$30 off During Our Annual Pro Sale. View Details »

Theory-Led Control of Heat Transport in Thermoelectric Materials

Theory-Led Control of Heat Transport in Thermoelectric Materials

Presented at the International Conference on Frontier Materials (IFCM) 2022.

Jonathan Skelton

May 30, 2022
Tweet

More Decks by Jonathan Skelton

Other Decks in Science

Transcript

  1. Dr Jonathan Skelton
    Department of Chemistry, University of Manchester
    ([email protected])
    Theory-Led Control of Heat Transport
    in Thermoelectric Materials

    View Slide

  2. The global energy challenge
    ICFM 2022, 30th May 2022 | Slide 2
    34 %
    26 %
    19 %
    18 %
    3 %
    1000 MW nuclear power plant:
    o 650 MW waste heat
    o 3 % ≈ 20 MW ≈ 50,000 homes
    300-500 W from exhaust gases:
    o 2 % lower fuel consumption
    o 2.4 Mt reduction in CO2
    Thermoelectric generators allow waste
    heat to be recovered as electricity
    TEGs with ~3 % energy recovery (𝑍𝑇 = 1) are
    considered industrially viable
    1. Provisional UK greenhouse gas emissions national statistics (published June 2020)
    2. EPSRC Thermoelectric Network Roadmap (2018)
    Dr Jonathan Skelton

    View Slide

  3. Thermoelectric materials
    Dr Jonathan Skelton
    𝑍𝑇 =
    𝑆!𝜎
    𝜅"#" + 𝜅#$%
    𝑇
    𝑆 - Seebeck coefficient
    𝜎 - electrical conductivity
    𝜅!"!
    - electronic thermal conductivity
    𝜅"#$
    - lattice thermal conductivity
    G. Tan et al., Chem. Rev. 116 (19), 12123 (2016)
    ICFM 2022, 30th May 2022 | Slide 3

    View Slide

  4. Lattice thermal conductivity
    Phonons are generated at the hot side of the material and transport energy to the cold side
    Dr Jonathan Skelton ICFM 2022, 30th May 2022 | Slide 4

    View Slide

  5. Modelling thermal conductivity
    A. Togo et al., Phys. Rev. B 91, 094306 (2015)
    𝜿#$%% (𝑇) =
    1
    𝑁𝑉&
    .
    '
    𝐶'(𝑇)𝒗' ⊗ 𝒗'𝜏'(𝑇)
    Dr Jonathan Skelton
    The simplest model for 𝜅"#$$
    is the single-mode relaxation time approximation (SM-RTA) - a
    closed solution to the phonon Boltzmann transport equations
    Modal heat capacity
    Mode group velocity
    𝜕𝜔%
    𝜕𝐪
    Average over phonon
    modes λ
    Phonon MFP
    Mode lifetime
    𝜏%
    =
    1
    2Γ%
    𝚲&
    𝑇 = 𝒗&
    𝜏&
    𝑇
    ICFM 2022, 30th May 2022 | Slide 5

    View Slide

  6. Modelling thermal conductivity
    Dr Jonathan Skelton ICFM 2022, 30th May 2022 | Slide 6

    View Slide

  7. Modelling thermal conductivity
    A. Togo et al., Phys. Rev. B 91, 094306 (2015)
    Dr Jonathan Skelton ICFM 2022, 30th May 2022 | Slide 7

    View Slide

  8. Phonon glass electron crystal
    𝑍𝑇 =
    𝑆!𝜎
    𝜅"#" + 𝜅#$%
    𝑇
    𝑆 - Seebeck coefficient
    𝜎 - electrical conductivity
    𝜅"#$
    - lattice thermal conductivity
    𝜅!"!
    - electronic thermal conductivity
    Phonon scattering by
    “rattler” filler atoms
    Electron transport through
    crystalline host framework
    G. A. Slack in CRC Handbook of Thermoelectrics (1995)
    Dr Jonathan Skelton ICFM 2022, 30th May 2022 | Slide 8

