G4tDA8MQOnl3QKs0032xvDTJgmTZu2tKW0SdMhDhnZPmurK0uuJGeTGv8A/gT/hZ/BL+ANeOWNI3md3dxm8ENWkb5zdK7fUVQIbmyv98fMqbfefufd906/H8x+8OFHH585+8kLo0od43qshNIvI2ZQcInrlluBLwuNLI8EbkTDO+58Ywe14Uqu2b0Ct3KWSj7gMbO0tX3m1zDClMuKCZ7Kr+sALkFocddWmSrwWxgoDUblCBdDJoqMwXfQu1gHYeiBK98/gsthXm5b+AXCgsNXEAp8DWHObKZzwJ+rK2M5W0/QvRYdhCiT9urtMxd68z3/wdHFwnhxoTP+nm6fDX4LExWXOUobC2bM5kKvsN2MyUSVdquKKAyoa5jzXoy3TRekshCVXCQmmINjNOxLBkEjSgE1hEDtRNFLlQYLFg9ZilWRDAr6Ne1FXMaiTLhMgU6M02EyNQJnAk9wosKgbe5RhUtF5VH+FJQEg7GSCZhYI8pFzdPMUtgPy0w01ieqVFLstZjAmTMHz9GCEU424eS7Kw5vUoqUaqv3qoIVqEc8sdli/9ZCnnfB72To7Fjs967leT3W5U1QPjTAioISyncPRSgvheWMYoIyxtpLrSDFWyMwIaBQxnCqV2ghkGpVFt4isvQJjpbGBxUVJl2ASX3MmVQ6Z6JurApXcHCn1JrSdgRw/OlEtcs634U1pSBncg9cMYOv4gitAXIsoSTDuKugUTsfhBJHscpJJAkz+tmtevWBzajdDFxwbIY5bhZapVRdJmJ6caApdb6FtyqXBlUoIoA6mA5lG2FZ5hHqqTqdBkVKDS2LmpqY7G+amAlc7G9VccypuswRwSIdFELZieD4f8EjzagsEmbRbYxdaMV2Da3wgLNV6P2TZF9deUKJBs2viaedq8NWmFR636vHdInmTPhmogTDGhNDV/tl1AACgB+ovinosKaZNIXSVHrULKuauWRauCfUyDh5x1PwmMUZsSM8Qqal60uH9Rr4G8+CAWlnpc2U3jf1IWdXHnKEn7Ky7oLju3CglPVtxN9gsIGc0m81cQY8kIYMKy16i5cKom2qkCXJxJ7hxt/23Ko4YwSLDalaRk103YVV1K7AXLBD376x5oX1+udgmbk6o/p6pTi5NFJ6aGDEbUZnSwJ3SS0R0mOOYohdeMp2UMDKTqkxzqijh3tdf/HdlExaFRQX76VLoIsfQLgz4EL45cOSgnPDZl3o9/rX/RZBeeuVwz8jAmQ6zog5ci6ZhvOUJUowhY9qityjhffufBc2Hiw9h/AS3F+HxlF3sc9cqlmR8bgKd3zOq+txXodZs/7GrRvqbHFms2Gga3G+VQ14evW1vjLCyHCL84VMa0e4S8mr0lggW2Cs1bs91grMgESkrvZk1Q5Gc7B82+2DnSaZjXh0qIUqpMaj+/OW7K0jRMqD23N5m8aOyA0y+6BaquKYeXb2bEzqH0hvfmvFuXPBEe6kMe97dYUb5oiywTfMAUQdAQ3cITIKsSVjpsYEWVUIl/NptCMvGi/OBnCTq67q/yOSIUuuuibw+OZCRZZoZ5l/aEBMuVD7XRUmOKC+82+UapRRiDyqrp6tLtdV/8YNKrjxnxoonk+peMHjwMscVGDUwG64w335nhNt/pC8G2sEaRTQkKd6pbnHiSypMGVacpP52A20yqHYv8oZT4PEQcBTVnO3mYpIc39ECXFziaorZnKHmbqK0sUpt8DbsDwFa5w4pGfC8ocUdGGQLkaC5F1x3XMw8DiYutoVt6OoE5Q3s8gj6qpV14VDhs7BkwnuBE00KagUkkOqvJNTn6eifVyjyvcFFRHxHT8aRiIuqi+c6E2YJufYXn1Q790p3AkmEv2WsaVMnmyfV9XUphpAK0Ceo3DTiaa54EMKcCmodeghQkxrfFMSSpLIwDcINNPWHNclriHc25uagq6SalqAXrQLh9+vRxcv+vMLN+dv/ti/cPvi+G17uvN553zncmehc6tzu3O/87Sz3ok7f898NvPFzJezv8/+OfvX7D8N9NTMWObTzoFv9t//ALVBQw0=</latexit> hope: for some ω > 0 DKL (µt |ε) → e→ωt DKL (µ0 |ε) <latexit sha1_base64="uXnHf/GXmMqQndDF7xau5CsQk6A=">AAAMmXicjVZbU9w2FF56Tbe0TdrHvJwkpZM0G7K7ufWFmUAgBBoSGiBkiikj21pbWVtyJZmFuP4r/V997h/pJ3kXFggz9cPaK33n6Fy/o7DIhLHd7j8zn3z62edffHnlq/bXs998+93Va9+/NarUEd+JVKb0u5AZngnJd6ywGX9XaM7yMOO74fCZ29895NoIJbftccH3c5ZIMRARs1g6uPpvEPJEyCphNuX657pNeALLj2y1+pyCn+j15jYVUFDwyIpDXlMQNJi8PKiGd3t1kHBrmiWmk1zIgwp7gSlDwy1gUBwOKv+OWEabVNdUBUsvd1aC5V9f1rcBpr8oKATd8VruBgPNol7VDywr6yp4s7JMuwf9P/oe2vEHD++0Ycbtxs4Mx8AsoPGjqOvUBFzGJz4dXL3Vne/6hy5+9MYft1rjZ/PgWvvvIFZRmXNpo4wZs9frFraTMhmr0u5XIQLMdU1zNFCaxsumQ1JZCkuRxaY9Rx/RcCLZbjeiSJUBgmsnyr1UaXjBoiFLeFXEgwJvMzlIyCgrYyETwo5xOkyqRuRMEDE/VYG4N+eowiW58ii/S0qS4ZGSMZlIcy4XtEhSW7cvyJxqrC9VqWR2PMG0nTlztIVcmMzJxgK+u7LzJiVc5dzq46pgKKaRiG260H/Sy/MO+ZWUOzsW+t0HeV6PdXkTlA8NsaJARsXRuQjlZWYFQ0y4jHjtpZY54q05sSyjQhkj0Ak0gVCiVVl4i2DpKz5aHG9UKCQcwOP6I3tS6ZxldWNVsMwHz0qtkbYLgI/vnqp2WRdHtK0U5Uwek+sJGFqkLEQPERyLkWQa9ys1aufbgeSjSOUQiYMUr6OqW59ZDCeLbRccFH3O9wqtElSXCZleQEMh+o4c9iuXBlUoUEvdng7lJMKyzEOup+p0GhQqNbQsbGridH3PoLP5Qn+/iiKB6jIXBItkUGTKngqO/2ci1AxlETPL3cLYhYnYkcEXP+NsFXj/JOwDOTgCcOzi3iaadq4OJsJQ6X2vNnCIFuAg10xIMG2zbOhqvwwbAIjjNeobQadtzaQplEbpoVlWNXPJtPQ8UyPj5D0LbrAoBe/SS860dH3psF6D+OD5tQ3trLSp0iemrgt2b11w+j0t6w45GgsGSlnfRuIDb+9ygfRbDc6gNWlgWGm5t3ixwEBAhSxKlh0bYfxpW1ZFKQMsMlC1xDUGQYdWuXYF5oId+PaNtCis1z9HS8zVGerrvRJwaaT00NBI2BR7ixk/gloQ0obg2ZB3aJMd8oyWD0vNoxQdPTzu+INXEpi0miEu3kuXwKqZAocDkWX+c71EcB7ZtEP9bv+hXwJUTLxy+DcgQKajFMyB0cE03dxwrI3OEG5abFl8eO9udmh3bXHLjaQXO9Q46g72mUs0K1IRVcGhz3n1MMrrIG2+f3HfDXVOcGavYaAHUb5fDURy/099b8RDIyyfL2RSO8JdjN+XxhJsobFW7/ZYKzFDknN0tSerycg1Z8t3sny20ySzoQjPtVDF0Xg4P5+QvXWEiDy4NZe3aewIbsDss2pRxRHz7OzZGOrXpDd/YsWNG+0L3IkLhO/VZWGYI8oG3zAHgTramNtDzhBiC2OmxgSsKjKX82m0Iy/j7gkoLje56qr+PyIpZ/F91wQe3xyo3Oh2lvkrDEXIhTrpqiDmA/Sdv/1UoxQh8qi6erO6VFf9R49QcOOfmhDPTRQveRx5mbMKjBrYXbd5It91os0P5N1YA6RRgCGPesXcEyBLFKZMSmFSH7uBVjkVJ0c54zFIHIQ8ZTVnm6mINOeHSIibS6iuiMlDZuoqTBam3CJvw9IUrHHinJ5Tlj+noEODZCHMIO+K67mDkcfR1NGuuB1FXaK8mUUeUVcTdR06Z+gcvTrFXaIJkwKlEJ9T5Z2cejwVneAaVb4vUETgO3ExjCAu1Bc/1RszDefYcX1W78oU7hITQb9lZJHJy+3zqpraVAOaCMBznrnphGmeiSECXGbuelo4pjW+KYGSEBn4BqFm2pqPdYlrCHerR1PgKKmmBXCj7Z2/v178eNuf7z2ef/xb/9bTH8d32yut662brdutXutJ62nrRWuztdOKZtZm1MzRzPHs9dnF2Rez6w30k5mxzA+tM8/s1n+QcV9A</latexit> GF & OPT perspective µk+1 → argmin µ→P DKL(µ|ω) + 1 2ε W 2 2 (µ, µk ) (let ε ↑ 0) <latexit sha1_base64="M0EqXOuqFVT+9cVW+C7kSkvNrCs=">AAAMcHicjVbrchs1FHa4FjdAC3+Y4QenbcIUxg1OoC3DTBhSSkM7FAK9hKEbOtrds17V2tUiaeOYnX0VHoQ34TV4Aj5p7dhJmhn8w5alcz6d63cUV0paNxz+s/LKq6+9/sabF97qX1x9+513L11+76nVtUn4SaKVNr/GwrKSJT9x0in+tTIsiljxfjz+1p/vH7KxUpeP3bTig0KMSpnJRDhsPb/0N9GuFuorGnHJBpvliKwoKsWWMqML6hOtRam0lRJT66aKo0peP/qEtinKjEiazbaJZOmIf29uPMVBG6UpHbXHf9cAsE6TnA3TGj1dI2nJ5UyVdlw6KRT5i0fTjSC3FsXsBH1Nw2PBVGZZ7e2nRJfWCdx1XWeQfn7p2nBjGD50drE5W1zrzT57zy/3/4pSndQFLk6UsPbZ5rByg1yUqa7dQRMjbmxamJFpQ7NtO6BSO4prqVLbX6eXIBxr9vudKjJgIcHGq3LQqi1XIhmLETdVmlX4tfOLZJmoOvWBx4n1GDbXE/ImyJQXEJZdd4+ufO6aIBVOCcGxjPCkZBPDXG4bOcpd2z+js0Bsz4XUpZrOZfrenHV6xI6s8rqphO8+G8GkEeuCnZk2lajYTGTq8u2t25tFMaCwk7O3Y3tr+HlRtDOsYIIOoSFRVVym8uhUhIpaoTIQEy4TboPWXUa8UUJCKZSOtRIFTnMRGhldV8EiWPojT3ZmBw0focpSTtuXnJXaFEK1nVXRXc6+rY1B2s4IvPx0Ae2zLo/osdZUiHKKL5fD0CoXKGZLcCxFkmnWhtTBbvSjkieJLqCSRjl+jpphe2Iznm/2fXDQCwU/q4weobpsLMw2+g/R9z1/0Pg06EqDMdr+cijnES7rImazVKfLQrHWYyfiriYW+89sIhRvbx00SSJ9851RrEZZpbRbKM7+KxkbgbJIhWO/MXNhrnZkseITzjZR8K+EfSAUh+DGWfdrk2Xn2miuDMjge/MQlxhPJL6ZkGB6LNTY134ddwLgip9Q3wg6PTaitJU2KD00y64RPpmO7ik9sV4/iiD8UCQ56JR+YGFK35deNiDIPwNt9oEuapdrc2zqAyluPJBMv+V1O6A+cKJMaxfaSP7J/X2WSL8z4Ay6DxqTrnYcLN6pwPOokJ1SqKkF6fnbHjmd5AJiiQXUHTbg9wHtsvEF5oMdhfZNjKxcwF+nO8LXGerrhfZ8PNFmbGkiXY6zHcVHgAUhPZSsxjygPXHIiu4e1oaTHB09ng7Cxd+NYNKuQlyClz6BPn5E0WEmlQrLBzWCc9PlA9oabn0RtiAq5155+V9AgMIkOZijkKUwdBVZQoIRPtQU3MMieHd1QPv3dx5R9DF9/4Q6R/3FIXMjI6pcJk10GHLefJEUbZR36y/9uqPOuZx91jHQ50lx0GRy9Nkf5saEYysdb1TlqPWEu5O+qK0Lg2WGGtyeoZKwVDKjqwNZzSepPVm+8+2TnVYKF8v4VAs1jMbD/cWc7J0nROTB7/m8LctO4AbMPgmLKk5EYOfAxoC/X3YDdGbFlSv9M9yJd0Ho1bvSCk+UnXzHHATq6EeFGLNAiB2MWRoTsAqD3nkfF9KevDBevA3kJ1fbtP9HJWeRfuabIMh3F2pYYrxl4WVCCXKhj7sqSjlD34VHTTPJEaIg1Ta/7N5pm62bN1Fws6/WPxb2ULwU5CjonASwOnP7/vBYf+hVuy/o+7EGkQ4AQx71irknQZbWv4JqafMQu/AKqo6v8sZjkISHUqCs7m67FJHu/hgJ8XMJ1ZWI8lDYtolH20tuUbDhzpJY58QpnAXLnwIYUDbajhX0fXHd82IU5Gjpal/cnqLOAe9mUZBomzncgE4Zuk4/LuTOQcKkQCmkp6CCk0ufQEXHch1U6AsUEfhOng0jiMu/Rhe4qTBwTkzbk7jfLcmdYyLot04cMnm+fQGqq02d0VzBP1KVn06Y5kqOEeBaoXXwEAHT2tCUkCqhkoUGoW7a2pd1iW8I/1hHU+CqUi8r4EW7efr9enbxdGtj89bGrZ+3rn2zNnvbXuh92Lvau97b7N3ufdP7vrfXe9JLVmjl3spPK3sX/139YPWj1Sud6CsrM533eyc+q5/+B6p8UCI=</latexit> Goal: generating samples from π(x) = 1 e−V(x) dx e−V(x)
  11. Analysis of Wasserstein gradient flows: Log-Sobolev inequality Bakry-´ Emery Theorem

