Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
オフィスの前にある信号が変わる タイミング教えてくれるWebページ 作ろうとしたよ with ...
Search
Takayuki Sakai
January 15, 2018
Programming
0
1.3k
オフィスの前にある信号が変わる タイミング教えてくれるWebページ 作ろうとしたよ with DeepLearning
2017年末に社内で開かれたハッカソンの発表資料を社外向けに少し修正したものです。
Takayuki Sakai
January 15, 2018
Tweet
Share
More Decks by Takayuki Sakai
See All by Takayuki Sakai
cats in practice
kaky0922
1
590
Scalaの(俺的)イケてる ライブラリ紹介LT
kaky0922
0
910
TDでHivemallを半年使ってみたノウハウ / Hivemall Meetup 20160908
kaky0922
1
3.2k
アドテク企業の本番環境からTD使ってみた / Treasure Data Tech Talk 20160425
kaky0922
3
9.5k
Other Decks in Programming
See All in Programming
Vibe codingでおすすめの言語と開発手法
uyuki234
0
210
Architectural Extensions
denyspoltorak
0
270
Oxlintはいいぞ
yug1224
5
1.3k
コマンドとリード間の連携に対する脅威分析フレームワーク
pandayumi
1
440
ZJIT: The Ruby 4 JIT Compiler / Ruby Release 30th Anniversary Party
k0kubun
1
390
QAフローを最適化し、品質水準を満たしながらリリースまでの期間を最短化する #RSGT2026
shibayu36
2
4.2k
今から始めるClaude Code超入門
448jp
7
8.1k
プロダクトオーナーから見たSOC2 _SOC2ゆるミートアップ#2
kekekenta
0
190
AIと一緒にレガシーに向き合ってみた
nyafunta9858
0
130
生成AIを使ったコードレビューで定性的に品質カバー
chiilog
0
220
AIエージェントの設計で注意するべきポイント6選
har1101
7
3.4k
humanlayerのブログから学ぶ、良いCLAUDE.mdの書き方
tsukamoto1783
0
180
Featured
See All Featured
Balancing Empowerment & Direction
lara
5
880
How to build an LLM SEO readiness audit: a practical framework
nmsamuel
1
630
Public Speaking Without Barfing On Your Shoes - THAT 2023
reverentgeek
1
300
Navigating Weather and Climate Data
rabernat
0
97
Utilizing Notion as your number one productivity tool
mfonobong
2
210
AI: The stuff that nobody shows you
jnunemaker
PRO
2
230
Tell your own story through comics
letsgokoyo
1
800
Save Time (by Creating Custom Rails Generators)
garrettdimon
PRO
32
2k
Data-driven link building: lessons from a $708K investment (BrightonSEO talk)
szymonslowik
1
910
The Organizational Zoo: Understanding Human Behavior Agility Through Metaphoric Constructive Conversations (based on the works of Arthur Shelley, Ph.D)
kimpetersen
PRO
0
230
We Have a Design System, Now What?
morganepeng
54
8k
Distributed Sagas: A Protocol for Coordinating Microservices
caitiem20
333
22k
Transcript
ΦϑΟεͷલʹ͋Δ৴߸͕มΘΔ λΠϛϯάڭ͑ͯ͘ΕΔ Webϖʔδ ࡞ͬͨΑ࡞Ζ͏ͱͨ͠Α Hackday2017 Team4 ञҪ ਸࢸ ※Hackday2017ͱɺ౦ূҰ෦্اۀͷגࣜձࣾϑΝϯίϛϡχέʔγϣϯζࣾͰͷ Ջͳ༨༟ͷ͋Δ࣌ʹߦΘΕͨνʔϜ੍ϋοΧιϯͷ͜ͱͰ͢
Ռ ͜Μͳײ͡
ͳͥ࡞͔ͬͨ - ΦϑΟεͷલͷาߦऀ৴߸ͷͪ࣌ؒ݁ߏ ͍ - ੨ʹͳΔ·Ͱͷ͕͔࣌ؒΕɺ੮Λཱͭ λΠϛϯά͔Δͣ
ΈΜͳϋοϐʔ ؒҧ͍ͳ͍ʂ - ΦϑΟεͷલͷาߦऀ৴߸ͷͪ࣌ؒ݁ߏ ͍ - ੨ʹͳΔ·Ͱͷ͕͔࣌ؒΕɺ੮Λཱͭ λΠϛϯά͔Δͣ
֓ཁ - ৴߸ͷมΘΔपظ༧Ίଌ͓ͬͯ͘ - ͨ·ʹը૾ೝࣝͰ੨ΓସΘΓ λΠϛϯάΛิਖ਼͢Δ
पظཧαʔό पظऔಘ ৴߸ͷ৭ ৴߸ͷपظΛཧ ੨ఆϓϩάϥϜ શମߏ ৴߸ͷը૾ࡱӨ ৴߸ͷ৭Λఆ ϒϥβ ৴߸ͷλΠϛϯάΛදࣔ
৴߸ͷ੨ೝࣝͷ ͨΊʹͬͨ͜ͱ
͜ΜͳΧϝϥͰ
͜Μͳը૾ͷ৴߸ͷ৭Λ
͜͜ʹ͋Δʢ੨ʣ
ఆ͍ͨ͠ʂ
͜͏͍͏ը૾ॲཧͱ͍͑
Deep Learning Ͱ͢ΑͶ…
ཁ݅ - WebΧϝϥͰࡱͬͨը૾Λ͏ - ҎԼېࢭ - खಈͰ৴߸ʹζʔϜ - खಈͰը૾Ճ -
ΧϝϥΛશʹݻఆ͢Δ
·ֶͣशσʔλ࡞Γ ʢ৭Μͳ͔֯ΒࡱΔ,5000ຕʣ ੨ ੨
