Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
オフィスの前にある信号が変わる タイミング教えてくれるWebページ 作ろうとしたよ with ...
Search
Takayuki Sakai
January 15, 2018
Programming
0
1.3k
オフィスの前にある信号が変わる タイミング教えてくれるWebページ 作ろうとしたよ with DeepLearning
2017年末に社内で開かれたハッカソンの発表資料を社外向けに少し修正したものです。
Takayuki Sakai
January 15, 2018
Tweet
Share
More Decks by Takayuki Sakai
See All by Takayuki Sakai
cats in practice
kaky0922
1
550
Scalaの(俺的)イケてる ライブラリ紹介LT
kaky0922
0
890
TDでHivemallを半年使ってみたノウハウ / Hivemall Meetup 20160908
kaky0922
1
3.1k
アドテク企業の本番環境からTD使ってみた / Treasure Data Tech Talk 20160425
kaky0922
3
9.3k
Other Decks in Programming
See All in Programming
Railsアプリケーションと パフォーマンスチューニング ー 秒間5万リクエストの モバイルオーダーシステムを支える事例 ー Rubyセミナー 大阪
falcon8823
1
360
『自分のデータだけ見せたい!』を叶える──Laravel × Casbin で複雑権限をスッキリ解きほぐす 25 分
akitotsukahara
1
210
A comprehensive view of refactoring
marabesi
0
970
アンドパッドの Go 勉強会「 gopher 会」とその内容の紹介
andpad
0
250
F#で自在につくる静的ブログサイト - 関数型まつり2025
pizzacat83
0
310
Is Xcode slowly dying out in 2025?
uetyo
1
170
AIエージェントはこう育てる - GitHub Copilot Agentとチームの共進化サイクル
koboriakira
0
130
業務自動化をJavaとSeleniumとAWS Lambdaで実現した方法
greenflagproject
1
120
実践ArchUnit ~実例による検証パターンの紹介~
ogiwarat
2
280
Cursor AI Agentと伴走する アプリケーションの高速リプレイス
daisuketakeda
1
120
AIネイティブなプロダクトをGolangで挑む取り組み
nmatsumoto4
0
120
レガシーシステムの機能調査・開発におけるAI利活用
takuya_ohtonari
0
610
Featured
See All Featured
Building a Scalable Design System with Sketch
lauravandoore
462
33k
Code Reviewing Like a Champion
maltzj
524
40k
Become a Pro
speakerdeck
PRO
28
5.4k
Music & Morning Musume
bryan
46
6.6k
RailsConf & Balkan Ruby 2019: The Past, Present, and Future of Rails at GitHub
eileencodes
137
34k
Connecting the Dots Between Site Speed, User Experience & Your Business [WebExpo 2025]
tammyeverts
4
200
XXLCSS - How to scale CSS and keep your sanity
