Upgrade to Pro — share decks privately, control downloads, hide ads and more …

How does lattice thermal conductivity “work”? Insights from first-principles calculations

Jonathan Skelton
September 06, 2022

How does lattice thermal conductivity “work”? Insights from first-principles calculations

Presented at the 42nd Collaborative Computational Chemistry No. 5 (CCP5) Annual General Meeting.

Jonathan Skelton

September 06, 2022
Tweet

More Decks by Jonathan Skelton

Other Decks in Science

Transcript

  1. J. M. Skelton, J. Cen, J. M. Flitcroft, M. Molinari, S. Moxon,
    I. Pallikara, J. Tang, J. Tse and B. Wei
    Department of Chemistry, University of Manchester
    ([email protected])
    How does lattice thermal conductivity “work”?
    Insights from first-principles calculations

    View Slide

  2. Motivation: thermoelectrics
    CCP5 42nd AGM, 6th Sept 2022 | Slide 2
    Dr Jonathan M. Skelton
    𝑍𝑇 =
    𝑆!𝜎
    𝜅"#" + 𝜅#$%
    𝑇
    𝑆 - Seebeck coefficient
    𝜎 - electrical conductivity
    𝜅!"!
    - electronic thermal conductivity
    𝜅"#$
    - lattice thermal conductivity
    G. Tan et al., Chem. Rev. 116 (19), 12123 (2016)

    View Slide

  3. Modelling thermal conductivity
    Dr Jonathan M. Skelton
    A. Togo et al., Phys. Rev. B 91, 094306 (2015)
    𝜿#$%% (𝑇) =
    1
    𝑁𝑉&
    .
    '
    𝜿'(𝑇)
    1
    𝑁𝑉&
    .
    '
    𝐶'(𝑇)𝒗' ⊗ 𝒗'𝜏'(𝑇)
    The simplest model for 𝜅"#$$
    is the single-mode relaxation time approximation (SM-RTA) - a
    closed solution to the phonon Boltzmann transport equations
    Modal heat capacity
    Mode group velocity
    𝜕𝜔%
    𝜕𝐪
    Average over phonon
    modes λ
    Phonon MFP
    Mode lifetime
    𝜏%
    =
    1
    2Γ%
    𝚲&
    𝑇 = 𝒗&
    𝜏&
    𝑇
    CCP5 42nd AGM, 6th Sept 2022 | Slide 3

    View Slide

  4. Modelling thermal conductivity
    Dr Jonathan M. Skelton
    A. Togo et al., Phys. Rev. B 91, 094306 (2015)
    J. Tang and J. M. Skelton, J. Phys.: Condens. Matter 33 (16), 164002 (2021)
    CoSb3
    CCP5 42nd AGM, 6th Sept 2022 | Slide 4

    View Slide

  5. The RTA model: modal properties
    Dr Jonathan M. Skelton
    J. Tang and J. M. Skelton, J. Phys.: Condens. Matter 33 (16), 164002 (2021)
    CCP5 42nd AGM, 6th Sept 2022 | Slide 5

    View Slide

  6. The RTA model: modal properties
    Dr Jonathan M. Skelton
    CoSb3
    CoSb3
    J. Tang and J. M. Skelton, J. Phys.: Condens. Matter 33 (16), 164002 (2021)
    CCP5 42nd AGM, 6th Sept 2022 | Slide 6

    View Slide

  7. The RTA model: modal properties
    Dr Jonathan M. Skelton
    A. Gold-Parker et al., PNAS 115 (47), 11905 (2018)
    GaAs MAPbI3
    CCP5 42nd AGM, 6th Sept 2022 | Slide 7