    View Slide

  9. Filled Skutterudites
    Composition 𝒁𝑻
    CoSb3
    0.05 (773 K)
    Ni0.3
    Co3.7
    Sb12
    0.52 (773 K)
    Na0.48
    Co3
    Sb12
    1.25 (800 K)
    Sr0.16
    Tb0.03
    Co4
    Sb11.82
    1.32 (850 K)
    Ba0.08
    La0.05
    Yb0.04
    Co4
    Sb12
    1.7 (850 K)
    Yb0.2
    Ba0.1
    Al0.1
    Ga0.1
    In0.1
    La0.05
    Eu0.05
    Co4
    Sb12
    1.2 (800 K)
    Ce0.12
    Fe0.71
    Co3.29
    Sb12
    0.8 (750 K)
    D. T. Morelli et al., Phys. Rev. B 51, 9622 (1995)
    Y. Lei et al., J. Mater. Sci. Mater. Electron. 30, 5929 (2019)
    Y. Z. Pei et al., Appl. Phys. Lett. 95, 042101 (2009)
    S. Q. Bai et al., Appl. Phys. A 100, 1109 (2010)
    X. Shi et al., J. Am. Chem. Soc. 133, 7837 (2011)
    S. Zhang et al., J. Alloys Compd. 814, 152272 (2020)
    X. F. Tang et al., J. Mater. Sci. 36, 5435 (2001)
    Dr Jonathan Skelton ICFM 2022, 30th May 2022 | Slide 9

    View Slide

  10. 𝜿𝐥𝐚𝐭𝐭
    of pristine CoSb3
    J. Tang and J. M. Skelton, J. Phys.: Condens. Matter 33 (16), 164002 (2021)
    Dr Jonathan Skelton ICFM 2022, 30th May 2022 | Slide 10

    View Slide

  11. A “toy model” for filled CoSb3
    Filler 𝒎𝐗
    [amu] 𝒓𝐗
    [pm]
    He 4.0026 31
    Ne 20.180 38
    Ar 39.948 71
    Kr 83.798 88
    Xe 131.29 108
    Noble gases are chemically inert (closed shell, unlikely to reduce/oxidise host framework) and
    are likely closest it is possible to get to a “hard sphere” filler
    J. Tang and J. M. Skelton, J. Phys.: Condens. Matter 33 (16), 164002 (2021)
    Dr Jonathan Skelton ICFM 2022, 30th May 2022 | Slide 11

    View Slide

  12. 𝜿𝐥𝐚𝐭𝐭
    of filled XCo8
    Sb24
    Filler
    𝜅𝐥𝐚𝐭𝐭
    (𝑇 = 300 K)
    [W m-1 K-1]
    - 9.98
    He 9.11 (-9 %)
    Ne 8.86 (-11 %)
    Ar 9.17 (-8 %)
    Kr 8.77 (-12 %)
    Xe 8.49 (-15 %)
    J. Tang and J. M. Skelton, J. Phys.: Condens. Matter 33 (16), 164002 (2021)
    Dr Jonathan Skelton ICFM 2022, 30th May 2022 | Slide 12

    View Slide

  13. How do the fillers suppress 𝜿𝐥𝐚𝐭𝐭
    ?
    Consider again the SM-RTA model for 𝜿"#$$
    :
    𝜿"#$$
    (𝑇) =
    1
    𝑁𝑉+
    ;
    &
    𝐶&
    (𝑇)𝒗&
    ⊗ 𝒗&
    𝜏&
    (𝑇)
    Two mechanisms through which rattlers can affect 𝜅"#$$
    :
    1. Reduction of 𝑣&
    - avoided crossings
    2. Reduction of 𝜏&
    - resonant scattering
    These are not necessarily mutually exclusive - both can be active in the same material
    E. S. Toberer et al., J. Mater. Chem. 21 (40), 15843 (2011)
    Dr Jonathan Skelton ICFM 2022, 30th May 2022 | Slide 13

    View Slide

  14. 𝒗6
    vs. 𝜏6
    : the CRTA model
    Consider again the SM-RTA model:
    𝜿"#$$
    =
    1
    𝑁𝑉+
    ;
    &
    𝜿&
    =
    1
    𝑁𝑉+
    ;
    &
    𝐶&
    𝒗&
    ⊗ 𝒗&
    𝜏&
    Replace the 𝜏&
    with a constant lifetime (relaxation time) 𝜏,-./ defined as follows:
    𝜿"#$$
    𝜏,-./
    =
    1
    𝑁𝑉+
    ;
    &
    𝜿&
    𝜏&
    =
    1
    𝑁𝑉+
    ;
    &
    𝐶&
    𝒗&
    ⊗ 𝒗&
    𝜿"#$$