    [Bakry and ´ Emery, 1985, Arnold et al., 2001]: ⇡ = e V dx and r2V · Id, > 0 =) (LSI) with cLSI = 2 =) glob. exp. convergence If for all µ 2 P(or M+), target ⇡ satisfies r log dµ d⇡ 2 L2(µ) cLSI · DKL (µ|⇡) for some cLSI > 0 (LSI) (LSI) is su cient to guarantee the convergence of the pure Wasserstein gradient flow of the KL divergence energy over P.
  12. Analysis of Wasserstein gradient flows: Log-Sobolev inequality Bakry-´ Emery Theorem

    [Bakry and ´ Emery, 1985, Arnold et al., 2001]: ⇡ = e V dx and r2V · Id, > 0 =) (LSI) with cLSI = 2 =) glob. exp. convergence If for all µ 2 P(or M+), target ⇡ satisfies r log dµ d⇡ 2 L2(µ) cLSI · DKL (µ|⇡) for some cLSI > 0 (LSI) (LSI) is su cient to guarantee the convergence of the pure Wasserstein gradient flow of the KL divergence energy over P. Question: generalize beyond the standard setting of WGF of KL over P? Mielke, A., Z. (2025). Hellinger-Kantorovich Gradient Flows: Global Exponential Decay of Entropy Functionals.
  13. Gradient flows over M+: Hellinger / Fisher-Rao Wasserstein/di↵usion: mass-preserving Birth-death

    process 2H2 O ⌦ 2H2 + 1O2 Hellinger gradient flows (M+, F, He) min µ2M+ F(µ) + 1 2⌧ He2(µ, µk ) continuous-time ⌧ ! 0 : ˙ µ = µ · F µ [µ] Example. <latexit sha1_base64="RlG0N+3kzAHOdp5bJ346dTwr7rY=">AAALz3icjVZbc9Q2FDYtbanTC7RPnb4coOnAzBI2y63TmZ0hIRCgQAMkhGmcYWT7eC1WllxJzia4bvvaP9G3vra/p/+mR/JudjeXmfrBq5W+8+ncj+NScGO73X/PvPf+2Q8+/Ojcx+HCJ59+9vn5C1+8MqrSCW4lSij9OmYGBZe4ZbkV+LrUyIpY4HY8vOfOt/dQG67kpj0ocbdgA8kznjBLW2/Of/XgSlRUV+H7PkQ/PAH3B36BqORX35y/3F3q+geOL5bHi8t3z2b+2XhzIfwzSlVSFShtIpgxO8vd0nZyJlNV2d06JrVQN7AImdIw3jYdkMpCXHGRmnARTmA4lAzDVpQMNIRA7UTRS1UGS5YM2QDrMs1K+jWTi7hMRJVyOQA6MY7D5GoETgWe4pTCoG3vUaVzTe1R/hSUBIOJkimYRCPKvuaD3DbhMZkpY3MqpZLiYIIJnTqL8BItGOFkU062u2B5lQaoCrT6oC5ZiXrEU5v3e3eWi6IDfidHp0e/171RFM2Yy6ugvGuAlSXKlO8f8VBRCcsZ+QRlgo2XWkPyt0ZgQkCpjOGUPzCBwECrqvQakabPcLQyPqhx39IFmDYnnEmlCyaaVqtoDbN7ldYUtmOAk0+n1C7qfB82lYKCyQN62ZwULXMWozVAhqUUZBhnObS0S2EkcZSogkTSKKef/brbzG3Gk83QOcfmWOBOqdWAssvETPczTaHzJbVbuzCoUlFBNuGsKycellURo57J01lQrNTQsrjNien+jkmYwH5vt04STtlljgmWg6wUyk4Fx/8FjzWjtEiZRbcxNmEitm9ohXPG1pG3T5J+Da3JuXHW/ppk1rgmmggTpbe9fkqXaM6ELyYKMGwyMXS5X8UtIAT4kfKbnA6bmklTKk2pR8WyrpkLpoUHQo2Mk48iAj9lSU7dCp4g09LVpcN6Bv7Od6WQ2Fllc6UPVX3M2bXHHOGnvGo6EBJPlCllfRnxdxhuI6fwW009Ax5JQ4pVFr3GKyW1UcqQFcnEgeHG3/bSqiRnBEsMUa2ipvbZgXXULsGcsyNfvonmpfX8i7DKXJ5Rfr1VnEwaKT00MOI2p7MVgftESw3pKUcxxA5ssD0UsLZXaUxyqujhQcdffH9AKq0L8ou30gXQ+Q8g2su4EH75uCLn3LJ5B3rd3k2/RVA+scrhX1ADZDrJqXMUXDINlyhKFGByH+UUmUcLb92lDmw/WnkJ0bfwcAtaQ93FPnIDzcqcJ3W052Ne30yKJsrb9Xdu3bbOCc7stB3oRlLs1hkfXP9ZXxthbLjFpVIOGtdwV9K3lbFAusCY1Zs9ZgVmQCJSVftmNRlUZj59J9vzlSaZjXl8pIRqpMKj+4tJs7euIVIc3J6L2yx2RGaQ2vO0lMUJ893Zd2OifyS9+hMtLl4Mj/VOGru+Vte4Ya5Rtvi2cwC1jjAq2BAZudiSMjNjgrQqhYv5LNo1LxovTgdwk6upm/8jkiNLr7si8Pj2QkWaaKeZH/yQUCzUYVVFKWZUd/6boR7l5CKPauoX66tN3bt1ixJu/GqA/LlByQseB15mnsCozG67w0P5rhNtXyTvxhpBWgIa8pSvNPc4NUtKTDmouMm97zKtCigPr3LK0yBxEPAtq73bzHikvT+mgLi5RNmVMLnHTFPHg/6MWeB1WJ2BtUYc4Zl2+SMEHcgG/ViQvEuuBw4GHgczV7vkdi3qFPJ2FnlEU0/oOnBE0UV4NsWdwkSTglIhPULljZx5fCs6xLVUvi4oiajf8eNupMZF+YVT3pRpMo4dNPO892dwp6hI7bdKLEXydP08VZubKoOJAFmOwk0nmuaCD8nBlaDSoQ8R6rTGFyWhJIlkvkCgnbbmpCpxBeG+hako6CqpZgXoi3b56Pfr8cWr3tLy7aXbz+nT9pugfc4FXweXgivBcnAnuBs8DDaCrSAJfgv+Cv4O/ll4vjBa+HXh9xb63pmxzJfB3LPwx3+qpB6y</latexit> F(µ) := KL(µ|ω) Mielke-Z. Hellinger-Kantorovich Gradient Flows: Global Exponential Decay of Entropy Functionals. <latexit sha1_base64="knKLVP059+zl4poe0VI7KF0Pq3Q=">AAAMYnicjVbbctw0GN6UsxughUu4+FsIA8wSNoEehpkwTZq2tLSl9EAY6pCRba2triy5kpxNavwqPAHvwhUX3DPDa/BJXiebpJnBF2ut9P3n///kpJLCutHo74Uzr7z62utvvPlWdHbx7XfePXf+vZ+srk3Kn6RaavNzwiyXQvEnTjjJf64MZ2Ui+VYyue7Pt3a5sUKrx26/4tsly5UYi5Q5bO2c+yNWfA9mLKXf0ugb8k8UJyLPZfxbLHVO8diwtImzLC7r1r8prkQbICb+7dfVneau//GnbeTF45w/p7BK4zTTjmJdccOcNoqVHEDmClM2m+1Ov/z+btt+CgWwWInPhlEMF8baMCnJ7wpF8b1K1nbn3Eej5VF46ORiZbb46NrnZ5/9+9f4zwc756Pf40yndcmVSyWz9unKqHLDgqlM1267SZApblpaIpij2bYdkoLXSS1kZqMleomGA8ko6kSRcwsEN16UB6na8oqlE5bzpsrGFd62NyRUKutMqJxwYr0OW+gpeRdExg9VWO46O7ry1WoCKpySVmR5qlVGNjWcqzUj8sK10QmZQ43tqSq1kvs9JvLuLNEj7shKL5sJxO77J7iUc11yZ/abiqGoU5G5Ym31ykpZDinsFNz7sbY6+qos25mu4IIOqSFWVVxlYu9YhspaOsGQE65S3gapTY58G06+CyptrUBLUw+h3Oi6Ch7B0/t8uj47aPiegwGetS85U9qUTLadV/EmH1+vjUHZTgBefnqo2ldd7NFjralkap98H8PRqmAJxyghsAxFptngUad2OcKsTVNdQiSLC7z2mlF7ZDPpNyOfHFfwkj+tjM7RXTZhZg2jiOz7Kd9ufBl0pcERbTSfyj7Dqi4Tbub6dB6UaD1xLOl64nD/qU2Z5Gur202aCnSXPSFY5eNKancoOPsvRWIY2iJjjvuNWQi92J7Fih8JtolDfJ4TQCsOyU3G3dum88G1cS8MlSH25h6MGMFkGCYUmB4zOfG9XycdAOzzA/obSafHhilbaYPWw7DcMswX09FNqafWy8cxwPdYWoBA6S5nRvm59NigQbwIRBlBO6tdoc2Bq3cE++KO4PRLUbdDEFbsOUu7MEbiBY+2uED5nQFn0G1l4VjtePB4vQKzo0PWFZP7Vthg7ZHTacEASy1UbXADRh/SLW58g/lkx2F8UyMqF/Qv0QbzfYb+eqYFQppqM7E0Fa7A2brke1ALQronuJzwIT1gu1zS5m5teFpgoif7w2D4Rg6XbknkJUTpC9h0PL47FlKG5Z0aybnkiiGtjla/DluAij4qj38IAmQmLcAcpVDM0EVUCQVG+tBTCA+LEN3FIW3dXn9E8Sf03RPqAvWGQ+Vyw6pC4LrZDTVvvk7LNi669VW/7qizx9mnHQN9lZbbzVjkXz43X0x5YoXjy5XKW0+469mz2jqCLzTTGsKeaSVmSXGOqQ5k1d+d9mj79ttHJ00xl4jk2Ag1HIMH+2VP9s4TIurg93zd5rFThAG3j6pFF6cssHNgY6i/rYL7vRcXLkQnuBNfAmFWN4Vlnig7fMccBOqIcNdOOEOKHZyZuybgVSV9zefRnrxwvXgfyN9cbdP+H5GCs+xLPwQB3xnU8MR4z8K3CKWohT6YqjjjY8xd+IxppgVSFFBt8/DWRtusXrqEhpv9tIR8PkDzUsBRkDmqwOqx2/KHB/IjL9r9QN5fa4B0CnDJo19x7wmQJRpT5bWwRcjd2OiSqgNT3nlcJB5CgbI623YuI539BAXx9xK6K2Vql9m2SfK1ubAo+LAxB+uCOKbnkOWPKRjSOF9LJOR9c930MAo4mjPtm9tT1CnKu7soINqmVzekY44u0f1D3CmacFOgFbJjqkKQc0+gogNcpyrMBZoIfCdOphHEhf7ih3ozZhAc22+P6r0xhzvFRdBvnTpU8nT/gqquN/WYegFEzqW/nXCbSzFBgmuJ0cGHCJjWhqEESkFkHAaEutvWvmxK/ED4z3MMBUwpPS+AL9qV49+vJxc/rS6vXF6+/CM+bT8edM+bgw8GFwefDlYGVwbXBt8NHgyeDNKF9xauLqwvbJz9ZzFaPL/4fgc9szCTmf3vn8UP/wOMzlMu</latexit> ⊋c > 0 : log dµ dω 2 L2 µ → c · DKL (µ↑ω), ↓µ ↔ M+ ODE solution: <latexit sha1_base64="QWc638N6UMMb91rU3JUNwgFJD+8=">AAAMIHicjVZLcxQ3EF7yJOM8ILkllwbilKlazNqGkMtWYWMwuAJxwMZUPIbSzPTMiNVIE0njtZmav5JDfk0qlyTH5IfkSlqaXe+uH1WZg1eWuj/182tFpeDG9np/X3jn3ffe/+DDix8Fcx9/8ulnly5//tyoSse4Eyuh9IuIGRRc4o7lVuCLUiMrIoG70eCeO989QG24ktv2qMT9gmWSpzxmlrZeXXoN9IVFtWC7h9ehD2HJF2gRrvFsAUKbahbXYWIg1EXixHrdME6Uvd5MdkvegNMJPBQpXn/ZHhbM5roAfFnfANs0ry5d6y32/AenF0ujxbW7X65s/v62WNl6dTn4JUxUXBUobSyYMXtLvdJ2cyYTVdn9OiI/UTcwD6nSMNo2XZDKQlRxkZhgHs5AONYMglaVImZIArVTRa9VGSxZPGAZ1mWSlvRrxhdxGYsq4TIDOjEOw+RqCM4EnuAEwqBt71Gli3XtpfwpKAkGYyUTMLFGlH3Ns9w2wSmdCWJzLqSS4mgsEzhz5uEZWjDC6SacfHfZ9yZlqAq0+qguWYl6yBOb95fvLBVFF/xOjs6O/nJvpSiaEZY3QfnQACtLlAk/PBGhohKWM4oJyhgbr7WOFG+NwISAUhnDqSBhLAKZVlXpLSJLn+BwdXRQ46GlCzBpzjiTShdMNK1V4Tqm9yqtKW2nBM4+nUC7rPND2FYKCiaPwNUpGVrmLEJrgBxLKMkwahtoYReDUOIwVgWpJGFOP4d1r5nZjMabgQuOzbHAvVKrjKrLREz3qZko+q5H92uXBlUq6vAmmA7lOMKyKiLUU3U6LRQpNbAsamtisr9nYiawv7xfxzGn6jKnFMssLYWyE8XR/4JHmlFZJMyi2xi5MFY7NLTCGWfr0PsnyT6iAkvBjdL218TTzjXhWJkgve/1Y7pEcyZ8M1GCYZuJgav9KmoFiEh+oPqmoMO2ZtKUSlPpUbNsaOaSaeGBUEPj9MOQhB+zOCf6g++Raen60sl6BP7G01xA6KyyudLHpm5ydmOTI/yUV00XAsIJU6WsbyP+BoNd5JR+q4kz4JE0ZFhl0Vu8WhIvU4WsSiaODDf+tmdWxTkjsdgQ1Bpq4uMubKB2BeaCHfr2jTUvrcefhzXm6ozq67Xi5NJQ6YGBIbc5na0KPCRYIqTHHMUAu7DFDlDA+kGlMc6powdHXX/x/YxM2hAUF++lS2DdEvFByoXwy82KgnPb5l1Y7i3f8lskysdeOfmnRIBMxzkxR8El03CVskQJpvBRTZF7tPDeXe3C7qPVZxB+Aw93oHXUXewzl2lW5pwGxoHPeX0rLpowb9ffuXVLnWM5s9cy0Epc7Ncpz27+rG8MMTLc4mIps8YR7mryujIWyBYYoXq3R6jADEhE6mpPVuPJZ2bLd7w922mS2YhHJ1qoRmo8ur8Yk711hEh5cHsub9OyQ3KDzJ6FpSqOmWdnz8YE/0h688dWXLkSnOJOmuO+V9e5YY4oW/mWOYCoI6BZOkBGIbZkzNSYIKtK4XI+Le3Ii8aLswHc5Grq5v+o5MiSm64JvHx7oSJLtLPMvyQgplyo464KE0yp7/wjpB7mFCIv1dRPN9aaevn2bSq40Z8GKJ5bVLzg5cDrzAIYldpdd3is33Oq7R/Sd2ONRFoAGvJUrzT3OJElFabMKm5yH7tUqwLK46uc8TRInAh4ymrvNlMRae+PKCFuLlF1xUweMNPUUdafcgu8DWtTYq0TJ3AmLH8CoAtp1o8E6bvieuDEwMvB1NWuuB1FnQPeziIv0dRjuC6cMHQenkzkzkGiSUGlkJyA8k5OfZ6KjuVaKN8XVETEd/x0GIm4qL5wgpswTc6xo2YW9/6U3DkmEv1WsaVMnm+fh2prU6UwViDPUbjpRNNc8AEFuBLUOvQQIaY1vilJSpJK6hsE2mlrzuoS1xDucU1NQVdJNa1AL9qlk+/X04vny4tL3y7e+pGetl932u9i56vO1c5CZ6lzp3O387Cz1dnpxJ0/O/923l7ozP0699vcH3N/taLvXBjpfNGZ+eb++Q/+azyG</latexit> µ(t, x) = ω(x) dµ(0, ·) dω (x) e→t KL is non-convex in Hell. no global PL / gradient dominance!
  14. Recent Advances on the analysis of Fisher-Rao flows The gradient

