Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
これは分散KVS? NoSQL? NewSQL? 謎の HarperDBにせまる
Search
jyoshise
December 13, 2022
Technology
0
510
これは分散KVS? NoSQL? NewSQL? 謎の HarperDBにせまる
Cloud Native Database Meetup #5 のLT資料です。
jyoshise
December 13, 2022
Tweet
Share
More Decks by jyoshise
See All by jyoshise
Nutanix Kubernetes PlatformでLLMを動かす話
jyoshise
0
370
CNDT2023_Nutanix_jyoshise
jyoshise
0
390
クラウドネイティブインフラおじさんがNutanixに入社することになったので以下略
jyoshise
0
1k
全てがクラウドネイティブで良いのか。その謎を明らかにすべく我々はエンプラの奥地に向かった
jyoshise
6
5.3k
Kubeadmによるクラスタアップグレード・その光と闇
jyoshise
3
4.6k
Kubernetes Meetup Tokyo #26 / Recap: Kubecon Keynote by Walmart
jyoshise
6
3.2k
Kubernetes Meetup Tokyo #20 / KubeCon Recap: Tekton
jyoshise
0
140
KubeCon Recap: Keynote-Airbnb
jyoshise
1
2k
エンタープライズコンテナプラットフォーム、どれがええねん
jyoshise
19
4.1k
Other Decks in Technology
See All in Technology
3D生成AIのための画像生成
kosukeito
2
610
Асинхронная коммуникация в Go: от понятного к душному. Дима Некрасов, Otello, 2ГИС
lamodatech
0
2k
OPENLOGI Company Profile for engineer
hr01
1
26k
今日からはじめるプラットフォームエンジニアリング
jacopen
8
2k
Ninno LT
kawaguti
PRO
1
110
[新卒向け研修資料] テスト文字列に「うんこ」と入れるな(2025年版)
infiniteloop_inc
0
3.1k
OPENLOGI Company Profile
hr01
0
63k
ソフトウェアテスト 最初の一歩 〜テスト設計技法をワークで体験しながら学ぶ〜 #JaSSTTokyo / SoftwareTestingFirstStep
nihonbuson
PRO
1
110
Datadog のトライアルを成功に導く技術 / Techniques for a successful Datadog trial
nulabinc
PRO
0
120
LangfuseではじめるAIアプリのLLMトレーシング
codenote
0
140
AI駆動で進化する開発プロセス ~クラスメソッドでの実践と成功事例~ / aidd-in-classmethod
tomoki10
1
990
AIエージェント開発手法と業務導入のプラクティス
ykosaka
9
2.8k
Featured
See All Featured
4 Signs Your Business is Dying
shpigford
183
22k
Building Flexible Design Systems
yeseniaperezcruz
329
39k
Rebuilding a faster, lazier Slack
samanthasiow
81
9k
Keith and Marios Guide to Fast Websites
keithpitt
411
22k
Speed Design
sergeychernyshev
29
930
"I'm Feeling Lucky" - Building Great Search Experiences for Today's Users (#IAC19)
danielanewman
227
22k
A better future with KSS
kneath
239
17k
Typedesign – Prime Four
hannesfritz
41
2.6k
Adopting Sorbet at Scale
ufuk
76
9.4k
Documentation Writing (for coders)
carmenintech
71
4.8k
Designing for Performance
lara
608
69k
Building a Modern Day E-commerce SEO Strategy
aleyda
40
7.2k
Transcript
@jyoshise これは分散KVS? NOSQL? NEWSQL? 謎の HARPERDBにせまる
None
3
4 • LMDB (Lightning Memory-Mapped Database) とは: • もともとはOpenLDAPプロジェクトのために作られたOSS •
CloudflareがDNS用のデータストアとして使っていたりとか • Memory-mapped fileを使用 • 軽量 • 高速 • ACID準拠 • 読み出しと書き込みに高度に最適化された追記型B+tree構造 • トランザクションをサポート • 書き込みロック処理→デッドロックは発生しない • Full MVCC→ReaderとWriterは競合しない • Dup-sorted keys UNDERLYING STORAGE MECHANISM OF HARPERDB: LMDB
5 • JSONやSQLでデータを取り込み、1つの データスキーマに格納できるようにしたい。 • マルチモデルデータベースでよくある、1つ のデータベース内でモデル間でデータが重複 してしまうという問題を解決する • Same
data set • Common services/core operation • No data duplication for different models • SQL, NoSQL, CSV, etc… all talking to HarperDB core and same data set OPERATIONAL MODEL
6
7 • テーブルを作成するときはハッシュAttribute名(Primary key)を定義するだけでよい • 各テーブルはディスク上に1つのデータファイル(.mdb)であり、すべてのインデックス はデータファイル内の「サブデータベース」 • データ書き込み(挿入、更新、削除)は「マイクロバッチ処理」とし、トランザクション の一括実行を可能にすることで、より高いパフォーマンスを実現
STORAGE HIERARCHY
8 • コア数 • インストールされたインスタンスで利用可能なコア数に合わせてスケール可能 –Raspberry Pi から大規模ベアメタルサーバーまで –大規模環境ではHarperDBを並列プロセスで実行 •
プロセス数=利用可能なコアの数 • ディスク • ストレージは無制限→テーブルはインスタンスのストレージの利用可能な容量まで成長 SCALING WITH HARDWARE
9 • Read/Write Optimized • 1ノードあたり毎秒20Kの書き込みが可能 • 読み込みと書き込みが独立したノンブロッキングのグローバルレプリケーション(MVCC)を110msで実行できる • High
Throughput • HarperDB 1ノードで120Kリクエスト/秒の処理能力 • Storage Engine • ACID準拠 • Attributesはuniversally indexed by default →効率的な格納と検索が可能 PERFORMANCE & BENCHMARKS
10
11
12
13 • 各ノードはトランザクションとストレージをACIDに他のノードから独立して処理 • 各ノードは、他のノードに接続し、任意のテーブルに対してトランザクションを送受信で きる • スキーマメタデータとトランザクションを、定義されたトポロジーに基づき決定論的にリ アルタイムで送信 •
すべてのノードがネットワークやサーバーの停止からキャッチアップでき、”dead on the floor”トランザクションは発生しない • 一貫性を保つためにタイムスタンプを利用→更新のシナリオでは最新のトランザクション を優先(古い更新があった場合、それは破棄される) • 再接続シナリオでは、HarperDBノードは自動的にオフラインだった時間分のキャッチアッ プペイロードを要求し、送信 HARPERDB: DISTRIBUTED COMPUTE & STORAGE
14
15 HarperDBは • むちゃくちゃ速い(らしい) • DB設計をほとんど考えなくてよいので楽 • CSVなりJSONなりでデータをぶっこめばインデックスしてくれて、あとはSQLで 読み書きできる •
Geo distributionはConsistencyの点でまだ開発途上のようだが、読み書き性能を優先す る用途には使えそう • クラウドのDBaaSもあるのでとっつきやすい • https://harperdb.io/ • 小さいインスタンスなら無料でお試しできます • オンプレにデプロイしてクラウドで管理もできる まとめ