Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Deep Learning based object Detection with YOLO v2
Search
Jumabek Alikhanov
September 29, 2019
Research
1
220
Deep Learning based object Detection with YOLO v2
I will briefly go through the the process of YOLOv2
Jumabek Alikhanov
September 29, 2019
Tweet
Share
Other Decks in Research
See All in Research
クラウドのテレメトリーシステム研究動向2025年
yuukit
3
960
Towards a More Efficient Reasoning LLM: AIMO2 Solution Summary and Introduction to Fast-Math Models
analokmaus
2
290
ウッドスタックチャン:木材を用いた小型エージェントロボットの開発と印象評価 / ec75-sato
yumulab
1
420
Large Language Model Agent: A Survey on Methodology, Applications and Challenges
shunk031
12
8.4k
数理最適化に基づく制御
mickey_kubo
5
680
GeoCLIP: Clip-Inspired Alignment between Locations and Images for Effective Worldwide Geo-localization
satai
3
250
CSP: Self-Supervised Contrastive Spatial Pre-Training for Geospatial-Visual Representations
satai
3
220
20250624_熊本経済同友会6月例会講演
trafficbrain
1
380
Trust No Bot? Forging Confidence in AI for Software Engineering
tomzimmermann
1
240
線形判別分析のPU学習による朝日歌壇短歌の分析
masakat0
0
140
大規模な2値整数計画問題に対する 効率的な重み付き局所探索法
mickey_kubo
1
270
LLM-as-a-Judge: 文章をLLMで評価する@教育機関DXシンポ
k141303
3
830
Featured
See All Featured
How to Create Impact in a Changing Tech Landscape [PerfNow 2023]
tammyeverts
53
2.9k
CoffeeScript is Beautiful & I Never Want to Write Plain JavaScript Again
sstephenson
161
15k
Designing for humans not robots
tammielis
253
25k
Distributed Sagas: A Protocol for Coordinating Microservices
caitiem20
331
22k
Exploring the Power of Turbo Streams & Action Cable | RailsConf2023
kevinliebholz
34
5.9k
Typedesign – Prime Four
hannesfritz
42
2.7k
The Language of Interfaces
destraynor
158
25k
Site-Speed That Sticks
csswizardry
10
690
Chrome DevTools: State of the Union 2024 - Debugging React & Beyond
addyosmani
7
740
Art, The Web, and Tiny UX
lynnandtonic
299
21k
A Modern Web Designer's Workflow
chriscoyier
695
190k
Raft: Consensus for Rubyists
vanstee
140
7k
Transcript
Jumabek Alikhanov @Information Security Research Lab, Inha University YOLO9000: Better,
Faster, Stronger (CVPR 2017, Best Paper Honorable Mention) 1
1. Introduction & Previous Work 2. Better detection performance 3.
Faster processing speed 4. Detecting more classes(object types) 5. Conclusion CONTENTS 2
Task & Evaluation Metric mAP- mean Avarage Precision 3 https://github.com/rafaelpadilla/Object-Detection-Metrics
YOLO v1 Network Output shape = (S, S, B×5 +
C) = (7, 7, 2×5 + 20) = (7, 7, 30). 4
YOLOv1: Loss Function pi-conditional class Prob. Ci - box confidence
score 5 Localization Confidence Classification
Previously Pascal 2007 mAP Speed DPM v5 33.7 .07 FPS
14 s/img R-CNN 66.0 .05 FPS 20 s/img Fast R-CNN 70.0 .5 FPS 2 s/img Faster R-CNN 73.2 7 FPS 140 ms/img YOLO 63.4 45 FPS 22 ms/img 6
Previously Pascal 2007 mAP Speed DPM v5 33.7 .07 FPS
14 s/img R-CNN 66.0 .05 FPS 20 s/img Fast R-CNN 70.0 .5 FPS 2 s/img Faster R-CNN 73.2 7 FPS 140 ms/img YOLO 63.4 45 FPS 22 ms/img 7
Better Performance 8
9 YOLO Train on ImageNet Fine-tune on detection Resize network
10 Fine-tune 448x448 Classifier: +3.5% mAP Train on ImageNet Fine-tune
on detection Resize, fine-tune on ImageNet
Anchor boxes use static initialization
Use k-means clustering to find better initializations https://github.com/Jumabek/darknet_scripts
None
Static Anchors vs Dimension Clusters 14
Box Location Prediction 15
Dimension Clusters: +5% mAP
17 Multi-scale training: +1.5% mAP
YOLOv2: Fast, Accurate Detection
Huang, Jonathan, et al. "Speed/accuracy trade-offs for modern convolutional object
detectors." arXiv preprint arXiv:1611.10012 (2016).
Huang, Jonathan, et al. "Speed/accuracy trade-offs for modern convolutional object
detectors." arXiv preprint arXiv:1611.10012 (2016).
Huang, Jonathan, et al. "Speed/accuracy trade-offs for modern convolutional object
detectors." arXiv preprint arXiv:1611.10012 (2016). YOLOv2
None
Faster Detection Speed 23
Speed is not just parameter counts or FLOPs Top 1
Top 5 FLOPs GPU Speed VGG-16 70.5 90.0 30.95 Bn 100 FPS Extraction (YOLOv1) 72.5 90.8 8.52 Bn 180 FPS Resnet50 75.3 92.2 7.66 Bn 90 FPS
Darknet19: A good balance of speed and accuracy Top 1
Top 5 FLOPs GPU Speed VGG-16 70.5 90.0 30.95 Bn 100 FPS Extraction (YOLOv1) 72.5 90.8 8.52 Bn 180 FPS Resnet50 75.3 92.2 7.66 Bn 90 FPS Darknet19 74.0 91.8 5.58 Bn 200 FPS
Why is it fast? Simple & efficient architecture C implementation
26
Stronger - Detecting more classes 27
- 14 million images - 22k classes - Classification labels
- 100k images - 80 classes - Detection labels Golden eagle
Typically use softmax over all classes
Can’t just mash classes together...
Can’t just mash classes together...
WordNet has structure but it’s messy
None
None
... Each node is a conditional probability
... Each node is a conditional probability P(Bedlington terrier) =
P(object) * P (living thing | object) * ….. P(canine | mammal) * P(dog | canine) * P(terrier | dog) * P(Bedlington terrier | terrier)
None
None
None
None
None
None
None
None
None
None
Conclusion • YOLOv2 and YOLO9000 real-time detection systems • YOLOv2
state of the art and faster than other systems • 9K object category detection by YOLO9000 47
1. CVPR paper - https://pjreddie.com/media/files/papers/YOLO9000.pdf 2. Article - https://medium.com/@jonathan_hui/real-time-object-detection-with-yolo-yolov2-28b1b93e2088 3.
Author’s Presentation - https://docs.google.com/presentation/d/14qBAiyhMOFl_wZW4dA1CkixgXwf0zKGbpw_0oHK8yEM/edit#slide=id.g1f9fb98e4b_0 _132 References 48