    system (P, Dωp (·|ω), FR) generates the flow equation ˙ ε = →ε ϑ→ p ( dε dω ) → ϑ→ p ( dε dω ) dε Recall the ϑp -divergence Dωp (ε|ω) = ϑp ( dε dω ) dε, ϑp (s) := 1 p(p → 1) sp → p(s → 1) → 1 • Carrillo et al. 2024: • No geodesic convexity or PL (Polyak-! Lojasiewicz) condition for the functional KL(·|ω), even if ω is Gaussian • Su”cient condition: εp -divergence satisfies the PL inequality for p → 0. • Mielke & Zhu 2025: • Power threshold p → 1 2 further refines Carrillo et al. results. (p = 1 2 recovers Fisher-Rao distance.) • Explicit decay result =↑ dual gradient dominance of Carrillo et al. 2024. Recent Advances on the analysis of Fisher-Rao flows The gradient system (P, Dωp (·|ω), FR) generates the flow equation ˙ ε = →ε ϑ→ p ( dε dω ) → ϑ→ p ( dε dω ) dε Recall the ϑp -divergence Dωp (ε|ω) = ϑp ( dε dω ) dε, ϑp (s) := 1 p(p → 1) sp → p(s → 1) → 1 • Carrillo et al. 2024: • No geodesic convexity or PL (Polyak-! Lojasiewicz) condition for the functional KL(·|ω), even if ω is Gaussian • Su”cient condition: εp -divergence satisfies the PL inequality for p → 0. • Mielke & Zhu 2025: • Power threshold p → 1 2 further refines Carrillo et al. results. (p = 1 2 recovers Fisher-Rao distance.) • Explicit decay result =↑ dual gradient dominance of Carrillo et al. 2024. Recent Advances on the analysis of Fisher-Rao flows The gradient system (P, Dωp (·|ω), FR) generates the flow equation ˙ ε = →ε ϑ→ p ( dε dω ) → ϑ→ p ( dε dω ) dε Recall the ϑp -divergence Dωp (ε|ω) = ϑp ( dε dω ) dε, ϑp (s) := 1 p(p → 1) sp → p(s → 1) → 1 • Carrillo et al. 2024: • No geodesic convexity or PL (Polyak-! Lojasiewicz) condition for the functional KL(·|ω), even if ω is Gaussian • Su”cient condition: εp -divergence satisfies the PL inequality for p → 0. • Mielke & Zhu 2025: • Power threshold p → 1 2 further refines Carrillo et al. results. (p = 1 2 recovers Fisher-Rao distance.) • Explicit Lyapunov functions =↑ dual gradient dominance of Carrillo et al. 2024. Mielke-Z. Hellinger-Kantorovich Gradient Flows: Global Exponential Decay of Entropy Functionals. Carrillo et al. Fisher-Rao gradient fl ow: geod. convexity and functional ineq.
  15. Unbalanced transport: Hellinger-Kantorovich a.k.a. Wasserstein-Fisher-Rao Best of both worlds Wasserstein:

    transport/di!usion Fisher-Rao / Hellinger: growth/birth-death H-K / W-FR [Chizat et al., 2018, 2019, Liero et al., 2018, Kondratyev et al., 2016] gradient flow:reaction-di!usion eqn. ˙ µ = →ωG→1 W (µ) εF εµ [µ] → ϑG→1 He (µ) εF εµ [µ] = ωdiv (µ↑ εF εµ ) → ϑµ εF εµ Wasserstein WFR Liero-Mielke-Tse-Z. Evolution of Gaussians in the HK-Boltzmann gradient fl ow. <latexit sha1_base64="6vH8PcQ0U5hZ6o6sa/H5AY6qbtw=">AAAMI3icjVZbb9s2FFa7W6fs0m6Pezltk6EB3NRxb8MAY02aNk16WdYmTdEoKCjpyGItkRpJxXE1/Zz9gP2Dve9tGDDsYcD2T3ZI2bGdCzA/2DR5zsdz/Q7DIuPatNt/nTv/3vsffPjRhY/9uU8+/ezzi5e+eKllqSLciWQm1auQacy4wB3DTYavCoUsDzPcDfv37fnuASrNpdg2wwL3c9YTPOERM7T15uLjjQTmH14L8nLx227w+Ild/RQUfHG+BRETMEBAbVhIpqQQY8SGIMca18zi4jxIggfDc/zuzcWr7aW2+8DJxfJocdUbfbbeXPJ/DWIZlTkKE2VM673ldmFaKROxLM1+FZIjqGpYgEQqGG3rFghpICx5Fmt/AU5BONL0/UaVQqJJggwlVXRapcaCRX3Ww6qIk4J+9fgiLqKsjLnoAZ1oi6FTOQBrAo9xAqHRNPfIwgazclLuFKQAjZEUMehIIYqu4r3U1P4JnQlifSakFNlwLONbcxbgBRrQmdWNKfLCpteZ1EOZo1HDqmAFqgGPTdrt3F3O8xa4nRStHd1O+2ae1yMsZ4J0oQFWFChifngsQnmZGc4oJigirJ3WGlK8FQLLMiik1pwqDsYi0FOyLJxFZOkzHKyMDio8NHQBxvUpZ0KqnGV1Y1Wwhsn9UilK2wmB008n0Dbr/BC2pYSciSF9mZQMLVIWotFAjsWUZBj1BTSwS34gcBDJnFTiIKWfw6pdz2yG403fBsekmONeoWSPqkuHTHUTRalzTbhf2TTIQlLf1P50KMcRFmUeopqq02mhUMo+NV1TE5P9PR2xDLud/SqKOFWXPqFY9JIik2aiOPqf8VAxKouYGbQbIxfGaoeaVjjjbBU4/wTZV9Oaghsmza+Opp2rg7EyQTrfq6d0ieIsc81ECYZtlvVt7ZdhI+ADfE/1TUGHbcWELqSi0qNmWVfMJtPAw0wOtNUPAhJ+yqKU+A2eIFPC9qWVdQj8neMxn9BZaVKpjkzd5Oz6Jkd4nZZ1C3zCCRIpjWsj/g79XeSUfqOIM2BDaDKsNOgsXimIeKlCVgTLhpprd9sLI6OUkVikCWoVFRFuC9ZR2QKzwQ5c+0aKF8bhL8Aqs3VG9fVWcnJpIFVfw4CblM5WMjwkWCKkpxyzPrZgix1gBmsHpcIopY7uD1vu4gc9Mmk9o7g4L20CbfwAgoOEZ5lbbpYUnNsmbUGn3bnltkiUj72y8s+JAJmKUmKOnAum4ApliRJM4aOaIvdo4by70oLdjZUXEHwNj3agcdRe7DLXU6xIeVQFBy7n1a0or4O0WX9j1w11juX0XsNAN6N8v0p478aP6voAQ80NLhWiV1vCXYnfltoA2QIjVOf2CBWYBoFIXe3Iajza9Gz5jrdnO00wE/LwWAtVSI1H9+djsjeWECkPds/mbVp2QG6Q2bOwVMURc+zs2JjgN4Qzf2zF5cv+Ce6kQe16dY1rZomykW+YA4g6/CBnfWQUYkPGTI0JsqrIbM6npS150XixNoCdXHVV/x+VFFl8wzaBk28ulGSJspa5pwJElAt51FVBjAn1nXtlVIOUQuSk6ur5+mpddW7fpoIbfdVA8dyi4gUnB05nFkDLxOzawyP9tlVtvkjfjjUSaQBoyFO90tzjRJZUmKJX0gvExS5RMofi6CprPA0SKwKOspq79VREmvtDSoidS1Rd9LI5YLquwl53yi1wNqxOiTVOHMOZsPwxgBYkvW6Ykb4trodWDJwcTF1ti9tS1BngzSxyEnU1hmvBMUMX4NlE7gwkmhRUCvExKOfk1MdR0ZFcA+X6goqI+I6fDCMRF9UXTnBjpsg5NqxncR9MyZ1hItFvGRnK5Nn2OaimNundOVYgzzGz04mmecb7FOAyo9ahhwgxrXZNSVKCVBLXINBMW31al9iGsK9nagq6SshpBQu0+ZquLZPkdMahN+/y8RfuycXLztLynaU7P3Su3psfvX4veF95V7xr3rJ317vnPfK2vB0v8n7x/vT+8f6d+3nut7nf5/5oRM+fG+l86c185v7+D+XPO6c=</latexit> If F(µ) := KL(µ|ω), can we establish decay of F(µ(t)) over time?
  16. µk+1 → argmin µ→P or M+ Dωp (µ|ω) + 1

