Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Deep Learning based object Detection with YOLO v2
Search
Jumabek Alikhanov
September 29, 2019
Research
1
250
Deep Learning based object Detection with YOLO v2
I will briefly go through the the process of YOLOv2
Jumabek Alikhanov
September 29, 2019
Tweet
Share
Other Decks in Research
See All in Research
大規模言語モデルにおけるData-Centric AIと合成データの活用 / Data-Centric AI and Synthetic Data in Large Language Models
tsurubee
1
460
若手研究者が国際会議(例えばIROS)でワークショップを企画するメリットと成功法!
tanichu
0
130
Pythonでジオを使い倒そう! 〜それとFOSS4G Hiroshima 2026のご紹介を少し〜
wata909
0
1.2k
超高速データサイエンス
matsui_528
1
330
Mamba-in-Mamba: Centralized Mamba-Cross-Scan in Tokenized Mamba Model for Hyperspectral Image Classification
satai
3
390
Aurora Serverless からAurora Serverless v2への課題と知見を論文から読み解く/Understanding the challenges and insights of moving from Aurora Serverless to Aurora Serverless v2 from a paper
bootjp
6
1.3k
Self-Hosted WebAssembly Runtime for Runtime-Neutral Checkpoint/Restore in Edge–Cloud Continuum
chikuwait
0
250
AIスーパーコンピュータにおけるLLM学習処理性能の計測と可観測性 / AI Supercomputer LLM Benchmarking and Observability
yuukit
0
350
長期・短期メモリを活用したエージェントの個別最適化
isidaitc
0
370
Sat2City:3D City Generation from A Single Satellite Image with Cascaded Latent Diffusion
satai
4
440
20251023_くまもと21の会例会_「車1割削減、渋滞半減、公共交通2倍」をめざして.pdf
trafficbrain
0
140
Combining Deep Learning and Street View Imagery to Map Smallholder Crop Types
satai
3
370
Featured
See All Featured
Practical Orchestrator
shlominoach
190
11k
AI Search: Where Are We & What Can We Do About It?
aleyda
0
6.8k
Into the Great Unknown - MozCon
thekraken
40
2.2k
Leveraging LLMs for student feedback in introductory data science courses - posit::conf(2025)
minecr
0
97
Done Done
chrislema
186
16k
Ethics towards AI in product and experience design
skipperchong
1
140
Marketing to machines
jonoalderson
1
4.5k
Google's AI Overviews - The New Search
badams
0
870
Tell your own story through comics
letsgokoyo
0
770
How STYLIGHT went responsive
nonsquared
100
6k
Digital Projects Gone Horribly Wrong (And the UX Pros Who Still Save the Day) - Dean Schuster
uxyall
0
110
Hiding What from Whom? A Critical Review of the History of Programming languages for Music
tomoyanonymous
0
320
Transcript
Jumabek Alikhanov @Information Security Research Lab, Inha University YOLO9000: Better,
Faster, Stronger (CVPR 2017, Best Paper Honorable Mention) 1
1. Introduction & Previous Work 2. Better detection performance 3.
Faster processing speed 4. Detecting more classes(object types) 5. Conclusion CONTENTS 2
Task & Evaluation Metric mAP- mean Avarage Precision 3 https://github.com/rafaelpadilla/Object-Detection-Metrics
YOLO v1 Network Output shape = (S, S, B×5 +
C) = (7, 7, 2×5 + 20) = (7, 7, 30). 4
YOLOv1: Loss Function pi-conditional class Prob. Ci - box confidence
score 5 Localization Confidence Classification
Previously Pascal 2007 mAP Speed DPM v5 33.7 .07 FPS
14 s/img R-CNN 66.0 .05 FPS 20 s/img Fast R-CNN 70.0 .5 FPS 2 s/img Faster R-CNN 73.2 7 FPS 140 ms/img YOLO 63.4 45 FPS 22 ms/img 6
Previously Pascal 2007 mAP Speed DPM v5 33.7 .07 FPS
14 s/img R-CNN 66.0 .05 FPS 20 s/img Fast R-CNN 70.0 .5 FPS 2 s/img Faster R-CNN 73.2 7 FPS 140 ms/img YOLO 63.4 45 FPS 22 ms/img 7
Better Performance 8
9 YOLO Train on ImageNet Fine-tune on detection Resize network
10 Fine-tune 448x448 Classifier: +3.5% mAP Train on ImageNet Fine-tune
on detection Resize, fine-tune on ImageNet
Anchor boxes use static initialization
Use k-means clustering to find better initializations https://github.com/Jumabek/darknet_scripts
None
Static Anchors vs Dimension Clusters 14
Box Location Prediction 15
Dimension Clusters: +5% mAP
17 Multi-scale training: +1.5% mAP
YOLOv2: Fast, Accurate Detection
Huang, Jonathan, et al. "Speed/accuracy trade-offs for modern convolutional object
detectors." arXiv preprint arXiv:1611.10012 (2016).
Huang, Jonathan, et al. "Speed/accuracy trade-offs for modern convolutional object
detectors." arXiv preprint arXiv:1611.10012 (2016).
Huang, Jonathan, et al. "Speed/accuracy trade-offs for modern convolutional object
detectors." arXiv preprint arXiv:1611.10012 (2016). YOLOv2
None
Faster Detection Speed 23
Speed is not just parameter counts or FLOPs Top 1
Top 5 FLOPs GPU Speed VGG-16 70.5 90.0 30.95 Bn 100 FPS Extraction (YOLOv1) 72.5 90.8 8.52 Bn 180 FPS Resnet50 75.3 92.2 7.66 Bn 90 FPS
Darknet19: A good balance of speed and accuracy Top 1
Top 5 FLOPs GPU Speed VGG-16 70.5 90.0 30.95 Bn 100 FPS Extraction (YOLOv1) 72.5 90.8 8.52 Bn 180 FPS Resnet50 75.3 92.2 7.66 Bn 90 FPS Darknet19 74.0 91.8 5.58 Bn 200 FPS
Why is it fast? Simple & efficient architecture C implementation
26
Stronger - Detecting more classes 27
- 14 million images - 22k classes - Classification labels
- 100k images - 80 classes - Detection labels Golden eagle
Typically use softmax over all classes
Can’t just mash classes together...
Can’t just mash classes together...
WordNet has structure but it’s messy
None
None
... Each node is a conditional probability
... Each node is a conditional probability P(Bedlington terrier) =
P(object) * P (living thing | object) * ….. P(canine | mammal) * P(dog | canine) * P(terrier | dog) * P(Bedlington terrier | terrier)
None
None
None
None
None
None
None
None
None
None
Conclusion • YOLOv2 and YOLO9000 real-time detection systems • YOLOv2
state of the art and faster than other systems • 9K object category detection by YOLO9000 47
1. CVPR paper - https://pjreddie.com/media/files/papers/YOLO9000.pdf 2. Article - https://medium.com/@jonathan_hui/real-time-object-detection-with-yolo-yolov2-28b1b93e2088 3.
Author’s Presentation - https://docs.google.com/presentation/d/14qBAiyhMOFl_wZW4dA1CkixgXwf0zKGbpw_0oHK8yEM/edit#slide=id.g1f9fb98e4b_0 _132 References 48