    1
    𝑁𝑉+
    ;
    &
    𝐶&
    𝒗&
    ⊗ 𝒗&
    ×𝜏,-./
    HA
    AH
    HA AH
    J. Tang and J. M. Skelton, J. Phys.: Condens. Matter 33 (16), 164002 (2021)
    Dr Jonathan Skelton ICFM 2022, 30th May 2022 | Slide 14

    View Slide

  15. 𝒗6
    vs. 𝜏6
    : the CRTA model
    Replace the 𝜏&
    with a constant lifetime (relaxation time) 𝜏,-./ defined as follows:
    𝜿"#$$

    1
    𝑁𝑉+
    ;
    &
    𝐶&
    𝒗&
    ⊗ 𝒗&
    ×𝜏,-./
    J. Tang and J. M. Skelton, J. Phys.: Condens. Matter 33 (16), 164002 (2021)
    Dr Jonathan Skelton ICFM 2022, 30th May 2022 | Slide 15

    View Slide

  16. Tuning the filler mass
    We can define a rattling frequency @
    𝑓0
    for the noble gas fillers X based on the 𝑫 XX, 𝐪 = Γ :
    𝑫 XX, 𝐪 = Γ =
    1
    𝑚1
    ;
    2!
    𝚽 X0, X𝑙3
    What happens to 𝜅"#$$
    if we artificially change the 𝑚1
    while keeping the 𝚽 fixed?
    J. Tang and J. M. Skelton, J. Phys.: Condens. Matter 33 (16), 164002 (2021)
    Dr Jonathan Skelton ICFM 2022, 30th May 2022 | Slide 16

    View Slide

  17. Tuning the filler mass
    Lowering the @
    𝑓1
    into the acoustic region reduces the 𝜏%
    and the group velocities →
    considerably larger reduction of 𝜅"#$$
    J. Tang and J. M. Skelton, J. Phys.: Condens. Matter 33 (16), 164002 (2021)
    Dr Jonathan Skelton ICFM 2022, 30th May 2022 | Slide 17

    View Slide

  18. Whalley et al., Phys. Rev. B 94, 220301(R) (2016)
    Gold-Parker et al., PNAS 115, 11905 (2018)
    Intrinsic anharmonicity: MAPbI3
    Dr Jonathan Skelton ICFM 2022, 30th May 2022 | Slide 18

    View Slide

  19. Intrinsic anharmonicity: MAPbI3
    Dr Jonathan Skelton
    A. Gold-Parker et al., PNAS 115 (47), 11905 (2018)
    GaAs MAPbI3
    ICFM 2022, 30th May 2022 | Slide 19

    View Slide

  20. The phonon lifetime 𝝉𝝀
    Γ!
    = #
    !4!44
    Φ"!!4!44
    #×{
    𝑛!4 + 𝑛!44 + 1 𝛿 𝜔 − 𝜔!4 − 𝜔!44
    + 𝑛!4 − 𝑛!44 𝛿 𝜔 + 𝜔!4 − 𝜔!44 − 𝛿 𝜔 − 𝜔!4 + 𝜔!44
    }
    Decay Collision
    Three-phonon interaction strength
    (includes conservation of momentum)
    Conservation of energy
    Dr Jonathan Skelton
    A. Togo et al., Phys. Rev. B 91, 094306 (2015)
    ICFM 2022, 30th May 2022 | Slide 20

    View Slide

  21. Dr Jonathan Skelton
    A. Gold-Parker et al., PNAS 115 (47), 11905 (2018)
    GaAs MAPbI3
    𝑃!
    =
    1
    3𝑛$
    #
    #
    !4!44
    Φ!!4!44
    #
    ICFM 2022, 30th May 2022 | Slide 21
    MAPbI3
    : phonon scattering

    View Slide

  22. MAPbI3
    : phonon scattering
    Dr Jonathan Skelton ICFM 2022, 30th May 2022 | Slide 22

    View Slide

  23. MAPbI3
    : phonon scattering
    A. Gold-Parker et al., PNAS 115 (47), 11905 (2018)
    Dr Jonathan Skelton ICFM 2022, 30th May 2022 | Slide 23

    View Slide

  24. Alloy TEs: SnSe
    L.-D. Zhao et al., Nature 508, 373 (2014)
    Dr Jonathan Skelton ICFM 2022, 30th May 2022 | Slide 24