    2ε D2 (µ, µk ) • Dωp relative entropy: forward/reverse KL, forward/reverse ϑ2 , Hellinger distance, . . . • D distance between measures: Wasserstein, Hellinger, Fisher-Rao, WFR/HK, . . . A Complete Analysis of Gradient Flows of Entropy Functional Mielke, A., Z. (2025). Hellinger-Kantorovich Gradient Flows: Global Exponential Decay of Entropy Functionals <latexit sha1_base64="t37B8EqVPC/5iY2+t1dEOLYo4Lc=">AAAMT3icjVZbU9w2FF56TUzaJu1jX06S0kk6G7Jsbn1hJhAISSakNEDIFDOMbB/bysqSK8ksxPUP6Uv/Ux/7S/rW9kjeXXYhzNQPrJDO+XSu31FUCm5sr/fX3Ecff/LpZ59fuhzMX/niy6+uXvv6jVGVjnE3VkLptxEzKLjEXcutwLelRlZEAveiwRN3vneE2nAld+xJiQcFyyRPecwsbR1e/T2MMOOyzpjNUf/QBEBfWHB5WIdFBQ3U4erL3fWwoHNdwBptHzFd5vywbJpbTuQ3CEsOt4PQ4rGtgUtoQW55nZgJ2ILRmdLQhJulqEyXcF+vr8EEt7lNSiHKZGLJ4dWbvcWe/+D8Ymm0uNkZfVuH14I/wkTFVYHSxoIZs7/UK203ZzJRlT2oIwoL6gYWICVDRttkiVQWooqLxAQL8AGEiWYQtKoUYEMSqJ0qeq3KYMniAcuwLpO0pF8zvojLWFQJlxnQiXEYJldDF4ucJ3gKYdC296jSpab2Uv4UlASDsZIJmFgjymXNs9w2wTmdU8TmQkglxclYJnDmLMA2WjDC6SacfHfF4k3KUBVo9UldshL1kCc2X+4/WiqKLvidHJ0dy/3evaJoRljeBOVDA6wsKaP8+EyEikpYzigmKGNsvNYaUrw1AhMCSmUMp/qFsQhkWlWlt4gsfYXDldFBTVVFF2DSfOBMKl0w0bRWhWuYPqm0prSdE/jw6Sm0yzo/hh2loGDyBFzJkqFlziK0BsixxFX9qMughV0MQonDWBWkkoQ5/RzXvWZmMxpvBi44VPQF7pdaZVRdJmJ6OdWUOt/SB7VLgyoVEUITTIdyHGFZFRHqqTqdFoqUGlgWtTVxur9vqDlxuX9QxzGn6jLnFMssLYWyp4qj/wWPNKOySJhFtzFyYax2bGiFM87WofdPkn1N7dkgSttfE08714RjZYL0vtebdInmRCOumSjBsMPEwNV+FbUCRBw/UX1T0GFHM2lKpan0qFk2NHPJtPBUqKFx+mFIwpsszokt4SUyLV1fOlmPwN97VgwInVU2V3pi6gvO7rzgCL/kVdOFgHDCVCnr24i/x2APOaXfauIMeC4NGVZZ9BavlETjVCErkokTw42/bduqOGckFhuCWkVN9N2FDdSuwFywQ9++seal9fgLsMpcnVF9vVOcXBoqPTAw5DansxWBxwRLhLTJUQywC1vsCAWsHVUa45w6enDS9RevZ2TShqC4eC9dAuuW8o9SLoRfvqgoOA9s3oV+r3/fb5EoH3vl5F8TATId58QcNCqYhhubjrWpM7gj/G1LC+/djS7sPV/ZhvB7eLYLraPuYp+5TDMaJDFNFJ/z+n5cNGHern9065Y6x3Jmv2Wge3FxUKc8u/urvjPEyHCLi6XMGke4K8m7ylggW2CE6t0eoQIzIBGpqz1ZjQelmS3f8fZsp0lmIx6daaEaqfHo/mJM9tYRIuXB7bm8TcsOyQ0yexaWqjhmnp09GxP8c+nNH1tx/Xpwjjtp7PteXeOGOaJs5VvmAKKOgMbqABmF2JIxU2OCrCqFy/m0tCMvGi/OBnCTq6mb/6OSI0vuuibw8u2Fyo1uZ5l/eEBMuVCTrgoTTKnv/JulHuYUIi/V1K83Vpu6/+ABFdzoTwMUzy0qXvBy4HVmAYxK7Z47nOj3nGr7h/TdWCORFoCGPNUrzT1OZEmFKbOKm9zHLtWqgHJylTOeBokTAU9Z7d1mKiLt/RElxM0lqq6YySNmmjrKlqfcAm/D6pRY68QZnFOWPwPQhTRbjgTpu+J66sTAy8HU1a64HUVdAN7OIi/R1GO4LpwxdAFencpdgESTgkohOQPlnZz6PBVN5Foo3xdURMR3/HwYibiovvAUN2GanGMnzSzu+pTcBSYS/VaxpUxebJ+HamtTpTBWIM9RuOlE01zwAQW4EtQ69BAhpjW+KUlKkkrqGwTaaWs+1CWuIdxbnJqCrpJqWoFetEtn36/nF2/6i0sPFx/+3L/5+LvR2/ZS59vOjc6tzlLnUedx51lnq7PbiTv/zi3MLc7dnf9z/u/5f66MRD+aGy2+6cx8Vy7/B/lzSUA=</latexit> min µ Dωp (µ|ω) in (P or M+, D) Hellinger–Kantorovich gradient flows: Global exponential decay of entropy functionals 7 Gradient-flow geometry Global exp. decay, & fcn. ineq. for 'p -divergence Otto-Wasserstein on P • ⌦ ( Rd bounded Lipschitz, p 1 1 d =) Ł with c⇤ > 0 • ⌦ = Rd, p 2 [1, 2] and (BE) =) Ł with c⇤ = 2cBE Otto-Wasserstein on M+ (Prop. 5.2, 5.3) @ c⇤ > 0 for Ł; see (LSI-M+) Hellinger on M+ (Prop. 3.7) p 2 ( 1, 1 2 ] () Ł with c⇤ = 1 1 p Spherical Hellinger on P (Thm. 4.1) p 2 ( 1, 1 2 ] () Ł with c⇤ =Mp := ( 1 1 p for p  1 3 p(7 12p) 1 p for p 2 [1 3 , 1 2 ] Hellinger-Kantorovich on M+ (Thm. 5.8) • p 2 ( 1, 1 2 ] =) Ł with c⇤ = 1 1 p • p > 1 2 =) there exists no with c⇤ > 0 • p = 1 and (LSI) =) No Ł; exp. decay is possible Spherical Hellinger-Kantorovich on P (Thm. 4.4) In general, decay rate c⇤ = max{↵cŁ-W , Mp} (see Thm. 4.4). Specifically: • p 2 ( 1, 1 2 ] =) Ł with c⇤ = 1+2p 1 p • ⌦ ( Rd bounded Lipschitz, p 2 ( 1, 1/2] [ [1 1 d , 1) =) Ł with c⇤ > 0 • ⌦ = Rd, p 2 [1, 2] and (Ł-W) =) Ł with c⇤ = 2cŁ-W Table 3: Summary of results for Łojasiewicz inequalities for 'p -divergence energy functional F(µ) = R <latexit sha1_base64="Svb0Yf/7ONblt5bYwO/3r00u6LE=">AAANx3icjVfbcuS2ER0rN4eJkt3kMS/t3SglJSN5Zuy1U66aKmstey/xOpu9WK4sZRVINkl4QIAGQI1khg/5kOQx+ab8TRoAqZnRWFXmgwYEu09f0H0aSmrBjZ1M/vfWzo9+/JOf/uztn0e/+OXur3595+5vvjSq0Sm+TpVQ+quEGRRc4mvLrcCvao2sSgSeJotP3PfTC9SGK/nKXtV4VrFC8pynzNLW+d2dO3GCBZdtwWyJ+o9dBPTEFb3pqj3pztv4gum65Od1B/tx1cA/IJbNwUfzIMilDYsgBbHA3O7HuWZpG2eZU+jcwilBt395EGtelPYgHvebUfxtwzKPcY1yXu8bshBQpl1b79eH04MuTnixb76uD+kzvR9O3cZBr7oHcXy9pBeHCjX5F4JJEngRG7QVl42J28l4GnfjNQ2o57OPIE5L/vVs3CsHB6Zu3+KlpXw8RkGJLlB3sKEbWwXTldhfPidsWH0fwpqGsPq3IckkDXMTC1WAOTR/mq7prdkYAiJLk5UljRdHcJu5iTdHqToM4D0cJQdl1jLBC4mZO3D/PhTA+Z37k6OJf2B7Me0X90f98/z8bvTvOFNpU6G0qWDGvJlOajsumcxUY8/ahMrRZWwPcqWh3zZjkMpC0nCRmYhc2ka41oyioEqFbUgCtVNFr9UYrFm6YAW2dZbX9GsGQ1ymosnotIC+GIdhSrUE5wLPcAVBRRHsqNq1ROul/FdQEgymSmZgUo0o5752u2hLZ4XY3QqppLgaZCLnzh68RAtGON2MU+yuSb1LBaoKrb5qa1ajXvLMlvPZh9OqGoPfKdH5MZ9N3quqrsfyLiifGmB1TSfKL29kqGqE5YxygjLFzmudIOVbIzAhoFbGcOINGESg0KqpvUfk6Re4PO4/tFR8ZMAVz/Y3qXTFRBe8ik8w/6TRmo5tS+D7v66g3anzS3ilFFRMXoFrF3K0LlmC1gAFltEhQ89uEGCPoljiMlUVqWRxST+X7aTb2EyGzcglh4q+wje1VgVVl0mYnlPTU/YdlZ617hhUrYiIu2g9lUOGZVMlqNfqdF0oUWphWRJqYrX/xqRM4Hx21qYpp+oyW4p1kddC2ZVi/y54ohmVRcYsuo0+hEHt0tAKN4JtYx+fJP+Ihh1pJHn4Nel6cF08KBOkj719RkY0Z8I3Ex0wvGJi4Wq/SYIAEcdfqb4p6fBKM2lqpan0qFkeaeYO08JnQi2N0/fM84wRu0qEz5Fp6frSyXoE/p2fRhGhs8aWSl+7+pSzw6cc4e9l040hIpw4V8r6NuLfYXSKnI7fauIMeCINOdZY9B4f1zQ+qUKOJRNXhhtv7aVVaclILHVk+BA1sfkYHqF2BRb5EeLaN9W8th5/Dx4yV2dUX98omnWwVHphYMltSd+OBV4SLBHSM45igWN4zi5QwMlFozEtqaMXV2Nv+NOCXHokKC8+SneAbT83cy6EXz5tKDkPbDmG2WT2vt8iUT5E5eRfEAEynZbEHDTImIZ7zxxrU2fQQBcUHi18dPfGcPrk+CXEf4DHryEE6gz7kys0o/FA8/nCn3n7flp1cRnWf3brQJ2DnHkTGOi9tDprc168+60+XGJiuMWjWhadI9zj7JvGWCBfoEf1YfeowAxIROpqT1bDBcVslu+wvdlpktmEJzdaqEVqPLJfDWRvHSHSObg9d27rsksKg9zehKUqTplnZ8/GBP9EevcHL955J9riTrpu+V494YY5ogzygTmAqCOikb5ARim25MzamCCvauHOfF3akReNF+cDuMnVtd0PUSmRZe+6JvDywaByo9t55i98kNJZqOuuijPMqe/8XbFdlpQiL9W1Lx497NrZgwdUcP2fzt0OnlPxgpcDr7MJYFRuT93Ha/2JUw1/On+9eEkiAYCGPNUrzT1OZEmFKYuGm9LnLteqgvralHOeBokTAU9ZwbZZy0iwn9CBuLlE1ZUyecFM1ybFfC2scMV5uCYWgriBs2L5GwBjyIt5IkjfFddnTgy8HKyZdsXtKOoW8DCLvETXDnBjuOHoHnyxkrsFiSYFlUJ2A6qDzcdT0bVcgPJ9QUVEfMe300jERfWFK9yMaQqOXXWbuJ+uyd3iItFvk1o6ydv981ChNlUOgwJFjsJNJ5rmgi8owY2g1qGLCDGt8U1JUpJUct8gEKat+b4ucQ3h/geipiBTUq0r0I12evP+ur34cnY0/eDog7/N7n/8+/5u+/bod6N7o/3RdPTh6OPR49Hz0etRurPc+dfOf3b+u/tkV+1e7F4G0Z23ep3fjjae3X/+H3zMtkI=</latexit> Dωp (µ|ω) := ε dµ dω (x) dω εp (s) := 1 p(p → 1) sp → p(s → 1) → 1 based on joint works with Alexander Mielke
  17. Lojasiewicz in the following corollary. The # Lojasiewicz inequality in