    View Slide

  8. 𝒗3
    vs. 𝜏3
    : the CRTA model
    Dr Jonathan M. Skelton
    Consider again the SM-RTA model:
    𝜿"#$$
    =
    1
    𝑁𝑉'
    3
    &
    𝜿&
    =
    1
    𝑁𝑉'
    3
    &
    𝐶&
    𝒗&
    ⊗ 𝒗&
    𝜏&
    Replace the 𝜏&
    with a constant lifetime (relaxation time) 𝜏()*+ defined as follows:
    𝜿"#$$
    𝜏()*+
    =
    1
    𝑁𝑉'
    3
    &
    𝜿&
    𝜏&
    =
    1
    𝑁𝑉'
    3
    &
    𝐶&
    𝒗&
    ⊗ 𝒗&
    𝜿"#$$

    1
    𝑁𝑉'
    3
    &
    𝐶&
    𝒗&
    ⊗ 𝒗&
    ×𝜏()*+
    HA
    AH
    HA AH
    J. Tang and J. M. Skelton, J. Phys.: Condens. Matter 33 (16), 164002 (2021)
    CCP5 42nd AGM, 6th Sept 2022 | Slide 8

    View Slide

  9. 𝒗3
    vs. 𝜏3
    : Si clathrates
    Dr Jonathan M. Skelton
    B. Wei et al., submitted
    CCP5 42nd AGM, 6th Sept 2022 | Slide 9

    View Slide

  10. 𝒗3
    vs. 𝜏3
    : Si clathrates
    Dr Jonathan M. Skelton
    B. Wei et al., submitted
    𝜿!"##

    1
    𝑁𝑉$
    &
    %
    𝐶%
    𝒗%
    ⊗ 𝒗%
    ×𝜏&'()
    CCP5 42nd AGM, 6th Sept 2022 | Slide 10

    View Slide


  11. 𝜿 𝜏4567: Si clathrates
    Dr Jonathan M. Skelton

    𝜿 𝝉𝐂𝐑𝐓𝐀
    (W m-1 K-1 ps-1) 𝒏𝐚
    Spacegroup
    d-Si 5.002 2 𝐹𝑑0
    3𝑚
    oC24 2.295 12 𝐶𝑚𝑐𝑚
    K-II / C-I 0.829 46 𝑃𝑚0
    3𝑚
    K-V / C-VI 0.815 40 𝐶𝑚𝑚𝑚
    K-VII / C-V 0.770 68 𝑃6&/𝑚𝑚𝑐
    C-II 0.458 34 𝐹𝑑0
    3𝑚
    With the exception of the Clathrate-II structure, the harmonic ⁄
    𝜿 𝜏!"#$ term correlates with:
    (1) the size of the primitive cell (𝑛%
    ); and
    (2) the spacegroup (crystal symmetry)
    Indicates that low group velocities are favoured by complex structures with large primitive
    cells and/or low symmetry
    B. Wei et al., submitted
    CCP5 42nd AGM, 6th Sept 2022 | Slide 11

    View Slide

  12. Analysing 𝜏4567: phonon linewidths
    Dr Jonathan M. Skelton
    Γ%
    (𝑇) = &
    %&%&&
    Φ8%%&%&&
    9×{
    𝑛%&(𝑇) − 𝑛%&&(𝑇) 𝛿 𝜔 + 𝜔%& − 𝜔%&& − 𝛿 𝜔 − 𝜔%& + 𝜔%&& +
    𝑛%&(𝑇) + 𝑛%&&(𝑇) + 1 𝛿 𝜔 − 𝜔%& − 𝜔%&&
    }
    Collision
    Decay
    Three-phonon interaction strength - includes
    conservation of momentum (“anharmonicity”)
    Conservation of energy
    (“selection rules”)
    A. Togo et al., Phys. Rev. B 91, 094306 (2015)
    CCP5 42nd AGM, 6th Sept 2022 | Slide 12

