Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
アドテク企業の本番環境からTD使ってみた / Treasure Data Tech Talk ...
Search
Takayuki Sakai
April 26, 2016
Technology
3
9.4k
アドテク企業の本番環境からTD使ってみた / Treasure Data Tech Talk 20160425
機械学習の基礎から、本番環境へのTreasureDataを使った機械学習導入部分までカバーします。
nex8という株式会社ファンコミュニケーションズの開発・運用するDSPにおけるお話です。
Takayuki Sakai
April 26, 2016
Tweet
Share
More Decks by Takayuki Sakai
See All by Takayuki Sakai
オフィスの前にある信号が変わる タイミング教えてくれるWebページ 作ろうとしたよ with DeepLearning
kaky0922
0
1.3k
cats in practice
kaky0922
1
590
Scalaの(俺的)イケてる ライブラリ紹介LT
kaky0922
0
910
TDでHivemallを半年使ってみたノウハウ / Hivemall Meetup 20160908
kaky0922
1
3.2k
Other Decks in Technology
See All in Technology
Introduction to Sansan for Engineers / エンジニア向け会社紹介
sansan33
PRO
5
59k
プロンプトエンジニアリングを超えて:自由と統制のあいだでつくる Platform × Context Engineering
yuriemori
0
160
2025年 山梨の技術コミュニティを振り返る
yuukis
0
150
スクラムマスターが スクラムチームに入って取り組む5つのこと - スクラムガイドには書いてないけど入った当初から取り組んでおきたい大切なこと -
scrummasudar
1
1.5k
Claude Codeを使った情報整理術
knishioka
20
12k
AWS re:Inventre:cap ~AmazonNova 2 Omniのワークショップを体験してきた~
nrinetcom
PRO
0
130
テストセンター受験、オンライン受験、どっちなんだい?
yama3133
0
200
SES向け、生成AI時代におけるエンジニアリングとセキュリティ
longbowxxx
0
300
_第4回__AIxIoTビジネス共創ラボ紹介資料_20251203.pdf
iotcomjpadmin
0
170
1万人を変え日本を変える!!多層構造型ふりかえりの大規模組織変革 / 20260108 Kazuki Mori
shift_evolve
PRO
5
810
2025年の医用画像AI/AI×medical_imaging_in_2025_generated_by_AI
tdys13
0
310
小さく、早く、可能性を多産する。生成AIプロジェクト / prAIrie-dog
visional_engineering_and_design
0
330
Featured
See All Featured
Rails Girls Zürich Keynote
gr2m
95
14k
The Curse of the Amulet
leimatthew05
0
6.8k
Color Theory Basics | Prateek | Gurzu
gurzu
0
170
Are puppies a ranking factor?
jonoalderson
0
2.6k
Fight the Zombie Pattern Library - RWD Summit 2016
marcelosomers
234
17k
I Don’t Have Time: Getting Over the Fear to Launch Your Podcast
jcasabona
34
2.6k
GraphQLとの向き合い方2022年版
quramy
50
14k
RailsConf & Balkan Ruby 2019: The Past, Present, and Future of Rails at GitHub
eileencodes
141
34k
Deep Space Network (abreviated)
tonyrice
0
33
Navigating Team Friction
lara
191
16k
Information Architects: The Missing Link in Design Systems
soysaucechin
0
730
Tips & Tricks on How to Get Your First Job In Tech
honzajavorek
0
410
Transcript
ΞυςΫاۀͷ ຊ൪ڥ͔ΒTDͬͯΈͨ Scala x TreasureData ΦϯϥΠϯCTR༧ଌ
ञҪ ਸࢸ - 2016/01- F@N Communicationsגࣜձࣾ - CAࣾΞυςΫελδΦͰΠϯλʔϯͱ͔ͯͨ͠ - ScalaΤϯδχΞ
(ଞʹRuby, Python, JS, Go…) - ػցֶशΔΑ - Slack & Raspberry PiͰΤΞίϯ͚ͭͨΓ
ରऀ - ػցֶश or CTR༧ଌʹڵຯ͕͋Δਓ - Scala͔ΒTreasureDataΛͬͯΈ͍ͨਓ
ΞυςΫۀքͷதͰ DSPͱ͍͏ͷΛ࡞ͬͯ·͢
What’s DSP?