sugarenia
248
1.3M
How STYLIGHT went responsive
nonsquared
100
5.6k
Fantastic passwords and where to find them - at NoRuKo
philnash
51
3.3k
Art, The Web, and Tiny UX
lynnandtonic
299
21k
Typedesign – Prime Four
hannesfritz
42
2.7k
The Invisible Side of Design
smashingmag
299
51k
Transcript
ΦϑΟεͷલʹ͋Δ৴߸͕มΘΔ λΠϛϯάڭ͑ͯ͘ΕΔ Webϖʔδ ࡞ͬͨΑ࡞Ζ͏ͱͨ͠Α Hackday2017 Team4 ञҪ ਸࢸ ※Hackday2017ͱɺ౦ূҰ෦্اۀͷגࣜձࣾϑΝϯίϛϡχέʔγϣϯζࣾͰͷ Ջͳ༨༟ͷ͋Δ࣌ʹߦΘΕͨνʔϜ੍ϋοΧιϯͷ͜ͱͰ͢
Ռ ͜Μͳײ͡
ͳͥ࡞͔ͬͨ - ΦϑΟεͷલͷาߦऀ৴߸ͷͪ࣌ؒ݁ߏ ͍ - ੨ʹͳΔ·Ͱͷ͕͔࣌ؒΕɺ੮Λཱͭ λΠϛϯά͔Δͣ
ΈΜͳϋοϐʔ ؒҧ͍ͳ͍ʂ - ΦϑΟεͷલͷาߦऀ৴߸ͷͪ࣌ؒ݁ߏ ͍ - ੨ʹͳΔ·Ͱͷ͕͔࣌ؒΕɺ੮Λཱͭ λΠϛϯά͔Δͣ
֓ཁ - ৴߸ͷมΘΔपظ༧Ίଌ͓ͬͯ͘ - ͨ·ʹը૾ೝࣝͰ੨ΓସΘΓ λΠϛϯάΛิਖ਼͢Δ
पظཧαʔό पظऔಘ ৴߸ͷ৭ ৴߸ͷपظΛཧ ੨ఆϓϩάϥϜ શମߏ ৴߸ͷը૾ࡱӨ ৴߸ͷ৭Λఆ ϒϥβ ৴߸ͷλΠϛϯάΛදࣔ
৴߸ͷ੨ೝࣝͷ ͨΊʹͬͨ͜ͱ
͜ΜͳΧϝϥͰ
͜Μͳը૾ͷ৴߸ͷ৭Λ
͜͜ʹ͋Δʢ੨ʣ
ఆ͍ͨ͠ʂ
͜͏͍͏ը૾ॲཧͱ͍͑
Deep Learning Ͱ͢ΑͶ…
ཁ݅ - WebΧϝϥͰࡱͬͨը૾Λ͏ - ҎԼېࢭ - खಈͰ৴߸ʹζʔϜ - खಈͰը૾Ճ -
ΧϝϥΛશʹݻఆ͢Δ
·ֶͣशσʔλ࡞Γ ʢ৭Μͳ͔֯ΒࡱΔ,5000ຕʣ ੨ ੨
PythonͷίʔυΛΨʔοͱॻ͍ͯ ʢ200ߦ͘Β͍ʣ … def vgg_std16_model(img_rows, img_cols): model = Sequential() model.add(ZeroPadding2D((1,
1), input_shape=(3, img_rows, img_cols))) model.add(Convolution2D(64, 3, 3, activation='relu')) model.add(ZeroPadding2D((1, 1))) model.add(Convolution2D(64, 3, 3, activation='relu')) model.add(MaxPooling2D((2, 2), strides=(2, 2))) model.add(ZeroPadding2D((1, 1))) model.add(Convolution2D(128, 3, 3, activation='relu'))
ֶशʂ(ŕŦŖƃ ~/hackday/python$ python3 train_and_evaluate.py 4591 train samples Start training........... Train
on 3121 samples, validate on 551 samples 10/3121 [=>..............................] - ETA: 35023s - loss: 0.5735 - acc: 0.6032
Μ…ʁ ~/hackday/python$ python3 train_and_evaluate.py 4591 train samples Start training........... Train
on 3121 samples, validate on 551 samples 10/3121 [=>..............................] - ETA: 35023s - loss: 0.5735 - acc: 0.6032