    the HK geome over positive measures M+ reads, for ϑ, ϖ > 0, ϑ ↘ ϱF ϱµ [µ] 2 + ϖ ϱF ϱµ [µ] 2 dµ ↔ ϖc→ F(µ) → inf ε↑M+ F(ς) . (5 Corollary 5.1 (A su!cient condition for HK flow) For εp -divergence energy F(µ D ωp (µ|φ) with p ↑ (→↓, 1 2 ], the ! Lojasiewicz inequality (5.1) holds globally over positive m ures M+ with the constant c→ = 1 1 → p . n relating those results to previous geodesic convexity results for the HK gradient flows Table 1, we first note that geodesic convexity implies # Lojasiewicz inequality but only w a non-negative constant c ↔ 0. As the dimension increases, Liero et al. [28]’s result and McCann condition have an increasing power threshold for the value of p. For dimens d ↔ 3, their intervals no longer overlap with the threshold of p ≃ 1 2 for the global # Lojasiew n the Hellinger geometry. Yet, we are able to provide a further # Lojasiewicz result tha weaker than [28]’s geodesic convexity condition; see Table 1. In previous works such 29 Observation 1. Even for the KL energy, no PL- inequality for HK/WFR gradient fl ows [Mielke- Z.'25, Kondratyev-Vorotnikov].
 Transport cannot change mass. HK Gradient Flows for Entropy Functionals Figure 7: See Proposition 5.2 for the details of the functional inequalit Wasserstein flow of positive measures. In this plot, the density constant. Hence, there is no “Otto-Wasserstein gradient” to drive t ω towards ε. When initialized at µ, the Otto-Wasserstein flow dri towards ω. Proposition 5.3 (Generalized log-Sobolev inequality on M+) Suppos mic Sobolev inequality (LSI) holds with a positive constant cLSI-P > 0 when probability measures (i.e. µ and ε are probability measures). Then, the follow holds for the Otto-Wasserstein gradient flow over the positive measures M+: dµ 2 Observation 2. the following solutions of the PDEs ˙ ε = ↓ε log dε d(Zω) = ↓ε log dε dω ↓ log Z , i.e., the growth field is indeed a”ected by the scalar Z. In comparison, the scalar Z is canceled for the SHe flow of probability measures ˙ ε = ↓ε log dε d(Zω) ↓ ε log dε d(Zω) = ↓ε log dε dω ↓ ε log dε dω . Since the Otto-Wasserstein flow is always mass-conserving, this di”erence in He and SHe is the key for our analysis next, which we term the shape-mass analysis. 5.3 Shape-mass analysis: global KL decay of HK gradient flows Our starting point is to carefully compare the HK and SHK gradient flows. For the con- venience, we remember below the associated gradient-flow equations of HK and SHK flows under the KL energy ˙ µ = ϑ div ↗µ + dµ dω ↗ω ↓ ϖµ log dµ dω , (HK-KL) ˙ ε = ϑ div ↗ε + dε dω ↗ω ↓ ϖε log dε dω ↓ Rd ε log dε dω dx . (SHK-KL) For the clarity of the analysis, we use the symbol µ for the positive measure in the HK flow and ε for the probability measure in the SHK flow. We exploit the following simple observation of those two equations. correspond to each other by a mass-scaling: <latexit sha1_base64="uUlTBqooUuDRYlcewgvN2CG63G0=">AAAL63icjVZbb9RGFDaUttTpJZTHvhygqai0hE249WUlEgKBqNAUEoKIIzS2j9fDjmfcmXE2i+Vf0beqUp8qtf+if6P/pmfGu9ndXKT6wTs7c8435/odx6Xgxna7/164+NGljz/59PJn4cLnX3z51eKVr18bVekEdxMllH4TM4OCS9y13Ap8U2pkRSxwLx48cud7h6gNV3LHjko8KFhf8ownzNLWu8WrUVHdtN/3PtALIp0r+n23eKO73PUPnF6sjBc3Hl7K/LP97kr4T5SqpCpQ2kQwY/ZXuqXt5EymqrIHdUwGoW5gCTKlYbxtOiCVhbjiIjXhEpyBcKwZhq0quWZIArVTRa9VGSxZMmB9rMs0K+nXTC7iMhFVymUf6MQ4DJOrITgTeIpTCIO2vUeVLii1l/KnoCQYTJRMwSQaUfY07+e2CU/pTBGbcyGVFKOJTOjMWYJXaMEIp5ty8t2lyZvUR1Wg1aO6ZCXqIU9t3lt9sFIUHfA7OTo7eqvdO0XRjLG8CcqHBlhZokz50YkIFZWwnFFMUCbYeK0NpHhrBCYElMoYTpUDExHoa1WV3iKy9AUO18YHNR5ZugDT5owzqXTBRNNaFW1g9qjSmtJ2SuDs0ym0yzo/gh2loGByRC+bk6FlzmK0BsixlJIM4/qGFnY5jCQOE1WQShrl9HNUd5u5zXiyGbrg2BwL3C+16lN1mZjpXqYpdb6ZDmqXBlUqasUmnA3lJMKyKmLUM3U6KxQrNbAsbmtiur9vEiawt3pQJwmn6jKnFMt+Vgplp4rj/4LHmlFZpMyi2xi7MFE7MrTCOWfryPsnyb6G1hTcOGt/TTLrXBNNlAnS+14/p0s0Z8I3EyUYdpgYuNqv4lYgBPiJ6puCDjuaSVMqTaVHzbKpmUumhSdCDY3TjyISfs6SnHgKfkSmpetLJ+sR+AfPRyGhs8rmSh+busXZrS2O8Davmg6EhBNlSlnfRvwDhnvIKf1WE2fAM2nIsMqit3itJAKlClmTTIwMN/62V1YlOSOxxBDUOmoizg5sonYF5oId+fZNNC+tx1+CdebqjOrrveLk0lDpgYEhtzmdrQk8IlgipOccxQA7sM0OUcDGYaUxyamjB6OOv/hxn0zaFBQX76VLoIsfQHSYcSH8cqui4NyzeQdWu6t3/RaJ8olXTv4lESDTSU7MUXDJNFynLFGCKXxUU+QeLbx31zuw92ztFUTfwdNdaB11F/vM9TUrc57U0aHPeX03KZoob9c/uHVLnRM5s98y0J2kOKgz3r/9i741xNhwi8ul7DeOcNfS95WxQLbAGNW7PUYFZkAiUld7spqMKDNfvpPt+U6TzMY8PtFCNVLj0f3FhOytI0TKg9tzeZuVHZIbZPY8LFVxwjw7ezYm+GfSmz+x4tq18BR30sD1vbrBDXNE2cq3zAFEHWFUsAEyCrElY2bGBFlVCpfzWWlHXjRenA3gJldTN/9HJUeW3nZN4OXbCxVZop1lfuRDQrlQx10VpZhR3/mvhXqYU4i8VFO/3Fxv6tV796jgxq8GKJ7bVLzg5cDrzAMYldk9d3is33Wq7Yv03VgjkRaAhjzVK809TmRJhSn7FTe5j12mVQHl8VXOeBokTgQ8ZbV3m5mItPfHlBA3l6i6EiYPmWnquN+bcQu8DeszYq0TJ3CmLH8CoANZvxcL0nfF9cSJgZeDmatdcTuKOge8nUVeoqkncB04YegSvJjKnYNEk4JKIT0B5Z2ceTwVHcu1UL4vqIiI7/jpMBJxUX3hFDdlmpxjo2Ye9/GM3DkmEv1WiaVMnm+fh2prU2UwUSDPUbjpRNNc8AEFuBLUOvQhQkxrfFOSlCSVzDcItNPWnNUlriHcVzA1BV0l1ayCA9p6S9dWWXY249A378rJL9zTi9eryyv3l+//TB+/3wbtczn4Jrge3AxWggfBw+BpsB3sBkkwCv4I/gr+XigWfl34beH3VvTihbHO1WDuWfjzPww0KjA=</latexit> µ(t) = z(t)ω(t) HK Gradient Flows for Entropy Functionals eover, if t →↑ ω(t) solves (SHK-KL), then t →↑ µ(t) = ε(t)ω(t) solves (HK-KL) for able functions t →↑ ε(t) independent of the variable x. Furthermore, ε(t) is the solution he following equation of mass ˙ z = ↓ϑz log z ↓ ϑz Rd ω log dω dϖ dx. (Mass-HK) Analysis of Hellinger-Kantorovich (a.k.a. WFR) fl ows of KL PL:
  18. where h(t) = t 0 e↑ω(t↑s)DKL(ω(s)|ε→)ds is an auxiliary function.

    If DKL(ω(s)|ε→) → 0 for t → ↑, then h(t) → 0 and z(t) → z→. Setting H0 = D KL (ω(0)|ε→) and ϑ = ϑcLSI-P, we now deliver the convergence of the shape ω(t) to the target shape ε→ and the mass z(t) to the target mass z→. Proposition 5.7 (Shape and mass convergence) The normalized probability measure ω(t) = 1 z(t) µ(t) (the shape) converges to the target ε→ exponentially in KL divergence along the HK gradient flow, i.e., DKL(ω(t)|ε→) ↓ e↑εtH0. (shape convergence) The mass variable z(t) converges to the target mass z→ exponentially, i.e., |z(t) ↔ z→| ↓ max{z0, z→} log z0 z→ e↑ωt + H0 e↑εt ↔ e↑ωt ϖ ↔ ϑ . (mass convergence) Note that the convergence rate of the shape ω(t) to the limiting shape ε→ is dominated by the transport part alone, with an exponential decay rate ϑ = ϑCLSI . The total mass can only be changed by the growth through the Hellinger dissipation. Hence, the decay rate is simply ϖ, but it may be delayed by e↑εt if the shape converges only slowly. Combining the results of Proposition 5.6 and Proposition 5.7, we can now provide the global exponential decay analysis for the HK-KL gradient flow in the sense of the Hellinger distance. Theorem 5.8 (Convergence to equilibrium via shape-mass analysis) The following convergence estimate in the Hellinger distance holds He(µ(t), ε) ↓ max{z1/2 0 , z1/2 → } 2 H1/2 0 + z1/2 → g z0 z→ 1/2 + 1 ϑ e↑ϑt for t > 0, (5.7) where ϱ = min ϖ, ϑ/2 and g(a) = max{log(1/a), a↔1} ↗ 0. Setting H0 = D KL (ω(0)|ε→) and ϑ = ϑcLSI-P, we now deliver the convergence of the shape ω(t) to the target shape ε→ and the mass z(t) to the target mass z→. Proposition 5.7 (Shape and mass convergence) The normalized probability measure ω(t) = 1 z(t) µ(t) (the shape) converges to the target ε→ exponentially in KL divergence along the HK gradient flow, i.e., DKL(ω(t)|ε→) ↓ e↑εtH0. (shape convergence) The mass variable z(t) converges to the target mass z→ exponentially, i.e., |z(t) ↔ z→| ↓ max{z0, z→} log z0 z→ e↑ωt + H0 e↑εt ↔ e↑ωt ϖ ↔ ϑ . (mass convergence) Note that the convergence rate of the shape ω(t) to the limiting shape ε→ is dominated by the transport part alone, with an exponential decay rate ϑ = ϑCLSI . The total mass can only be changed by the growth through the Hellinger dissipation. Hence, the decay rate is simply ϖ, but it may be delayed by e↑εt if the shape converges only slowly. Combining the results of Proposition 5.6 and Proposition 5.7, we can now provide the global exponential decay analysis for the HK-KL gradient flow in the sense of the Hellinger distance. Theorem 5.8 (Convergence to equilibrium via shape-mass analysis) The following convergence estimate in the Hellinger distance holds He(µ(t), ε) ↓ max{z1/2 0 , z1/2 → } 2 H1/2 0 + z1/2 → g z0 z→ 1/2 + 1 ϑ e↑ϑt for t > 0, (5.7) where ϱ = min ϖ, ϑ/2 and g(a) = max{log(1/a), a↔1} ↗ 0. 35 [Mielke-Z. 2025]’s results for the HK/WFR gradient fl ows of KL HK Gradient Flows for Entropy Functionals Figure 7: See Proposition 5.2 for the details of the functional inequality a Wasserstein flow of positive measures. In this plot, the density rati constant. Hence, there is no “Otto-Wasserstein gradient” to drive the c ω towards ε. When initialized at µ, the Otto-Wasserstein flow drives towards ω. Proposition 5.3 (Generalized log-Sobolev inequality on M+) Suppose th mic Sobolev inequality (LSI) holds with a positive constant cLSI-P > 0 when res probability measures (i.e. µ and ε are probability measures). Then, the following holds for the Otto-Wasserstein gradient flow over the positive measures M+: → log dµ dε 2 dµ ↑ cLSI-P · D KL (µ|ε) ↓ (z log z ↓ z + 1) , ( where z := µ(!) is the total mass of the measure µ. Moreover, we have → log dµ dε 2 dµ ↑ cLSI-P · D KL (µ|z · ε) . The intuition here is that the Otto-Wasserstein gradient flow, viewed as a mass-p flow with total mass µ(!), satisfies the LSI type inequality. This is illustrated in Proof of Proposition 5.3. We have the logarithmic Sobolev inequality (LS probability measures ˜ µ := 1 z · µ where z := µ(!) is the mass of µ, d˜ µ dε → log d˜ µ dε 2 dε ↑ cLSI-P · D KL (˜ µ|ε). 31 HK Gradient Flows for Entropy Functionals In the following result, we can see two contributions to the convergence of µ(t) = z(t)ω(t) to ε = z→ε→, where z→ := ε(!) is the total mass of the target measure and ε→ is a probability measure, a.k.a. the shape. We now detail the results of the shape-mass analysis for the HK-KL gradient flow. We first provide the convergence of the mass variable z(t) to the target mass z→. Proposition 5.6 (Solution of the mass equation) The equation of mass (Mass-HK) admits the explicit solution z(t) = z→ z0 z→ e →ωt e↑h(t). (5.6) where h(t) = t 0 e↑ω(t↑s)DKL(ω(s)|ε→)ds is an auxiliary function. If DKL(ω(s)|ε→) → 0 for t → ↑, then h(t) → 0 and z(t) → z→. Setting H0 = D KL (ω(0)|ε→) and ϑ = ϑcLSI-P, we now deliver the convergence of the shape ω(t) to the target shape ε→ and the mass z(t) to the target mass z→. Proposition 5.7 (Shape and mass convergence) The normalized probability measure ω(t) = 1 z(t) µ(t) (the shape) converges to the target ε→ exponentially in KL divergence along the HK gradient flow, i.e., DKL(ω(t)|ε→) ↓ e↑εtH0. (shape convergence) The mass variable z(t) converges to the target mass z→ exponentially, i.e., |z(t) ↔ z→| ↓ max{z0, z→} log z0 z→ e↑ωt + H0 e↑εt ↔ e↑ωt ϖ ↔ ϑ . (mass convergence) Note that the convergence rate of the shape ω(t) to the limiting shape ε→ is dominated by the transport part alone, with an exponential decay rate ϑ = ϑCLSI . The total mass can only be changed by the growth through the Hellinger dissipation. Hence, the decay rate is simply ϖ, but it may be delayed by e↑εt if the shape converges only slowly. Combining the results of Proposition 5.6 and Proposition 5.7, we can now provide the Mielke-Z. Hellinger-Kantorovich Gradient Flows: Global Exponential Decay of Entropy Functionals.
  19. per In Section 2, we first derive the ODE systems