What DSPs do SSP DSP ͜ͷαΠτʹϦΫΤετ དྷͯΔ͚Ͳࠂग़͞Μʁ
What DSPs do SSP DSP ͦͬͨ͜Β 0.1ԁͳΒങ͏Θ
What DSPs do SSP DSP Αͬ͠Ό͋Μͨʹ ചͬͨΖ ଞͷձࣾͷํ͕ ͍͍ஈ͚ͭͯ͘ΕͨΘ
What DSPs do SSP DSP Αͬ͠Ό͋Μͨʹ ചͬͨΖ ଞͷձࣾͷํ͕ ͍͍ஈ͚ͭͯ͘ΕͨΘ
͜ͷؒΘ͔ͣ50ms
ࠓͷҰ࿈ͷΓͱΓΛ RTBͱ͍͏Α RTB: Real-Time Bidding ςετʹग़Δͧʂ
RTBͷಛ େྔΞΫηε ɾඵؒ5ສͱ͔ ૣ͍Ϩεϙϯε ɾ100msҎʹฦ͞ͳ͍ͱΦʔΫγϣϯʹࢀՃͰ͖ͳ͍
ຊ
ސ٬ʢࠂओʣʹͱͬͯ ΑΓՁͷ͋ΔDSPΛ࡞Γ͍ͨʂ
ΫϦοΫ(CTR)ͷ ༧ଌ͕େࣄ CTR: Click Through Rate
DSP Site A Site B ࠂग़͞Μʁ ࠂग़͞Μʁ
DSP Site A (CTR=0.1%) Site B (CTR=1%) 0.5ԁͳΒങ͏Ͱ 5ԁͳΒങ͏Ͱ
CTR͕Θ͔Δͱ దਖ਼ͳஈͰೖࡳͰ͖Δ ΫϦοΫ
RTBͷ࣌ʹΘ͔͍ͬͯΔใ - ϢʔβID - αΠτID - ࠂID - etc…ʢͨ͘͞Μʣ
- ϢʔβID - αΠτID - ࠂID - etc…ʢͨ͘͞Μʣ ͜ΕΒͷใ͔Β CTRΛ༧ଌͯ͠ΈΑ͏ʂ
͜ͷαΠτͰͷࠓ·ͰͷCTR0.1%ͩΑ
͜ͷαΠτͰͷࠓ·ͰͷCTR0.1%ͩΑ ͰͦͷϢʔβͷCTR1%ͩͥ
͜ͷαΠτͰͷࠓ·ͰͷCTR0.1%ͩΑ ͰͦͷϢʔβͷCTR1%ͩͥ ͡Ό͋ؒΛऔͬͯ0.5%ͬͯ͜ͱʹ͢Δʁ
͜ͷαΠτͰͷࠓ·ͰͷCTR0.1%ͩΑ ͰͦͷϢʔβͷCTR1%ͩͥ ͡Ό͋ؒΛऔͬͯ0.5%ͬͯ͜ͱʹ͢Δʁ Ϣʔβ͝ͱͷใͷํ͕ਖ਼֬ͩΖ 0.8%͘Β͍͡ΌͶ
͜ͷαΠτͰͷࠓ·ͰͷCTR0.1%ͩΑ ͰͦͷϢʔβͷCTR1%ͩͥ ͡Ό͋ؒΛऔͬͯ0.5%ͬͯ͜ͱʹ͢Δʁ Ϣʔβ͝ͱͷใͷํ͕ਖ਼֬ͩΖ 0.8%͘Β͍͡ΌͶ ͋ɺࠂ͝ͱͷCTRߟ͑ͳ͍ͱ…
͜ͷαΠτͰͷࠓ·ͰͷCTR0.1%ͩΑ ͰͦͷϢʔβͷCTR1%ͩͥ ͡Ό͋ؒΛऔͬͯ0.5%ͬͯ͜ͱʹ͢Δʁ Ϣʔβ͝ͱͷใͷํ͕ਖ਼֬ͩΖ 0.8%͘Β͍͡ΌͶ ͋ɺࠂͷCTRߟ͑ͳ͍ͱ… ߟ͑ग़͢ͱେม
- ϢʔβID - αΠτID - ࠂID - etc…ʢͨ͘͞Μʣ ͪͳΈʹɺ͜ͷΑ͏ͳ ༧ଌͷࡐྉʹͳΔใΛ
ಛྔͱ͍͏Α
Machine Learning ػցֶश
Machine LearningͳΒ…
Machine LearningͳΒ… - ෳͷಛྔʹରͯ͠ (ϢʔβID, αΠτID…)
