Lock in $30 Savings on PRO—Offer Ends Soon! ⏳
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Deep Learning based object Detection with YOLO v2
Search
Jumabek Alikhanov
September 29, 2019
Research
1
250
Deep Learning based object Detection with YOLO v2
I will briefly go through the the process of YOLOv2
Jumabek Alikhanov
September 29, 2019
Tweet
Share
Other Decks in Research
See All in Research
まずはここから:Overleaf共同執筆・CopilotでAIコーディング入門・Codespacesで独立環境
matsui_528
2
780
PhD Defense 2025: Visual Understanding of Human Hands in Interactions
tkhkaeio
1
310
J-RAGBench: 日本語RAGにおける Generator評価ベンチマークの構築
koki_itai
0
990
MIRU2025 チュートリアル講演「ロボット基盤モデルの最前線」
haraduka
15
10k
SREのためのテレメトリー技術の探究 / Telemetry for SRE
yuukit
12
2.1k
cvpaper.challenge 10年の軌跡 / cvpaper.challenge a decade-long journey
gatheluck
3
370
離散凸解析に基づく予測付き離散最適化手法 (IBIS '25)
taihei_oki
PRO
1
590
大規模言語モデルにおけるData-Centric AIと合成データの活用 / Data-Centric AI and Synthetic Data in Large Language Models
tsurubee
1
360
ロボット学習における大規模検索技術の展開と応用
denkiwakame
1
160
AIスパコン「さくらONE」のLLM学習ベンチマークによる性能評価 / SAKURAONE LLM Training Benchmarking
yuukit
2
860
MetaEarth: A Generative Foundation Model for Global-Scale Remote Sensing Image Generation
satai
4
440
Stealing LUKS Keys via TPM and UUID Spoofing in 10 Minutes - BSides 2025
anykeyshik
0
160
Featured
See All Featured
Chrome DevTools: State of the Union 2024 - Debugging React & Beyond
addyosmani
9
990
Large-scale JavaScript Application Architecture
addyosmani
514
110k
How to Ace a Technical Interview
jacobian
280
24k
Done Done
chrislema
186
16k
Embracing the Ebb and Flow
colly
88
4.9k
Learning to Love Humans: Emotional Interface Design
aarron
274
41k
Put a Button on it: Removing Barriers to Going Fast.
kastner
60
4.1k
Speed Design
sergeychernyshev
33
1.3k
Side Projects
sachag
455
43k
What’s in a name? Adding method to the madness
productmarketing
PRO
24
3.8k
ピンチをチャンスに:未来をつくるプロダクトロードマップ #pmconf2020
aki_iinuma
127
54k
Performance Is Good for Brains [We Love Speed 2024]
tammyeverts
12
1.3k
Transcript
Jumabek Alikhanov @Information Security Research Lab, Inha University YOLO9000: Better,
Faster, Stronger (CVPR 2017, Best Paper Honorable Mention) 1
1. Introduction & Previous Work 2. Better detection performance 3.
Faster processing speed 4. Detecting more classes(object types) 5. Conclusion CONTENTS 2
Task & Evaluation Metric mAP- mean Avarage Precision 3 https://github.com/rafaelpadilla/Object-Detection-Metrics
YOLO v1 Network Output shape = (S, S, B×5 +
C) = (7, 7, 2×5 + 20) = (7, 7, 30). 4
YOLOv1: Loss Function pi-conditional class Prob. Ci - box confidence
score 5 Localization Confidence Classification
Previously Pascal 2007 mAP Speed DPM v5 33.7 .07 FPS
14 s/img R-CNN 66.0 .05 FPS 20 s/img Fast R-CNN 70.0 .5 FPS 2 s/img Faster R-CNN 73.2 7 FPS 140 ms/img YOLO 63.4 45 FPS 22 ms/img 6
Previously Pascal 2007 mAP Speed DPM v5 33.7 .07 FPS
14 s/img R-CNN 66.0 .05 FPS 20 s/img Fast R-CNN 70.0 .5 FPS 2 s/img Faster R-CNN 73.2 7 FPS 140 ms/img YOLO 63.4 45 FPS 22 ms/img 7
Better Performance 8
9 YOLO Train on ImageNet Fine-tune on detection Resize network
10 Fine-tune 448x448 Classifier: +3.5% mAP Train on ImageNet Fine-tune
on detection Resize, fine-tune on ImageNet
Anchor boxes use static initialization
Use k-means clustering to find better initializations https://github.com/Jumabek/darknet_scripts
None
Static Anchors vs Dimension Clusters 14
Box Location Prediction 15
Dimension Clusters: +5% mAP
17 Multi-scale training: +1.5% mAP
YOLOv2: Fast, Accurate Detection
Huang, Jonathan, et al. "Speed/accuracy trade-offs for modern convolutional object
detectors." arXiv preprint arXiv:1611.10012 (2016).
Huang, Jonathan, et al. "Speed/accuracy trade-offs for modern convolutional object
detectors." arXiv preprint arXiv:1611.10012 (2016).
Huang, Jonathan, et al. "Speed/accuracy trade-offs for modern convolutional object
detectors." arXiv preprint arXiv:1611.10012 (2016). YOLOv2
None
Faster Detection Speed 23
Speed is not just parameter counts or FLOPs Top 1
Top 5 FLOPs GPU Speed VGG-16 70.5 90.0 30.95 Bn 100 FPS Extraction (YOLOv1) 72.5 90.8 8.52 Bn 180 FPS Resnet50 75.3 92.2 7.66 Bn 90 FPS
Darknet19: A good balance of speed and accuracy Top 1
Top 5 FLOPs GPU Speed VGG-16 70.5 90.0 30.95 Bn 100 FPS Extraction (YOLOv1) 72.5 90.8 8.52 Bn 180 FPS Resnet50 75.3 92.2 7.66 Bn 90 FPS Darknet19 74.0 91.8 5.58 Bn 200 FPS
Why is it fast? Simple & efficient architecture C implementation
26
Stronger - Detecting more classes 27
- 14 million images - 22k classes - Classification labels
- 100k images - 80 classes - Detection labels Golden eagle
Typically use softmax over all classes
Can’t just mash classes together...
Can’t just mash classes together...
WordNet has structure but it’s messy
None
None
... Each node is a conditional probability
... Each node is a conditional probability P(Bedlington terrier) =
P(object) * P (living thing | object) * ….. P(canine | mammal) * P(dog | canine) * P(terrier | dog) * P(Bedlington terrier | terrier)
None
None
None
None
None
None
None
None
None
None
Conclusion • YOLOv2 and YOLO9000 real-time detection systems • YOLOv2
state of the art and faster than other systems • 9K object category detection by YOLO9000 47
1. CVPR paper - https://pjreddie.com/media/files/papers/YOLO9000.pdf 2. Article - https://medium.com/@jonathan_hui/real-time-object-detection-with-yolo-yolov2-28b1b93e2088 3.
Author’s Presentation - https://docs.google.com/presentation/d/14qBAiyhMOFl_wZW4dA1CkixgXwf0zKGbpw_0oHK8yEM/edit#slide=id.g1f9fb98e4b_0 _132 References 48