PythonͷίʔυΛΨʔοͱॻ͍ͯ ʢ200ߦ͘Β͍ʣ … def vgg_std16_model(img_rows, img_cols): model = Sequential() model.add(ZeroPadding2D((1,
1), input_shape=(3, img_rows, img_cols))) model.add(Convolution2D(64, 3, 3, activation='relu')) model.add(ZeroPadding2D((1, 1))) model.add(Convolution2D(64, 3, 3, activation='relu')) model.add(MaxPooling2D((2, 2), strides=(2, 2))) model.add(ZeroPadding2D((1, 1))) model.add(Convolution2D(128, 3, 3, activation='relu'))
ֶशʂ(ŕŦŖƃ ~/hackday/python$ python3 train_and_evaluate.py 4591 train samples Start training........... Train
on 3121 samples, validate on 551 samples 10/3121 [=>..............................] - ETA: 35023s - loss: 0.5735 - acc: 0.6032
Μ…ʁ ~/hackday/python$ python3 train_and_evaluate.py 4591 train samples Start training........... Train
on 3121 samples, validate on 551 samples 10/3121 [=>..............................] - ETA: 35023s - loss: 0.5735 - acc: 0.6032
Γ࣌ؒ35023s ≒ 10࣌ؒ ~/hackday/python$ python3 train_and_evaluate.py 4591 train samples Start
training........... Train on 3121 samples, validate on 551 samples 10/3121 [=>..............................] - ETA: 35023s - loss: 0.5735 - acc: 0.6032
ʮऴΘΒͳ͍… Ͳ͏͢Ε…ʯ
ʁʮCPU͕ΒΕͨΑ͏ͩͳ…ʯ
ʮ͋ɺ͋ͳͨ…ʂʂʯ
ʮGPU͞Μʂʯ
ͬͯ͜ͱͰGPUͰ࠶ֶशʂ(ŕŦŖƃ ※AWSͷGPUΠϯελϯε͍·ͨ͠ ~/hackday/python$ python3 train_and_evaluate.py Using gpu device 0: Tesla
M60 (CNMeM is disabled, cuDNN 4007) 4591 train samples Start training........... Train on 3121 samples, validate on 551 samples 10/3121 [=>..............................] - ETA: 2714s - loss: 0.5735 - acc: 0.6032
1࣌ؒҎͰऴΘΔʂ ~/hackday/python$ python3 train_and_evaluate.py Using gpu device 0: Tesla M60
(CNMeM is disabled, cuDNN 4007) 4591 train samples Start training........... Train on 3121 samples, validate on 551 samples 10/3121 [=>..............................] - ETA: 2714s - loss: 0.5735 - acc: 0.6032
1࣌ؒޙ…
ʮ͓ɺֶशऴΘͬͯΔ…ʯ 3121/3121 [==============================] - 0s - loss: 0.0051 - acc:
1.0000 - val_loss: 0.0085 - val_acc: 1.0000
ʮਫ਼… 100%ʂʁʯ 3121/3121 [==============================] - 0s - loss: 0.0051 -
acc: 1.0000 - val_loss: 0.0085 - val_acc: 1.0000
ʮਫ਼… 100%ʂʁʯ ʮ͜ͷউෛΖͨͰʂʯ 3121/3121 [==============================] - 0s - loss: 0.0051
- acc: 1.0000 - val_loss: 0.0085 - val_acc: 1.0000
1ऴྃ
2
ʮͯ͞ϦΞϧλΠϜʹࡱͬ ͨ৴߸ͷ৭Λ༧ଌ͢Δ͔…ʯ
PCʮ੨ʂʯ ʮਖ਼ղʂʯ
PCʮʂʯ ʮ͍͢͝ʂʯ
PCʮʂʯ ʮ͋Ε…ʁʯ
PCʮ੨ʂʯ ʮΜΜΜ...ʁʯ
ʮ͍ͭ͜͠…ʯ
ʮԣஅาಓͷ্ʹਓ͕͍Δ͔Ͳ ͏͔Ͱஅ͕ͯ͠Δʂʂʂʯ
Deep Learningମೝࣝೳྗ͕ ߴ͗ͯ͢ɺਓؒͰࢥ͍͔ͭͳ͍Α͏ ͳϧʔϧΛউखʹ࡞ͬͯ͠·͏ͷͰ͢ɻ
ʮͰ͜Ε͕ࡱͬͨσʔλ ʹภΓ͕͚͋ͬͨͩ…ʯ
ʮҎԼͷΑ͏ͳը૾Λͨ͘͞Μ ࡱͬͯ࠶ֶशʂʯ - ͚ͩͲͬͯΔਓ͕͍Δࣸਅ - ੨͚ͩͲ୭ͬͯͳ͍ࣸਅ
࠶ֶशޙ…
PCʮʂʯ ʮΑ͠Α͠ʯ
PCʮ੨ʂʯ ʮ͓ʁʯ
ʮ͍ͭ͜…ʯ
ʮࠓ͜͜Λं͕ͬͯΔ͔ Ͳ͏͔Ͱఆ͕ͯ͠Δʂʯ
ҎԼ͍ͨͪͬ͜͝ʢഊʣ
݁Ռ - ࠷ऴతʹ·͊·͊ͳਫ਼ʹͳͬͨ ʢϦΞϧλΠϜը૾Ͱ90%͘Β͍ʁʣ - ͰɺࠓճͷతͷͨΊʹਫ਼ෆ - ภΓͷͳֶ͍शσʔλΛͬͱͨ͘͞Μ ࡱΕΕղܾ͢Δͣ
ݸਓతײ - Deep Learning͍͢͝ - GPU͍͢͝ - ྑֶ͍शσʔλΛ࡞ΔͷΉ͍ͣ