Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
オフィスの前にある信号が変わる タイミング教えてくれるWebページ 作ろうとしたよ with ...
Search
Takayuki Sakai
January 15, 2018
Programming
0
1.3k
オフィスの前にある信号が変わる タイミング教えてくれるWebページ 作ろうとしたよ with DeepLearning
2017年末に社内で開かれたハッカソンの発表資料を社外向けに少し修正したものです。
Takayuki Sakai
January 15, 2018
Tweet
Share
More Decks by Takayuki Sakai
See All by Takayuki Sakai
cats in practice
kaky0922
1
570
Scalaの(俺的)イケてる ライブラリ紹介LT
kaky0922
0
900
TDでHivemallを半年使ってみたノウハウ / Hivemall Meetup 20160908
kaky0922
1
3.2k
アドテク企業の本番環境からTD使ってみた / Treasure Data Tech Talk 20160425
kaky0922
3
9.3k
Other Decks in Programming
See All in Programming
私はどうやって技術力を上げたのか
yusukebe
43
17k
SpecKitでどこまでできる? コストはどれくらい?
leveragestech
0
540
あなたの知らない「動画広告」の世界 - iOSDC Japan 2025
ukitaka
0
390
iOSアプリの信頼性を向上させる取り組み/ios-app-improve-reliability
shino8rayu9
0
150
Back to the Future: Let me tell you about the ACP protocol
terhechte
0
130
XP, Testing and ninja testing ZOZ5
m_seki
3
310
After go func(): Goroutines Through a Beginner’s Eye
97vaibhav
0
230
Your Perfect Project Setup for Angular @BASTA! 2025 in Mainz
manfredsteyer
PRO
0
130
The Past, Present, and Future of Enterprise Java
ivargrimstad
0
140
大規模アプリのDIフレームワーク刷新戦略 ~過去最大規模の並行開発を止めずにアプリ全体に導入するまで~
mot_techtalk
0
380
CSC305 Lecture 02
javiergs
PRO
1
260
2025年版 サーバーレス Web アプリケーションの作り方
hayatow
23
25k
Featured
See All Featured
Building Applications with DynamoDB
mza
96
6.6k
Designing Dashboards & Data Visualisations in Web Apps
destraynor
231
53k
Done Done
chrislema
185
16k
Build The Right Thing And Hit Your Dates
maggiecrowley
37
2.9k
Code Review Best Practice
trishagee
72
19k
The MySQL Ecosystem @ GitHub 2015
samlambert
251
13k
Agile that works and the tools we love
rasmusluckow
331
21k
Being A Developer After 40
akosma
91
590k
A Tale of Four Properties
chriscoyier
160
23k
Fashionably flexible responsive web design (full day workshop)
malarkey
407
66k
Art, The Web, and Tiny UX
lynnandtonic
303
21k
A Modern Web Designer's Workflow
chriscoyier
697
190k
Transcript
ΦϑΟεͷલʹ͋Δ৴߸͕มΘΔ λΠϛϯάڭ͑ͯ͘ΕΔ Webϖʔδ ࡞ͬͨΑ࡞Ζ͏ͱͨ͠Α Hackday2017 Team4 ञҪ ਸࢸ ※Hackday2017ͱɺ౦ূҰ෦্اۀͷגࣜձࣾϑΝϯίϛϡχέʔγϣϯζࣾͰͷ Ջͳ༨༟ͷ͋Δ࣌ʹߦΘΕͨνʔϜ੍ϋοΧιϯͷ͜ͱͰ͢
Ռ ͜Μͳײ͡
ͳͥ࡞͔ͬͨ - ΦϑΟεͷલͷาߦऀ৴߸ͷͪ࣌ؒ݁ߏ ͍ - ੨ʹͳΔ·Ͱͷ͕͔࣌ؒΕɺ੮Λཱͭ λΠϛϯά͔Δͣ
ΈΜͳϋοϐʔ ؒҧ͍ͳ͍ʂ - ΦϑΟεͷલͷาߦऀ৴߸ͷͪ࣌ؒ݁ߏ ͍ - ੨ʹͳΔ·Ͱͷ͕͔࣌ؒΕɺ੮Λཱͭ λΠϛϯά͔Δͣ
֓ཁ - ৴߸ͷมΘΔपظ༧Ίଌ͓ͬͯ͘ - ͨ·ʹը૾ೝࣝͰ੨ΓସΘΓ λΠϛϯάΛิਖ਼͢Δ
पظཧαʔό पظऔಘ ৴߸ͷ৭ ৴߸ͷपظΛཧ ੨ఆϓϩάϥϜ શମߏ ৴߸ͷը૾ࡱӨ ৴߸ͷ৭Λఆ ϒϥβ ৴߸ͷλΠϛϯάΛදࣔ
৴߸ͷ੨ೝࣝͷ ͨΊʹͬͨ͜ͱ
͜ΜͳΧϝϥͰ
͜Μͳը૾ͷ৴߸ͷ৭Λ
͜͜ʹ͋Δʢ੨ʣ
ఆ͍ͨ͠ʂ
͜͏͍͏ը૾ॲཧͱ͍͑
Deep Learning Ͱ͢ΑͶ…
ཁ݅ - WebΧϝϥͰࡱͬͨը૾Λ͏ - ҎԼېࢭ - खಈͰ৴߸ʹζʔϜ - खಈͰը૾Ճ -
ΧϝϥΛશʹݻఆ͢Δ
·ֶͣशσʔλ࡞Γ ʢ৭Μͳ͔֯ΒࡱΔ,5000ຕʣ ੨ ੨
