Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Deep Learning based object Detection with YOLO v2
Search
Jumabek Alikhanov
September 29, 2019
Research
1
220
Deep Learning based object Detection with YOLO v2
I will briefly go through the the process of YOLOv2
Jumabek Alikhanov
September 29, 2019
Tweet
Share
Other Decks in Research
See All in Research
rtrec@dbem6
myui
6
890
近似動的計画入門
mickey_kubo
4
990
SSII2025 [TS3] 医工連携における画像情報学研究
ssii
PRO
2
1.2k
Minimax and Bayes Optimal Best-arm Identification: Adaptive Experimental Design for Treatment Choice
masakat0
0
140
数理最適化に基づく制御
mickey_kubo
5
680
在庫管理のための機械学習と最適化の融合
mickey_kubo
3
1.1k
AIによる画像認識技術の進化 -25年の技術変遷を振り返る-
hf149
6
3.6k
[CV勉強会@関東 CVPR2025] VLM自動運転model S4-Driver
shinkyoto
2
340
SSII2025 [SS2] 横浜DeNAベイスターズの躍進を支えたAIプロダクト
ssii
PRO
7
3.7k
[輪講] SigLIP 2: Multilingual Vision-Language Encoders with Improved Semantic Understanding, Localization, and Dense Features
nk35jk
2
600
Large Language Model Agent: A Survey on Methodology, Applications and Challenges
shunk031
13
9k
Transparency to sustain open science infrastructure - Printemps Couperin
mlarrieu
1
200
Featured
See All Featured
Connecting the Dots Between Site Speed, User Experience & Your Business [WebExpo 2025]
tammyeverts
8
340
The Invisible Side of Design
smashingmag
301
51k
jQuery: Nuts, Bolts and Bling
dougneiner
63
7.8k
Save Time (by Creating Custom Rails Generators)
garrettdimon
PRO
31
1.3k
Refactoring Trust on Your Teams (GOTO; Chicago 2020)
rmw
34
3.1k
A Tale of Four Properties
chriscoyier
160
23k
Build your cross-platform service in a week with App Engine
jlugia
231
18k
Imperfection Machines: The Place of Print at Facebook
scottboms
267
13k
The Psychology of Web Performance [Beyond Tellerrand 2023]
tammyeverts
48
2.9k
Why You Should Never Use an ORM
jnunemaker
PRO
58
9.5k
Embracing the Ebb and Flow
colly
86
4.8k
Rails Girls Zürich Keynote
gr2m
95
14k
Transcript
Jumabek Alikhanov @Information Security Research Lab, Inha University YOLO9000: Better,
Faster, Stronger (CVPR 2017, Best Paper Honorable Mention) 1
1. Introduction & Previous Work 2. Better detection performance 3.
Faster processing speed 4. Detecting more classes(object types) 5. Conclusion CONTENTS 2
Task & Evaluation Metric mAP- mean Avarage Precision 3 https://github.com/rafaelpadilla/Object-Detection-Metrics
YOLO v1 Network Output shape = (S, S, B×5 +
C) = (7, 7, 2×5 + 20) = (7, 7, 30). 4
YOLOv1: Loss Function pi-conditional class Prob. Ci - box confidence
score 5 Localization Confidence Classification
Previously Pascal 2007 mAP Speed DPM v5 33.7 .07 FPS
14 s/img R-CNN 66.0 .05 FPS 20 s/img Fast R-CNN 70.0 .5 FPS 2 s/img Faster R-CNN 73.2 7 FPS 140 ms/img YOLO 63.4 45 FPS 22 ms/img 6
Previously Pascal 2007 mAP Speed DPM v5 33.7 .07 FPS
14 s/img R-CNN 66.0 .05 FPS 20 s/img Fast R-CNN 70.0 .5 FPS 2 s/img Faster R-CNN 73.2 7 FPS 140 ms/img YOLO 63.4 45 FPS 22 ms/img 7
Better Performance 8
9 YOLO Train on ImageNet Fine-tune on detection Resize network
10 Fine-tune 448x448 Classifier: +3.5% mAP Train on ImageNet Fine-tune
on detection Resize, fine-tune on ImageNet
Anchor boxes use static initialization
Use k-means clustering to find better initializations https://github.com/Jumabek/darknet_scripts
None
Static Anchors vs Dimension Clusters 14
Box Location Prediction 15
Dimension Clusters: +5% mAP
17 Multi-scale training: +1.5% mAP
YOLOv2: Fast, Accurate Detection
Huang, Jonathan, et al. "Speed/accuracy trade-offs for modern convolutional object
detectors." arXiv preprint arXiv:1611.10012 (2016).
Huang, Jonathan, et al. "Speed/accuracy trade-offs for modern convolutional object
detectors." arXiv preprint arXiv:1611.10012 (2016).
Huang, Jonathan, et al. "Speed/accuracy trade-offs for modern convolutional object
detectors." arXiv preprint arXiv:1611.10012 (2016). YOLOv2
None
Faster Detection Speed 23
Speed is not just parameter counts or FLOPs Top 1
Top 5 FLOPs GPU Speed VGG-16 70.5 90.0 30.95 Bn 100 FPS Extraction (YOLOv1) 72.5 90.8 8.52 Bn 180 FPS Resnet50 75.3 92.2 7.66 Bn 90 FPS
Darknet19: A good balance of speed and accuracy Top 1
Top 5 FLOPs GPU Speed VGG-16 70.5 90.0 30.95 Bn 100 FPS Extraction (YOLOv1) 72.5 90.8 8.52 Bn 180 FPS Resnet50 75.3 92.2 7.66 Bn 90 FPS Darknet19 74.0 91.8 5.58 Bn 200 FPS
Why is it fast? Simple & efficient architecture C implementation
26
Stronger - Detecting more classes 27
- 14 million images - 22k classes - Classification labels
- 100k images - 80 classes - Detection labels Golden eagle
Typically use softmax over all classes
Can’t just mash classes together...
Can’t just mash classes together...
WordNet has structure but it’s messy
None
None
... Each node is a conditional probability
... Each node is a conditional probability P(Bedlington terrier) =
P(object) * P (living thing | object) * ….. P(canine | mammal) * P(dog | canine) * P(terrier | dog) * P(Bedlington terrier | terrier)
None
None
None
None
None
None
None
None
None
None
Conclusion • YOLOv2 and YOLO9000 real-time detection systems • YOLOv2
state of the art and faster than other systems • 9K object category detection by YOLO9000 47
1. CVPR paper - https://pjreddie.com/media/files/papers/YOLO9000.pdf 2. Article - https://medium.com/@jonathan_hui/real-time-object-detection-with-yolo-yolov2-28b1b93e2088 3.
Author’s Presentation - https://docs.google.com/presentation/d/14qBAiyhMOFl_wZW4dA1CkixgXwf0zKGbpw_0oHK8yEM/edit#slide=id.g1f9fb98e4b_0 _132 References 48