Γ࣌ؒ35023s ≒ 10࣌ؒ ~/hackday/python$ python3 train_and_evaluate.py 4591 train samples Start
training........... Train on 3121 samples, validate on 551 samples 10/3121 [=>..............................] - ETA: 35023s - loss: 0.5735 - acc: 0.6032
ʮऴΘΒͳ͍… Ͳ͏͢Ε…ʯ
ʁʮCPU͕ΒΕͨΑ͏ͩͳ…ʯ
ʮ͋ɺ͋ͳͨ…ʂʂʯ
ʮGPU͞Μʂʯ
ͬͯ͜ͱͰGPUͰ࠶ֶशʂ(ŕŦŖƃ ※AWSͷGPUΠϯελϯε͍·ͨ͠ ~/hackday/python$ python3 train_and_evaluate.py Using gpu device 0: Tesla
M60 (CNMeM is disabled, cuDNN 4007) 4591 train samples Start training........... Train on 3121 samples, validate on 551 samples 10/3121 [=>..............................] - ETA: 2714s - loss: 0.5735 - acc: 0.6032
1࣌ؒҎͰऴΘΔʂ ~/hackday/python$ python3 train_and_evaluate.py Using gpu device 0: Tesla M60
(CNMeM is disabled, cuDNN 4007) 4591 train samples Start training........... Train on 3121 samples, validate on 551 samples 10/3121 [=>..............................] - ETA: 2714s - loss: 0.5735 - acc: 0.6032
1࣌ؒޙ…
ʮ͓ɺֶशऴΘͬͯΔ…ʯ 3121/3121 [==============================] - 0s - loss: 0.0051 - acc:
1.0000 - val_loss: 0.0085 - val_acc: 1.0000
ʮਫ਼… 100%ʂʁʯ 3121/3121 [==============================] - 0s - loss: 0.0051 -
acc: 1.0000 - val_loss: 0.0085 - val_acc: 1.0000
ʮਫ਼… 100%ʂʁʯ ʮ͜ͷউෛΖͨͰʂʯ 3121/3121 [==============================] - 0s - loss: 0.0051
- acc: 1.0000 - val_loss: 0.0085 - val_acc: 1.0000
1ऴྃ
2
ʮͯ͞ϦΞϧλΠϜʹࡱͬ ͨ৴߸ͷ৭Λ༧ଌ͢Δ͔…ʯ
PCʮ੨ʂʯ ʮਖ਼ղʂʯ
PCʮʂʯ ʮ͍͢͝ʂʯ
PCʮʂʯ ʮ͋Ε…ʁʯ
PCʮ੨ʂʯ ʮΜΜΜ...ʁʯ
ʮ͍ͭ͜͠…ʯ
ʮԣஅาಓͷ্ʹਓ͕͍Δ͔Ͳ ͏͔Ͱஅ͕ͯ͠Δʂʂʂʯ
Deep Learningମೝࣝೳྗ͕ ߴ͗ͯ͢ɺਓؒͰࢥ͍͔ͭͳ͍Α͏ ͳϧʔϧΛউखʹ࡞ͬͯ͠·͏ͷͰ͢ɻ
ʮͰ͜Ε͕ࡱͬͨσʔλ ʹภΓ͕͚͋ͬͨͩ…ʯ
ʮҎԼͷΑ͏ͳը૾Λͨ͘͞Μ ࡱͬͯ࠶ֶशʂʯ - ͚ͩͲͬͯΔਓ͕͍Δࣸਅ - ੨͚ͩͲ୭ͬͯͳ͍ࣸਅ
࠶ֶशޙ…
PCʮʂʯ ʮΑ͠Α͠ʯ
PCʮ੨ʂʯ ʮ͓ʁʯ
ʮ͍ͭ͜…ʯ
ʮࠓ͜͜Λं͕ͬͯΔ͔ Ͳ͏͔Ͱఆ͕ͯ͠Δʂʯ
ҎԼ͍ͨͪͬ͜͝ʢഊʣ
݁Ռ - ࠷ऴతʹ·͊·͊ͳਫ਼ʹͳͬͨ ʢϦΞϧλΠϜը૾Ͱ90%͘Β͍ʁʣ - ͰɺࠓճͷతͷͨΊʹਫ਼ෆ - ภΓͷͳֶ͍शσʔλΛͬͱͨ͘͞Μ ࡱΕΕղܾ͢Δͣ
ݸਓతײ - Deep Learning͍͢͝ - GPU͍͢͝ - ྑֶ͍शσʔλΛ࡞ΔͷΉ͍ͣ