    View Slide

  13. Dr Jonathan M. Skelton
    A. Togo et al., Phys. Rev. B 91, 094306 (2015)
    Approximate expression for Γ!
    :
    With:
    Γ%
    (𝑇) ≈
    18𝜋
    ℏ9
    <
    𝑃𝑁9
    (𝒒%
    , 𝜔%
    , 𝑇)
    𝑁9 𝒒%, 𝜔%, 𝑇 = 𝑁9
    (;) 𝒒%, 𝜔%, 𝑇 + 𝑁9
    (9) 𝒒%, 𝜔%, 𝑇
    𝑁9
    (;) 𝒒%
    , 𝜔%
    , 𝑇 =
    1
    𝑁
    &
    %&%&&
    ∆(−𝒒%
    + 𝒒%& + 𝒒%&&) 𝑛%&(𝑇) − 𝑛%&&(𝑇) ×
    𝛿 𝜔 + 𝜔%& − 𝜔%&& − 𝛿 𝜔 − 𝜔%& + 𝜔%&&
    𝑁9
    (9) 𝒒%
    , 𝜔%
    , 𝑇 =
    1
    𝑁
    &
    %&%&&
    ∆(−𝒒%
    + 𝒒%& + 𝒒%&&) 𝑛%&(𝑇) + 𝑛%&&(𝑇) + 1 𝛿 𝜔 − 𝜔%& − 𝜔%&&
    CCP5 42nd AGM, 6th Sept 2022 | Slide 13
    Analysing 𝜏4567: phonon linewidths

    View Slide

  14. Analysing 𝜏3
    Dr Jonathan M. Skelton
    B. Wei et al., submitted
    Γ%(𝑇) ≈
    18𝜋
    ℏ9
    <
    𝑃𝑁9(𝒒%, 𝜔%, 𝑇)
    CCP5 42nd AGM, 6th Sept 2022 | Slide 14

    View Slide

  15. Summary
    Dr Jonathan M. Skelton
    𝜿!"##

    𝜿 𝜏&'() 𝜏&'()
    B
    𝑁9
    <
    𝑃
    CCP5 42nd AGM, 6th Sept 2022 | Slide 15
    RTA model gives good results for most
    systems and provides microscopic
    detail at the level of individual phonon
    modes
    Allows differences in 𝜿!"##
    to be
    attributed to differences in group
    velocities and phonon lifetimes
    Allows differences in lifetimes to be
    attributed to selection rules and
    (anharmonic) phonon interaction
    strengths

    View Slide

  16. CRTA analysis: other TEs
    Dr Jonathan M. Skelton
    𝜅 [W m-1 K-1]

    𝜅 𝝉𝐂𝐑𝐓𝐀
    [W m-1 K-1 ps-1] 𝝉𝐂𝐑𝐓𝐀 [ps]
    Si 136.24 5.002 27.2
    SnS 2.15 0.718 3.00
    SnSe 1.58 0.372 4.23
    CoSb3
    9.98 0.273 36.6
    Bi2
    S3
    (Pnma) 0.90 0.423 2.14
    Bi2
    Se3
    (R-3m) 1.82 0.293 6.20
    Bi2
    Te3
    (R-3m) 0.87 0.199 4.41
    J. M. Skelton, J. Mater. Chem. C 9, 11772 (2021)
    J. Tang and J. M. Skelton, J. Phys.: Condens. Matter 33 (16), 164002 (2021)
    J. Cen, I. Pallikara and J. M. Skelton, Chem. Mater. 33 (21), 8404 (2021)
    B. Wei et al., submitted
    CCP5 42nd AGM, 6th Sept 2022 | Slide 16

    View Slide

  17. Approximating Γ3
    Dr Jonathan M. Skelton CCP5 42nd AGM, 6th Sept 2022 | Slide 17
    S. Moxon et al., J. Mater. Chem. A 10, 1861 (2022)
    Γ%(𝑇) ≈
    18𝜋
    ℏ9
    <
    𝑃𝑁9(𝒒%, 𝜔%, 𝑇)

    View Slide

  18. Acknowledgements
    Dr Jonathan M. Skelton CCP5 42nd AGM, 6th Sept 2022 | Slide 18
    B. Wei

    View Slide

  19. https://bit.ly/3RohkNG
    These slides are on Speaker Deck:

    View Slide