    for the param- hen the target ε is a scaled Gaussian. This derivation can be done oe”cients when using the fact that all scaled Gaussians are given as uadratic function in x ↑ Rd. A first observation is that the vector E is still linear in the two parameters ϖ and ϱ cf. (2.4). erive the gradient structure for the ODE system. While the reduced imply obtained by evaluation of HB on Gaussians, the reduction n Onsager operator is nontrivial, and we follow the approach of e obtain the useful formula for the reduced Onsager operator in the Kred ω,ε (p) = ϖKred Otto (p) + ϱKred He (p), where Kred Otto (!, m, ω) =   2 ϑ ↭! + !↭ 0 0 0 1 ϑ ↭ 0 0 0 0   , Kred He (!, m, ω) =   2 ϑ !↭! 0 0 0 1 ϑ !↭ 0 0 0 ω↭   . (1.5) 4 the exponential of a quadratic function in x ↑ Rd. A first observ field defining the ODE is still linear in the two parameters ϖ and In Section 3, we derive the gradient structure for the ODE sys energy functional is simply obtained by evaluation of HB on G of the explicitly given Onsager operator is nontrivial, and we [MaM20, Sec. 6.1]. We obtain the useful formula for the reduced O form of Kred ω,ε (p) = ϖKred Otto (p) + ϱKred He (p), wh Kred Otto (!, m, ω) =   2 ϑ ↭! + !↭ 0 0 0 1 ϑ ↭ 0 0 0 0   Kred He (!, m, ω) =   2 ϑ !↭! 0 0 0 1 ϑ !↭ 0 0 0 ω↭   . 4 the exponential of a quadratic function in x ↑ Rd. A first observ field defining the ODE is still linear in the two parameters ϖ and In Section 3, we derive the gradient structure for the ODE syst energy functional is simply obtained by evaluation of HB on G of the explicitly given Onsager operator is nontrivial, and we [MaM20, Sec. 6.1]. We obtain the useful formula for the reduced O form of Kred ω,ε (p) = ϖKred Otto (p) + ϱKred He (p), wh Kred Otto (!, m, ω) =   2 ϑ ↭! + !↭ 0 0 0 1 ϑ ↭ 0 0 0 0   Kred He (!, m, ω) =   2 ϑ !↭! 0 0 0 1 ϑ !↭ 0 0 0 ω↭   . 4 ˙ ω = →Kred ω,ε (ω) ↑ϑ KL(µ(ω)|ε) Gradient fl ow structure of parametrized family of distributions
 (e.g. Gaussian) Example: HK-Gaussian gradient fl ows of KL <latexit sha1_base64="d5osNjo4upc8UgwBNKvUrqCi01k=">AAANcnicrVfdUtw2FN7Qv9QNbdLetTcnpGTSdkOWzV9vdiYQEkKmSUmAkCmmjGzLtrKy5EgyC/H4VfoifZK+Rx+gR7K9Pyx0etG92BXSOd/5/ySCnDNter2/Li189PEnn352+XPviyuLX3519drXb7QsVEj3QsmlehsQTTkTdM8ww+nbXFGSBZzuB8PH9nz/mCrNpNg1pzk9zEgiWMxCYnDr6NqlP/2AJkyUhLNE/Fh5AH4kDWRHBnB9cwA+4XlK/NDu+kzgl0olnvqCBJyAz2UCfs6s9E+AYAb3auEdlmTk6F+1utae3xodq9SW7bYz3gDavzmNzS1c2E8ftqzJRqc+mrf1e39szVcsSc0PVum/C0/51Gy1Pt/03xcksnFPhe1Nojjj8Nb/YHfF86mI2mIdXb3RW+m5D8wvVpvFjU7z2T665v2BiQ6LjAoTcqL1wWovN92UiEgW5rAMsHOoqmAZYqmg2dZdEJj9oGA80t4ynIMw1vS8WhV7UKMEVVaVOq1C05yEQ5LQMo/iHH91a4iJkBcREwngibYYOpUjsC6wiE4gNDW1HZnb7i2dlDsFKUDTUIoIdKgoFQOXssqb05kgVhdCSsFPWxnPurMMO9SA5lY3Yhi7nSfnUkJlRo06LXOSUzVikUkH/YerWdYFt5NS68eg37ubZVWD5VyQLjVA8hwLyk7OZCgruGEEc0JFSCuntUEx34oC4RxyqTXDEYdWBBIli9x5hJ6+pKO15qCkJwYN0Kg650xIlRFe1V75GzR+XCiFZZsTOP90Am2rzk5gV0rIiDjFL5OCG10cDA0YWIRFhoaIoIbFXhZ0FMoMVSI/xZ+TslfNbAbtpmeTY1Ka0YNcyQS7SwdEDWKFpXOsd1jaMshcImdW3nQq2wyLIguomurTaaFAyqEhQd0Tk/0DHRJOB/3DMgwZdpeeU8yTOOfSTBSbvzkLFMG2iIihdqMJoVU70biiM8GWvotPoH8VrjG5QVz/6nA6uMpvlRHSxV6+QCOKEe6GCQsMu4QPbe8XQS2AzPEr9jcmHXYVETqXClsPh2VTEVtMA0+5HGmr75jtBQlTvFDgF0qUsHNpZR0C++AuDg/RSWFSqcauPmfk9nNG4be0qLrgIY4fS2ncGLEP1NunDMtvFHIGbAmNjhWGOo/XcrzpsEPWBOGnmmlnbcfIMCUoFmqEWqcKb7gubFJlG8wm23fjGyqWG4e/DOvE9hn21ztpCXYk1VDDiJkUz9Y4PUFYJKQXjPIh7cI2OaYcNo4LRcMUJ3p42nWGnyTo0ibHvLgobQFLx9/+ccw4d8vnBSbnvkm70O/177ktFGVtVFb+NRIgUWGKzJExQRQsYZWwwJg+7CkMDxcuuqUu7G+t7YB/E57tQR2oNewqlyiSpyws/WNX8/JemFV+Wq9/tuuaOls5fVAz0N0wOyxjltx5r26PaKCZoSu5SCpLuGvRu0IbQF+gQXVhN6hANAhKcaodWbVvCT3bvu327KQJYgIWnBmhkuLgof2sJXtjCRHrYPds3aZlRxgGuj0Li10cEsfOjo0Rfks491svrl/35rgTX0ZuVjeYJpYoa/maOQCpw/MzMqQEU2zQmalrAr3Kua35tLQlL7xerA9gb66qrP6LSkpJdMcOgZOvDUr0RFnP3NsMQqyFHE+VH9EY584968pRiilyUlX5enO9Kvv372PDNV8VYD63sXnByYHTmQXQMjb79nCs37Oq9Rfq22sNRWoAvOSxX/HeY0iW2JgiKZhOXe5iJTPIx6as83iRWBFwlFXb1lMZqe0HWBB7L2F3hUQcE12VQTKYCgucD+tTYnUQZ3AmLH8GoAtxMsDXUzi0zfXUioGTgynTtrktRV0AXt9FTqIqW7gunHF0GV5O5C5AwpsCWyE6A1XB7MdR0ViuhnJzgU2EfMfm04jEhf1FJ7gRURgcOa1mcZ9MyV3gItJvERqs5MX+Oai6N2UMrQJGTrm9nfA252yICS44jg4+RJBptRtKlBKoErsBgfq21edNiR0I++8KDgWaEnJaAV+0q2ffr/OLN/2V1QcrD171bzz6vnnbXu5811nq3Oqsdh52HnWedbY7e51wYWnh2cKrhddX/l78dvH6YvMQXrjU6HzTmfksdv8Bww+f+Q==</latexit> ˙ mt = ω · εt → log ϑ + ϖ · !t εt → log ϑ, ˙ !t = ω · 2I + !t εt →2 log ϑ + εt →2 log ϑ !t + ϖ · !t I + εt →2 log ϑ !t . Liero-Mielke-Tse-Z. Evolution of Gaussians in the HK-Boltzmann gradient fl ow.
  20. Theoretical characterization of Gaussian gradient fl ow Liero-Mielke-Tse-Z. Evolution of

    Gaussians in the HK-Boltzmann gradient fl ow. Non-Gaussian target: ω → e→V (x), ↑2V (x) ↓ εI Sublevel exponential decay: Observe that the measure stays within the sublevel set KL(N(mt, !t )|ω) ↔ E for all time t, for some E > 0. Then: KL(N(mt, !t )|ω) ↔ e→CE ω,ε t KL(N(m 0 , ! 0 )|ω) + (1 ↗ e→CE ω,ε t) inf µ↑P KL(µ|ω) where the rate CE ω,ε is given by CE ω,ε = ε (2ϑ + ϖϱE ) , ϱE is a constant depending on the sublevel E ϑ = 1, ϖ = 0: Bures-Wasserstein (Lambert et al.) ϑ = 0, ϖ = 1: Fisher-Rao (Chen et al.) ϑ > 0, ϖ > 0: Hellinger-Kantorovich / Wasserstein-Fisher-Rao Non-Gaussian target: ω → e→V (x), ↑2V (x) ↓ εI Sublevel exponential decay: Observe that the measure stays within the sublevel set KL(N(mt, !t )|ω) ↔ E for all time t, for some E > 0. Then: KL(N(mt, !t )|ω) ↔ e→CE ω,ε t KL(N(m 0 , ! 0 )|ω) + (1 ↗ e→CE ω,ε t) inf µ↑N d KL(µ|ω) where the rate CE ω,ε is given by CE ω,ε = ε (2ϑ + ϖϱE ) , ϱE is a constant depending on the sublevel E ϑ = 1, ϖ = 0: Bures-Wasserstein (Lambert et al.) ϑ = 0, ϖ = 1: Fisher-Rao (Chen et al.) ϑ > 0, ϖ > 0: Hellinger-Kantorovich / Wasserstein-Fisher-Rao
  21. eodesic semi-convexity (4.6) still holds for the relative Boltzmann entrop

    ction 5, we analyze the long-time decay behavior of solutions to th nn gradient flow over Gaussian measures. Our first key tool is the cz (P! L) functional inequality, which enables exponential convergence ra sence of geodesic sublevel semi-convexity. ction 5.1, we establish both global and sublevel P! L inequalities for the g gy functional E 1 , using a decomposition into covariance and mean part ponential decay estimates of the form: E 1 (p(t)) ⇐ e→ccovtH cov (!(0)) + e→cmtH m (m(0)), s c cov , c m that depend explicitly on ϑ, ϖ, and the energy level E 1 (p(0)) ⇐ ned analysis follows, where the decay is sharpened by tracking the ev alues of the normalized covariance matrix B = ”→1/2!”→1/2. This l decay rates: H cov (!(t)) ⇐ C e→ϑcovt, H m (m(t)) ⇐ C e→ϑmt, Refined analysis: Gaussian Target for HK-Gaussian Flow • Geodesic convexity fails for the HK-Gaussian flow (due to the Hell/FR part). • However, we can show sublevel geodesic (semi-)convexity: • Beyond standard results for BW and FR flows over Gaussians [Chen et al. 2023, Lambert et al. 2022] can be established for HK-Gaussian type gradient flows of KL(·|ω): • Sublevel PL-inequality holds even when ω ! := ωε min (!→1) = 0 (i.e., no transport; only birth-death of Fisher-Rao). • Refined decay rates: • Geodesic convexity fails for the HK-Gaussian flow (due to the Hell/FR part). • However, we can show sublevel geodesic (semi-)convexity: • Beyond standard results for BW and FR flows over Gaussians [Chen et al. 2023, Lambert et al. 2022] can be established for HK-Gaussian type gradient flows of KL(·|ω): • Sublevel PL-inequality holds even when ω ! := ωε min (!→1) = 0 (i.e., no transport; only birth-death of Fisher-Rao). • Refined decay rates: Liero-Mielke-Tse-Z. Evolution of Gaussians in the HK-Boltzmann gradient fl ow.
  22. ω = 1, ε = 0: Bures-Wasserstein ω = 0,

    ε = 1: Fisher-Rao ω > 0, ε > 0: Hellinger-Kantorovich / Wasserstein-Fisher-Rao Gaussian target: ω = N(µω, !ω ) KL(N(mt, ”t )|ω) → e→Cω,ε t KL(N(m 0 , ” 0 )|ω) Where the rate Cε,ϑ is given by Cε,ϑ = 2εϑ min (!→1 ω ) + ϖ ε = 1, ϖ = 0: Otto-Wasserstein ε = 0, ϖ = 1: Fisher-Rao ε > 0, ϖ > 0: Hellinger-Kantorovich (Wasserstein-Fisher-Rao) Theoretical characterization of Gaussian gradient fl ow Liero-Mielke-Tse-Z. Evolution of Gaussians in the HK-Boltzmann gradient fl ow. (Global PL)
  23. This talk is based on: Mielke-Z. Hellinger-Kantorovich Gradient Flows: Global