    View Slide

  25. Alloy TEs: Sn(S1-x
    Sex
    )
    C.-C. Lin et al., Chem. Mater. 29 (12), 5344 (2017)
    SnSe
    15-20 % S
    Dr Jonathan Skelton ICFM 2022, 30th May 2022 | Slide 25

    View Slide

  26. Sn(S0.1875
    Se0.8125
    ): model
    J. M. Skelton, J. Mater. Chem. C 9, 11772 (2021)
    Dr Jonathan Skelton ICFM 2022, 30th May 2022 | Slide 26

    View Slide

  27. Sn(S0.1875
    Se0.8125
    ): phonon spectrum
    SnS
    SnSe
    J. M. Skelton, J. Mater. Chem. C 9, 11772 (2021)
    Dr Jonathan Skelton ICFM 2022, 30th May 2022 | Slide 27

    View Slide

  28. Sn(S0.1875
    Se0.8125
    ): phonon spectrum
    J. M. Skelton, J. Mater. Chem. C 9, 11772 (2021)
    Dr Jonathan Skelton ICFM 2022, 30th May 2022 | Slide 28

    View Slide

  29. Sn(S0.1875
    Se0.8125
    ): 𝜿𝐥𝐚𝐭𝐭
    54.2 % ↓
    Sn(S0.1875
    Se0.8125
    )
    SnSe
    J. M. Skelton, J. Mater. Chem. C 9, 11772 (2021)
    Dr Jonathan Skelton ICFM 2022, 30th May 2022 | Slide 29

    View Slide

  30. Optimising the 𝜿𝐥𝐚𝐭𝐭
    in TEs
    𝜅 [W m-1 K-1]

    𝜅 𝝉𝐂𝐑𝐓𝐀
    [W m-1 K-1 ps-1] 𝝉𝐂𝐑𝐓𝐀 [ps]
    Si 136.24 5.002 27.24
    SnS 2.15 0.718 3.00
    SnSe 1.58 0.372 4.23
    Sn(S0.1875
    Se0.8125
    ) 0.62 0.173 4.03 (est.)
    CoSb3
    9.98 0.273 36.6
    XeCo8
    Sb24
    8.49 0.239 35.6
    Bi2
    S3
    (Pnma) 0.90 0.423 2.14
    Bi2
    Se3
    (R-3m) 1.82 0.293 6.20
    Bi2
    Te3
    (R-3m) 0.87 0.199 4.41
    J. M. Skelton, J. Mater. Chem. C 9, 11772 (2021)
    J. Tang and J. M. Skelton, J. Phys.: Condens. Matter 33 (16), 164002 (2021)
    J. Cen, I. Pallikara and J. M. Skelton, Chem. Mater. 33 (21), 8404 (2021)
    Dr Jonathan Skelton ICFM 2022, 30th May 2022 | Slide 30

    View Slide

  31. Summary
    Dr Jonathan Skelton
    The lattice thermal conductivity 𝜅"#$$
    in thermoelectric materials can be modelled theoretically
    using the SM-RTA model
    The SM-RTA model calculates the macroscopic 𝜅"#$$
    as a sum of microscopic contributions
    from individual phonon modes, which provides a large amount of insight into how 𝜅"#$$
    “works”
    In CoSb3
    , the filler “rattling frequency” depends on its mass and how strongly it interacts with
    the cage - calculations show that tuning this to around 1.5 THz can significantly reduce the
    𝜅"#$$
    through a combination of avoided crossings and resonant scattering
    In MAPbI3
    , the ultra-low 𝜅"#$$
    is due to very short phonon lifetimes, on the order of ps, which can
    be attributed to the phonon scattering introduced by the interaction of the MA+ cation with
    the PbI3
    - framework
    In Sn(S0.1875
    Se0.8125
    ), alloying at the chalcogen site leads to a ~60 % reduction in the 𝜅"#$$
    , which
    can be attributed to a “smearing out” of the dispersion reducing the group velocities
    Using the CRTA model to decompose the 𝜅"#$$
    into a product of harmonic (group velocity)
    and lifetime terms can provide insight into what sort of engineering methods are appropriate
    for optimising the 𝜅"#$$
    of current and new TEs
    ICFM 2022, 30th May 2022 | Slide 31

    View Slide

  32. Acknowledgements
    ... plus mentors and collaborators too
    numerous to mention
    Dr Jonathan Skelton ICFM 2022, 30th May 2022 | Slide 32

    View Slide

  33. https://bit.ly/3aoC7jv
    These slides are available on Speaker Deck:

    View Slide