PythonͷίʔυΛΨʔοͱॻ͍ͯ ʢ200ߦ͘Β͍ʣ … def vgg_std16_model(img_rows, img_cols): model = Sequential() model.add(ZeroPadding2D((1,
1), input_shape=(3, img_rows, img_cols))) model.add(Convolution2D(64, 3, 3, activation='relu')) model.add(ZeroPadding2D((1, 1))) model.add(Convolution2D(64, 3, 3, activation='relu')) model.add(MaxPooling2D((2, 2), strides=(2, 2))) model.add(ZeroPadding2D((1, 1))) model.add(Convolution2D(128, 3, 3, activation='relu'))
ֶशʂ(ŕŦŖƃ ~/hackday/python$ python3 train_and_evaluate.py 4591 train samples Start training........... Train
on 3121 samples, validate on 551 samples 10/3121 [=>..............................] - ETA: 35023s - loss: 0.5735 - acc: 0.6032
Μ…ʁ ~/hackday/python$ python3 train_and_evaluate.py 4591 train samples Start training........... Train
on 3121 samples, validate on 551 samples 10/3121 [=>..............................] - ETA: 35023s - loss: 0.5735 - acc: 0.6032
Γ࣌ؒ35023s ≒ 10࣌ؒ ~/hackday/python$ python3 train_and_evaluate.py 4591 train samples Start
training........... Train on 3121 samples, validate on 551 samples 10/3121 [=>..............................] - ETA: 35023s - loss: 0.5735 - acc: 0.6032
ʮऴΘΒͳ͍… Ͳ͏͢Ε…ʯ
ʁʮCPU͕ΒΕͨΑ͏ͩͳ…ʯ
ʮ͋ɺ͋ͳͨ…ʂʂʯ
ʮGPU͞Μʂʯ
ͬͯ͜ͱͰGPUͰ࠶ֶशʂ(ŕŦŖƃ ※AWSͷGPUΠϯελϯε͍·ͨ͠ ~/hackday/python$ python3 train_and_evaluate.py Using gpu device 0: Tesla
M60 (CNMeM is disabled, cuDNN 4007) 4591 train samples Start training........... Train on 3121 samples, validate on 551 samples 10/3121 [=>..............................] - ETA: 2714s - loss: 0.5735 - acc: 0.6032
1࣌ؒҎͰऴΘΔʂ ~/hackday/python$ python3 train_and_evaluate.py Using gpu device 0: Tesla M60
(CNMeM is disabled, cuDNN 4007) 4591 train samples Start training........... Train on 3121 samples, validate on 551 samples 10/3121 [=>..............................] - ETA: 2714s - loss: 0.5735 - acc: 0.6032
1࣌ؒޙ…
ʮ͓ɺֶशऴΘͬͯΔ…ʯ 3121/3121 [==============================] - 0s - loss: 0.0051 - acc:
1.0000 - val_loss: 0.0085 - val_acc: 1.0000
ʮਫ਼… 100%ʂʁʯ 3121/3121 [==============================] - 0s - loss: 0.0051 -
acc: 1.0000 - val_loss: 0.0085 - val_acc: 1.0000
ʮਫ਼… 100%ʂʁʯ ʮ͜ͷউෛΖͨͰʂʯ 3121/3121 [==============================] - 0s - loss: 0.0051
- acc: 1.0000 - val_loss: 0.0085 - val_acc: 1.0000
1ऴྃ
2
ʮͯ͞ϦΞϧλΠϜʹࡱͬ ͨ৴߸ͷ৭Λ༧ଌ͢Δ͔…ʯ
PCʮ੨ʂʯ ʮਖ਼ղʂʯ
PCʮʂʯ ʮ͍͢͝ʂʯ
PCʮʂʯ ʮ͋Ε…ʁʯ
PCʮ੨ʂʯ ʮΜΜΜ...ʁʯ
ʮ͍ͭ͜͠…ʯ
ʮԣஅาಓͷ্ʹਓ͕͍Δ͔Ͳ ͏͔Ͱஅ͕ͯ͠Δʂʂʂʯ
Deep Learningମೝࣝೳྗ͕ ߴ͗ͯ͢ɺਓؒͰࢥ͍͔ͭͳ͍Α͏ ͳϧʔϧΛউखʹ࡞ͬͯ͠·͏ͷͰ͢ɻ
ʮͰ͜Ε͕ࡱͬͨσʔλ ʹภΓ͕͚͋ͬͨͩ…ʯ
ʮҎԼͷΑ͏ͳը૾Λͨ͘͞Μ ࡱͬͯ࠶ֶशʂʯ - ͚ͩͲͬͯΔਓ͕͍Δࣸਅ - ੨͚ͩͲ୭ͬͯͳ͍ࣸਅ
࠶ֶशޙ…
PCʮʂʯ ʮΑ͠Α͠ʯ
PCʮ੨ʂʯ ʮ͓ʁʯ
ʮ͍ͭ͜…ʯ
ʮࠓ͜͜Λं͕ͬͯΔ͔ Ͳ͏͔Ͱఆ͕ͯ͠Δʂʯ
ҎԼ͍ͨͪͬ͜͝ʢഊʣ
݁Ռ - ࠷ऴతʹ·͊·͊ͳਫ਼ʹͳͬͨ ʢϦΞϧλΠϜը૾Ͱ90%͘Β͍ʁʣ - ͰɺࠓճͷతͷͨΊʹਫ਼ෆ - ภΓͷͳֶ͍शσʔλΛͬͱͨ͘͞Μ ࡱΕΕղܾ͢Δͣ
ݸਓతײ - Deep Learning͍͢͝ - GPU͍͢͝ - ྑֶ͍शσʔλΛ࡞ΔͷΉ͍ͣ