    Exponential Decay of Entropy Functionals. arXiv preprint Z. Inclusive KL Minimization: A Wasserstein-Fisher-Rao Gradient Flow Perspective. arXiv preprint Gladin-Dvurechensky-Mielke-Z. Interaction-Force Transport Gradient Flows. NeurIPS 2024 Z-Mielke. Kernel Approximation of Fisher-Rao Gradient Flows. arXiv preprint Liero-Mielke-Tse-Z. Evolution of Gaussians in the HK-Boltzmann gradient fl ow. arXiv preprint 
 For more information, see the website: https://jj-zhu.github.io/ Open positions (KTH, Stockholm/TU Darmstadt). Get in touch Thank you!
  24. Gaussian (target) posterior, dimension=100 <latexit sha1_base64="j3T4GvCQpKjeLjlHvTK8FMvIu2A=">AAAMgnicjVZbc9Q2FN60tKVu2kL72JcDNAyXTdhdbn1oZggEAkyhKQHCFIeMbB/bYmXJleRsgsd/pb+of6D/pkfyOru5zXQfdrXSOd+5f1JUCm7sYPDvwmefn/viy6/Ofx18s/jtd99fuPjDW6MqHeObWAml30XMoOAS31huBb4rNbIiErgdjR+58+091IYr+doelLhTsEzylMfM0tbuhX/CCDMuayZ4Jm80AUCxW49vDhu4GmZoDf0dw00ILasg3OJZweh/yKWFOtS52h03EEoWCQahUBmEJe9DGBLMVNhjfaiXZ4DXhssO7fohXHva2RCY2muw3NpwJqb4H0aHFmibZ7m9Tlb6QYgy6bzfvXBlsDLwHzi5GE4XV3rTz+buxeDvMFFxVaC0sWDGvB8OStvPmUxUZXfqiDKJuoElSJWG6bbpg1QWooqLxARLcArCoWYQtKpUE0MSqJ0qeq3KYMniMcuwLpO0pF/TGeIyFlXCZQZ0YhyGydUEnAs8wRmEQdvaUaWrZu2l/CkoCQZjJRMwsUaUqz5lTXBCZ4bYnAmppDjoZALnzhJsoQUjnG7CKXbXX96lDFWBVh/UJStRT3hi89XR/WFR9MHv5Oj8WB0NbhdFM8XyLiifGmBlSQXl+8cyVFTCckY5QRlj47XWkfKtEZgQUCpjOLU8dCKQaVWV3iPy9CVO1qYHNe5bMoBJc8qZVLpgomm9CtcxfVRpTWU7IXD66QzaVZ3vw2uloGDygL5sTo6WOYvcCFBgCRUZpoMJLexKEEqcxKoglSTM6We/HjRHNqNuM3DJsTkW+L7UKqPuMhHTq6mm0nkW2KldGVSpiEOaYD6VXYZlVUSo5/p0XihSamxZ1PbEbP+9iZnA1dFOHcecusucUCyztBTKzhSn/wWPNKO2SJhFtzENoVPbN7TCI8HWoY9Pkn8NrSm5Udr+mng+uCbslAnSx16/ICOaM+GHiQoMr5kYu96volaAmON36m9KOrzWTJpSaWo9GpYNzVwxLTwRamKcviezFyzOiWDhN2Raurl0sh6Bf/JEGhA6q2yu9KGrzzlbfs4R/syrpg8B4YSpUtaPEf+EwTZyKr/VxBnwTBpyrLLoPV4rifmpQ9YkEweGG29ty6o4ZyQWG4J6iJoYvw8bqF2DuWSHfnxjzUvr8ZfgIXN9Rv31UTkynSg9NjDhNqezNYH7BEuE9IKjGGMfNtkeCljfqzTGOU30+KDvDT/OyKUNQXnxUboCuvwRw++lXAi/fF5Rcu7avA+jweiO3yJR3kXl5F8RATId58QcBZdMw2WqEhWY0kc9ReHRwkd3uQ/bz9a2ILwKT99AG6gz7CuXaVbmPK7DPV/z+k5cNGHern9x65Y6OznzvmWg23GxU6c8u/WXXp5gZLjFlVJmjSPcteRjZSyQLzBF9WFPUYEZkIg01Z6survVHG3fbvvopElmIx4dG6EaafDIftGRvXWESHVwe65u87ITCoPcPgpLXRwzz86ejQn+mfTud15cuhSc4E56KfhZXeeGOaJs5VvmAKKOICzYGBml2JIzc9cEeVUKV/N5aUdedL04H8DdXE3d/B+VHFlyyw2Bl28NKvJEO8/8WwViqoU6nKowwZTmzj9z6klOKfJSTf1q42FTj+7epYabfjVA+dyk5gUvB17nKIBRqd12h4f6A6fafpG+u9ZIpAWgS576le49TmRJjSmzipvc5y7VqoDy0JRzni4SJwKeslrbZi4jrf2ICuLuJequmMk9Zpo6ylbnwgLvw8M5sTaIYzgzlj8G0Ic0W6W3Ujx2zfXEiYGXgznTrrkdRZ0B3t5FXqKpO7g+HHN0CV7O5M5AopuCWiE5BuWDnPt4KjqUa6H8XFATEd/xk2kk4qL+whluwjQFxw6ao7iP5+TOcJHot4otVfJs/zxU25sqhU6BIkfhbie6zQUfU4IrQaNDDxFiWuOHkqQkqaR+QKC9bc1pU+IGwj3faSjIlFTzCvSiHR5/v55cvB2tDO+t3PtjdOXBz9O37fneT73LvWu9Ye9+70HvaW+z96YXL4wW3i2whWjx3OKNxeHi7Vb0s4Wpzo+9I5/FX/8DYgFWoQ==</latexit> mk+1 → mk +

    ω!k εk ↑ log ϑ, !→1 k+1 → (1 ↓ ω)!→1 k + ω ↓ ε↑2 log ϑ , Fisher-Rao Bures-Wasserstein <latexit sha1_base64="QW0ESoVhrWaPlB2f3Wu38+403GE=">AAANF3icvVdLcxw1EF7zDIOBBI5cOglOBbxx1psXF1fFzsNJioQQx3EKj2M0Mz0zymqkQdJ47UzND+HCX+EGXDnyI7jClZZm17vrRxUn9rArS91fvz/JUSm4sb3en3Nvvf3Ou++9f+aD4MP5jz7+5Oy5T18YVekYN2MllH4ZMYOCS9y03Ap8WWpkRSRwKxrccedbe6gNV/K5PShxp2CZ5CmPmaWt3XNzP4QRZlzWTPBMftUEAMVuPVhcbuBSmKE19OcA6kV3EFpWQcilhTrUudodNBBKFgkGoVAZhCXvOqnQfW3wrGCzQG5bYGovP4RFjxXGibKjvdodw6Hi4FV9hTQXw4LZPIrgHuy2RoGstkZf9Q/Nkh+aZ7n90pmYrEZQ/7fdJQhClMk4o7tnL/aWev4DxxfLo8XFzujzdPdc8HOYqLgqUNpYMGO2l3ul7eZMJqqyO3VE5UXdwAKkSsNo23RBUlBRxUViggU4AeFQMwhaVWoUQxKonSp6rcpgyeIBy7Auk7SkXzM2xGUsqoTLDOjEOAyTqyE4F3iCEwiDtrWjStditZfyp6AkGIyVTMDEGlGu+Jw1wTGdCWJzKqSS4mAsEzh3FmADLRjhdBNOsbum9y5lqAq0+qAuWYl6yBObr/RvLRdFF/xOjs6PlX7vWlE0IyzvgvKpAVaWVFC+fyRDRSUsZ5QTlDE2XusuUr41AhMCSmUMpzmEsQhkWlWl94g8fYLD1dFBjfuWDGDSnHAmlS6YaFqvwruY3qm0prIdEzj5dALtqs734blSUDB5AK7FydEyZ5EbTwosoSLDiC2ghV0KQonDWBWkkoQ5/ezXvWZmMxpvBi45NscCt0utMuouEzG9kmoqnaemndqVQZWKiK0JplM5zrCsigj1VJ9OC0VKDSyL2p6Y7G+bmAlc6e/Uccypu8wxxTJLS6HsRHH0t+CRZtQWCbPoNkYhjNX2Da1wJtg69PFJ8q+hNSU3SttfE08H14RjZYL0sdePyYjmTPhhogLDcyYGrverqBUg6viW+puSDs81k6ZUmlqPhmVdM1dMC/eFGhqn7zn2MYtzYn34BpmWbi6drEfgbzy7B4TOKpsrfejqI86uPOII3+dV0yWeCoMwVcr6MeJvMNhCTuW3mjgDHkpDjlUWvcerJV1H1CGrkokDw423tmFVnDMSiw1BraGma6gL66hdg7lkh358Y81L6/EXYI25PqP+eq3cTTJUemBgyG1OZ6sC9wmWCOkxRzHALjxleyjg7l6lMc5pogcHXW/4XkYurQvKi4/SFbD2RB7upVwIv3xUUXJu2LwL/V7/ut8iUT6Oysk/IwJkOs6JOQoumYYLVCUqMKWPeorCo4WP7kIXth6ubkB4CR5sQhuoM+wrl2lW5jyuwz1f8/p6XDRh3q6/duuWOsdyZrtloGtxsVOnPLv6o74yxMhwi0ulzBpHuKvJ68pYIF9ghOrDHqECMyARaao9WY0vfDPbvuPt2UmTzEY8OjJCNdLgkf1iTPbWESLVwe25uk3LDikMcnsWlro4Zp6dPRsT/EPp3R97cf58cIw76fniZ/UuN8wRZSvfMgcQdQR0DQ+QUYotOTN1TZBXpXA1n5Z25EXXi/MB3M3V1M1/UcmRJVfdEHj51qAiT7TzzD+gIKZaqMOpChNMae7826se5pQiL9XUz9bXmrp/4wY13OirAcrnU2pe8HLgdWYBjErtljs81O851faL9N21RiItAF3y1K9073EiS2pMmVXc5D53qVYFlIemnPN0kTgR8JTV2jZTGWntR1QQdy9Rd8VM7jHT1FG2MhUWeB/WpsTaII7gTFj+CEAX0myF3k3xwDXXfScGXg6mTLvmdhR1Cnh7F3mJph7DdeGIowvwZCJ3ChLdFNQKyREoH+TUx1PRoVwL5eeCmoj4jh9PIxEX9RdOcBOmKTh20Mzi3puSO8VFot8qtlTJ0/3zUG1vqhTGChQ5Cnc70W0u+IASXAkaHXqIENMaP5QkJUkl9QMC7W1rTpoSNxDufwoaCjIl1bQCvWiXj75fjy9e9JeWby7d/K5/8fYXo7ftmc7nnQudy53lzq3O7c6DztPOZiee+23ur7m/5/6Z/2n+l/lf539vRd+aG+l81pn5zP/xL7pTiQM=</latexit> mk+1 → mk +ω εk ↑ log ϑ, !k+1 → I + ω · !→1 k + E ωk ↑2 log ϑ !k I
  25. Theoretical characterization of Gaussian Forward KL gradient fl ow sition

    10 The Fisher-Rao Gaussian gradient flow of the inclusive KL diverg y the following system of ODEs: ˙ mt = →(m → mω), ˙ !t = → ! → !ω → (mω → m)(mω → m)T . rivation of (18) is given in the Section D. e intuition of the above formula is clear: The ODEs drive the Gaussian state N( s the moment-matching solution. Using the convenient reduced gradient str 8], we also derive the corresponding Bures-Wasserstein [53, 88] gradient flow eq nclusive KL divergence as ODEs in Section D. a natural corollary of the mathematical property established in result in The y also draw the conclusion for the Fisher-Rao space of Gaussian probability m R . ary 11 The inclusive KL divergence D KL (ω|·) is geodesically ε-convex in the ace of Gaussian measures (N d , FR) for some ε > 0. Hence, the inclusive KL ntially along the gradient flows of Gaussian measures: where w with the inclusive KL driving energy. First, using the gradient structur Liero et al. [58], we can straightforwardly derive Fisher-Rao Gaussian gradien ns as the following system of ODEs: that the target distribution ω is not necessarily Gaussian, we denote its fir moments as: mω := Eω[x], !ω := Eω[(x → µω)(x → µω)T ]. (1 n 10 The Fisher-Rao Gaussian gradient flow of the inclusive KL divergence following system of ODEs: ˙ mt = →(m → mω), ˙ !t = → ! → !ω → (mω → m)(mω → m)T . (1 on of (18) is given in the Section D. Fisher-Rao Gaussian gradient fl ow of the forward KL Theorem. The forward KL divergence KL(ω|·) is geodesically ε-convex in the Fisher-Rao space of Gaussian measures (Nd , FR) for some ε > 0. Hence, the inclusive KL decays exponentially along the gradient flows of Gaussian measures: KL(ω|N(mt, !t )) → e→ωt KL(ω|N(m 0 , ! 0 )) + (1 ↑ e→ωt) inf µ↑N d KL(ω|µ) Z. Inclusive KL Minimization: A Wasserstein-Fisher-Rao Gradient Flow Perspective. arXiv preprint Theorem. The forward KL divergence KL(ω|·) is geodesically ε-convex in the Fisher-Rao space of Gaussian measures (Nd , FR) for some ε > 0. Hence, the forward KL decays exponentially along the gradient flows of Gaussian measures: KL(ω|N(mt, !t )) → e→2ωt KL(ω|N(m 0 , ! 0 )) + (1 ↑ e→2ωt) inf µ↑N d KL(ω|µ).
  26. Information divergence and Hellinger (Fisher-Rao) distance <latexit sha1_base64="09zSmmS1QTj3HxuFKwGRSwXSWDk=">AAAOznicjVdbcyQ3FZ7EQMIAJgsPPPBysrumbJhxZibxLtmqqYp3neyFbDB7iVNxOy51t6ZbsbrVkdQee5uGV34FT7zC/+Hf8EndPRd7XcU8jDXSOZ/O9TtyWEhh7Gj033fe3fjRj3/y3vs/7f/s57/Y/OUHt371tVGljvjrSEmlvwmZ4VLk/LUVVvJvCs1ZFkp+FJ49cudH51wbofJX9rLgJxlLcjETEbPYOr218Zs+URDyROQV/6H0u7+vsUe0RYFkIZfYfzD+dK/ZDCy/sNXd4JzpIhV3h7EAesLziBPPsbqk40dGmDdM0/jTe/dP6gCgMTW6GbOpzqqD+rTVp+0gK+mvFOTlzoNpIyRy2yxakUDymd0OZppFVRDHTqF2C6dE9fbFTqBFktqdYNBuOod4Hq+7ExSsNLzvvUpnQsql25nIRcESXh/bk2q0u7cXuGDORWzT2it03p4Wd+Gk1aq4pMR5y6zSDeRMKZsry414w5fICfzl+i3hLNSc6yGwFkeNApMiyXnc7C5CcFpsG4SnCcG4rortYjjeqYNQJNvmu2KIY/wejt3GThC0ygD1oS8Q0Sb0YUgvAsMtHC5NUI0G46AeLOSpmE4eUBCl4rvJoFVt7hy7fZd35O4Jl4hOwnVNK5qBVTReCv3pS+BSd9p5MW68aH91xQBZmppAqoTM0PxhvNBaoHdu4I7R8g7Nz3fp7ReN/EWIybCBbaG2mrJYibH/vUiS/7UohtMP7ox2R/5D1xfjdnGn134OT2/1/xnEKiozpDWSzJjj8aiwg5TlsSpRWSG60oVti2ZKU7ttBoSyobAUMjZ9WHgdYaHZ7zeq6G8DCa7JV5zTQmkXLDqD3VURz5z9prtI5JEsY6SMcGIchknVnJwJIuZLCNRFc48qXNNUXsqfksrJ8EjlMZlIc55PfcMhYFd1loj1jZAql5edTN+Zs0UvuSUjnW4s4LvjKm9SwlXGrb6sClZw7RtyOrk/zrIB+Z2UOzumk9HHWVa3WN4E5UNDrCiQUnFxJUJZKa1giIljrdprHXDEW3NiUlKhjBGgT+pEKNGqLLxFsPQrPt9vDypUIi5wtXT9LFc6Y7JurAoO+OxRqTXSdk3g7adLaJd1cUGvlKKM5Zfk+gaGFinIxBqCYzGSTC3JUwO72w9AYZHKoBIHKf5cVKN6bTPsNvsuOOiBjB8XWiWoLhMyPUXnI/puopxULg2qUJhHdX81lF2E8zILuV6p01WhUKkzy8KmJpb7xyZikk8nJ1UUCVSXuaZYJLNCKrtUbH9LEWqGsoiZ5W6jdaFTuzBY8TVnq8D7l8M+zA7HIOGs+WuiVefqoFMGpPe9eo5LtGDSNxMSTK+YPHO1X4aNAHjkz6hvBJ1eaZabQmmUHprlsWYumZa+kGpunL4noucMFJtz+pIznbu+dLIeQbzx86oPdFbaVOmFqc8EGz4TnL5Ny3pAfeCsT5wjLpB+q8EZ9DQ3MKy03Fu8X+AVgQrZz5m8xGD2t720KkoZxCLHjQ+5BqUP6DHXrsBcsAPfvpEWhfX4W/SQuTpDfX2vMKBprvSZobmwKc72Jb8ALAjpueDyjA/okJ1zSQfnpeZRio4+uxz4iz9PYNJjibh4L10Cq3bYtzOZ6FmJ4OzZdECT0eQTvwVR0Xnl5F+AAJmOUjAH+BpPjdvPHYmjM/CukXAPC+/d7QEdPd1/ScHv6Mlrahx1F/vMJZphWuBRce5zXn0SZXWQNus/unVDnZ2cOW4Y6OMoO6lmIvnoBz2c89AIy3eLPKkd4e7H35fGEmyhFtW73aISM5Rzjq72ZNW908x6+Xbb652WMxuK8EoLVRyNh/uzjuytI0Tkwe25vK3KzuEGzF6HRRVHzLOzZ2PAP829+Z0VH37Yv8adeHX6Xj0QhjmibOQb5iBQRx+z/YwzhNjCmJUxAasK6XK+Ku3IC+PF2UB+8lb1/6OSchZ/5JrAyzcXKjfJnWX+3UsRcqEWXRXEfIa+80/map4iRF6qrl48flhXk709FFz7VbvHwiGKl7wceZ11AKNm9sgdLvRHTrX5qv1r4yVEGgAMedQr5p4AWaIw86QUJvWxm2mVUbG4yhmPQeJEyFNWc7dZiUhzf4iEuLmE6opYfs5MXYXJdMWt5sXzcEWsceIKzpLlrwAMaJZMQwl9V1xfODHycrRytStuR1E3gDezyEvUVQc3oCuGbtFXS7kbkDApUArxFaia1j+eihZyDZTvCxQR+E5cDyOIC/XFl7gx03COXdbruJ+vyN1gIui3jCwyebN9HqqpTTWjTgGec+mmE6a5FGcIcCnROniIgGmNb0pI5VCZ+QahZtqat3WJawj33wuaAlflalUBL9rx1ffr9cXXk93xvd17f5nc+exu+7Z9v/fb3u3edm/cu9/7rPekd9h73Ys2/rbxr41/b/xn83DzfLPe/Hsj+u47rc6ve2ufzX/8D78FE0Y=</latexit> ω-divergence energy

    [Csiszar 1967] Dω (µ|ε) := ω dµ dε (x) dε ωp (s) := 1 p(p → 1) sp → p(s → 1) → 1 p = 2 : ϑ2, p = 1 2 : Hellinger p ↑ 1 : KL, ω1 (s) := ωKL = s log s → s + 1 p ↑ 0 : rev. KL, ω0 (s) := s → 1 → log s <latexit sha1_base64="Set8lOLzUr1IGXYRM059VhWCQAQ=">AAALznicjVZLc9s2EGbSV0r3kbSXzvSyebjpQXFk5dWLZ2LHiZNMk7qJHWdqehKQXIqIQIAFQMkKh+21v6KnXtv/03/TBShZkh8z5YGCgN0P+/yWcSm4sd3uv+fOf/DhRx9/cuHTcOmzz7/48uKlr14ZVekEdxMllH4dM4OCS9y13Ap8XWpkRSxwLx48cOd7Q9SGK7ljxyUeFKwvecYTZmnrzcVv3r69Vl67oVHQxhABpdWqHF+//ubi1e5K1z9wcrE6WVwNJs/2m0vhn1GqkqogiEQwY/ZXu6Xt5EymqrIHdUxWoW5gGTKlYbJtOiCVhbjiIjXhMpyCcKQZhq0q+WdIArVTRa9VGSxZMmB9rMs0K+nXTC/iMhFVymUf6MQ4DJOrETgTeIozCIO2vUeVLjK1l/KnoCQYTJRMwSQaUa5p3s9tE57QmSE2Z0IqKcZTmdCZswwv0YIRTjfl5LvLlTepj6pAq8d1yUrUI57afK13b7UoOuB3cnR2rPW6t4qimWB5E5QPDbCyRJnyw2MRKiphOaOYoEyw8VqbSPHWCEwIKJUxnMoHpiLQ16oqvUVk6XMcrU8Oajy0dAGmzSlnUumCiaa1KtrE7EGlNaXthMDppzNol3V+CDtKQcHkmF42J0PLnMVoDZBjKSUZJkUOLexKGEkcJaoglTTK6eew7jYLm/F0M3TBsTkWuF9q1afqMjHTa5mm1PmOOqhdGlSpqB+bcD6U0wjLqohRz9XpvFCs1MCyuK2J2f6+SZjAtd5BnSScqsucUCz7WSmUnSlO/gsea0ZlkTKLbmPiwlTt0NAKF5ytI++fJPsaWlNw46z9Ncm8c000VSZI73v9jC7RnAnfTJRg2GFi4Gq/iluBEOAnqm8KOuxoJk2pNJUeNcuWZi6ZFh4JNTJOP4pI+BlLciIr+BGZlq4vnaxH4O89KYWEziqbK31k6lPObjzlCL/kVdOBkHCiTCnr24i/x3APOaXfauIMeCINGVZZ9Bavl8SiVCHrkomx4cbf9tKqJGcklhiC2kBN7NmBLdSuwFywI9++ieal9fjLsMFcnVF9vVOcXBopPTAw4jans3WBhwRLhPSMoxhgB7bZEAVsDiuNSU4dPRh3/MUP+2TSlqC4eC9dAl38AKJhxoXwy6cVBeeOzTvQ6/Zu+y0S5VOvnPwLIkCmk5yYo+CSabhCWaIEU/iopsg9WnjvrnRg78n6S4i+g8e70DrqLvaZ62tW5jypo6HPeX07KZoob9c/uHVLnVM5s98y0K2kOKgz3r/5q74xwthwiyul7DeOcNfTd5WxQLbABNW7PUEFZkAiUld7sprOKbNYvtPtxU6TzMY8PtZCNVLj0f3FlOytI0TKg9tzeZuXHZEbZPYiLFVxwjw7ezYm+CfSmz+14vLl8AR30tT1vbrJDXNE2cq3zAFEHWFUsAEyCrElY+bGBFlVCpfzeWlHXjRenA3gJldTN/9HJUeW3nRN4OXbCxVZop1lfu5DQrlQR10VpZhR3/lPhnqUU4i8VFO/2Npo6t6dO1Rwk1cDFM9tKl7wcuB1FgGMyuyeOzzS7zrV9kX6bqyRSAtAQ57qleYeJ7KkwpT9ipvcxy7TqoDy6CpnPA0SJwKestq7zVxE2vtjSoibS1RdCZNDZpo67q/NuQXeho05sdaJYzgzlj8G0IGsvxYL0nfF9ciJgZeDuatdcTuKOgO8nUVeoqmncB04ZugyPJ/JnYFEk4JKIT0G5Z2cezwVHcm1UL4vqIiI7/jJMBJxUX3hDDdlmpxj42YR9+Gc3BkmEv1WiaVMnm2fh2prU2UwVSDPUbjpRNNc8AEFuBLUOvQhQkxrfFOSlCSVzDcItNPWnNYlriHcpzA1BV0l1bwCfdGuHv9+Pbl41VtZvbty9+fe1fvXJt+2F4JvgyvB98FqcC+4HzwOtoPdIAl+C/4K/g7+WdpeGi41S7+3oufPTXS+DhaepT/+A4n1HWM=</latexit> “p-relative entropy” <latexit sha1_base64="IABBMppdBobFseYR7L2kjbxHYJM=">AAAMyHicjVdbc9NGFHbojbppS9rHvhxuHeiYYJtbH/AM4Q7TUEoCYYpCZiUdSYtXu2J3Fcdo9NIfwmv7l/pvenZlxXZCZqoHab177pfvrMNCcGP7/X9XTn32+RdffnX66+43q99+9/2ZtR9eGVXqCF9GSij9OmQGBZf40nIr8HWhkeWhwJ1wfM+d7+yjNlzJbTstcDdnqeQJj5ilrb21lTWAIMSUyyplNkP9S90Fei5CkChlpbJo+Af0e4HFAxsm1WMUpC5FDTEZyGSEoEgHXAg2C1GaC3UQdAOpdM7EnDcjprfDS0Fe7vV77j247A9GrbrAL64HUawsBFzSS2BiLwXmvbZVBZ6zbqy7Aou7g7qGQPM0s5ffDmfiIIhjCFKW52y202sVzS24fXtGEaCMD/3fO3O+v973DxxfDGaL853Z83xvrfsxiFVU5ihtJJgxbwb9wvYyJmNV2t0qpHygrkl3ojTMtk0PKLgQllzEpktmHZdwyNntNqyUWUMUFGqfF8dVGixYNGYpVkWcFPQ1rSIuI1HGlCigE+NkmExNwJnAY5yLMGgbPapwNVF5Kn8KSoLBSMkYTKQR5chHue4e45lLrE8UqaSYtjRdZ85F2EILRjjemJPvrkq9SSmqHK2eVgUrUE94bLPR8NYgz3vgdzJ0doyG/Wt5Xs9keROUDw2woqCM8oMjEcpLYTmjmCDVbO257iPFWyMwIaBQxnBqHGhJINWqLLxFZOkznGzMDipqBFKAcf2Js6by68aq4D4m90qtKW3HCD59Ohftss4PYFspyJmc0stmZGiRsRCtAXIspiTDrL2hEbtOrYeTSFFZyzjI6HNQ9eulzbDd7LrgUNHn+KbQKqXqMiHTo0RT6jyW7FYuDapQhER1dzGUbYRlmYeoF+p0kShUamxZ2NTEfP+NiZjA0XC3iiJO1WWOMRZpUghl54yz34KHmlFZxMyi25i50LIdGFrhkrNV4P2TZF9dtQDmvyZadK4OWmYS6X2vNkmJ5kz4ZqIEwzYTY1f7ZdgQEKD8TvVNQYdtzaQplKbSo2Z5pJlLpoWHQk2M4/fotsmijGAafkOmpetLR+sl8A8ejrsknZU2U/rQ1KecXXnKEf7MyroHXYesS7i8g5zSbzVhBjyRhgwrLXqLNwqaH1QhG5KJqeHGa9uyKsoYkUWGRN1FTUDeg0eoXYF1PQq79o00L6yXfxHuMldnVF/vlAPlidJjAxNuMzrbEHhAYgmQNjmKMfbgOdtHAff3S41RRh09nva84gcpmfRIUFy8ly6BVTMY9hMuhF8+LSk4N2zWg2F/eN1vESlvvXL0LwgAmY4yQo6cS6bh3KZDbeoMmmiC3KOF9+5cD3aebGxB8DM8fgmNo06xz1yqWZHxqAr2fc6r61FeB1mz/tWtG+hs6cybBoGuRflulfD06nt9ZYKh4RbXC5nWDnA34nelsUC2wEyqd3smFZgBiUhd7cGqndBmuXzb7eVOk8yGPDzSQhVS45H+vAV76wCR8uD2XN4WaSfkBpm9LJaqOGIenT0ak/gn0pvfWnH2bPcYdtJ9w/fqfW6YA8qGvkEOIOjoBjkbI6MQWzJmYUyQVYVwOV+kduBF48XZAG5y1VX9f1gyZPFV1wSevlGo3Oh2lvkbD0SUC3XYVUGMCfWdvyxVk4xC5Knq6sWju3U1vHGDCm72qt0N4TkVL3g68DzLAoxK7I47POTvO9bmVfsrxhaRNAJoyFO90tzj0t2VqOlLbjIfu0SrHIpDVc54GiSOBDxkNbrNQkQa/SElxM0lqq6IyX1m6ipMRwtuNdecuwtkjRNH5MxR/oiAHiTpKBTE74rroSMDTwcLql1xO4g6QXgzizxFXbXienDE0IvwbE53giSaFFQK8RFR3smFx0PRIV0jyvcFFRHhHT8eRgIuqi+cy42ZJufYtF6W+2CB7gQTCX7LyFImT7bPi2pqUyXQMpDnKNx0omku+JgCXApqHbqIENIa35REJYkl8Q0CzbQ1n+oS1xDuTwA1BamSapGBbrSDo/fX44tXw/XBzfWbfwzP37kwu9ue7vzUOde51Bl0bnXudB53nndedqKVg5WPK3+v/LP6dLVYnaxOG9JTKzOeHztLz+pf/wG4qWmG</latexit> Hellinger distance over M+ He 2 (µ0, µ1) = 4 · ( → µ0 ↑ → µ1) 2
  27. Theoretical analysis of Hellinger gradient flows [Z & Mielke ’24]

    min µ2M+ DKL (µ|⇡) in (P, He) Theorem The Lojasiewicz inequality for the Hellinger gradient system with the 'p -divergence energy ✓ 'p(s) = sp p(s 1) 1 / p(p 1) ◆ '0 p ✓ dµ d⇡ ◆ 2 L2 µ c ⇤ D' p (µ|⇡). ( L-He) holds globally i↵. p  1 2 , i.e., p  1 2 () ( L-He) =) D'p exp. decays KL: non-convex in Hell