Machine LearningͳΒ… - ෳͷಛྔʹରͯ͠ (ϢʔβID, αΠτID…) - ֶతࠜڌʹج͍ͮͯ
Machine LearningͳΒ… - ෳͷಛྔʹରͯ͠ (ϢʔβID, αΠτID…) - ֶతࠜڌʹج͍ͮͯ - ࣗಈͰ
Machine LearningͳΒ… - ෳͷಛྔʹରͯ͠ (ϢʔβID, αΠτID…) - ֶతࠜڌʹج͍ͮͯ - ࣗಈͰ
CTR͕༧ଌͰ͖Δʂ
ػցֶशͬͯͲ͏Δͷʁ
ࠓճͷख๏ɻৄ͍͠ਓ͚ - ڭࢣ͋Γֶश - ڭࢣσʔλϩά͔Β࡞ - ࠓճϩδεςΟοΫճؼͷઆ໌Ͱ͢ Βͳ͍ਓಡΈඈͯ͠OK
ػցֶशͷجຊ 1. ֶशσʔλͷ࡞ 2. ༧ଌϞσϧͷ࡞ 3. ༧ଌ
1. ֶशσʔλͷ࡞
Ұൠతͳֶशσʔλ 1 1 1 …… 0 ಛྔ1 ಛྔ2 ಛྔ3 ……
ਖ਼ղϥϕϧ 2 3 2 …… 0 2 2 3 …… 1 ……
CTR༧ଌͷ߹ 1 1 1 …… 0 αΠτ Ϣʔβ ࠂ ……
ΫϦοΫ ͞Ε͔ͨ 2 3 2 …… 0 2 2 3 …… 1 …… 1ߦ͕ 1ΠϯϓϨογϣϯ
CSVͰද͢ͱ… # αΠτ, Ϣʔβ, ࠂ, …, ਖ਼ղϥϕϧ site_1, user_1, campaign_1,
…, 0 site_2, user_3, campaign_2, …, 0 site_2, user_2, campaign_3, …, 1 …
2. ༧ଌϞσϧͷ࡞
ֶशσʔλ …… 0 …… …… …… Ξ ϧ ΰ
Ϧ ζ Ϝ ༧ଌϞσϧ 0 1 ࠓճ ϩδεςΟοΫճؼ …… 0
αΠτ1 αΠτ2 Ϣʔβ1 Ϣʔβ2 ࠂ1 ࠂ2 ಛྔ ॏΈ ༧ଌϞσϧͷத
ಛྔ ॏΈ 0.1 -0.2 1.0 -0.6 -0.3 -0.05 αΠτ1 αΠτ2
Ϣʔβ1 Ϣʔβ2 ࠂ1 ࠂ2
CSVͰද͢ͱ… # ಛྔ, ॏΈ site_1, 0.1 site_2, -0.2 user_1, 1.0
user_2, -0.6 campaign_1,-0.3 campaign_2,-0.05 …
3. ༧ଌ
CTRΛΓ͍ͨσʔλ αΠτ1 Ϣʔβ2 ࠂ1 …… ֶशσʔλͱ΄΅ಉ͡ ਖ਼ղϥϕϧ͚ͩͳ͍
ࠂ1 …… ಛྔ ॏΈ 0.1 -0.2 1.0 -0.6 -0.3 -0.05
༧ଌϞσϧ ͜ͷಛྔͷॏΈ…ʁ αΠτ1 αΠτ2 Ϣʔβ1 Ϣʔβ2 ࠂ1 ࠂ2 αΠτ1 Ϣʔβ2
…… ಛྔ ॏΈ 0.1 -0.2 1.0 -0.6 -0.3 -0.05 ༧ଌϞσϧ
ࠂ1 αΠτ1 αΠτ2 Ϣʔβ1 Ϣʔβ2 ࠂ1 ࠂ2 αΠτ1 Ϣʔβ2
…… ಛྔ ॏΈ 0.1 -0.2 1.0 -0.6 -0.3 -0.05 ༧ଌϞσϧ
͠߹Θͤͯ -0.8 ࠂ1 αΠτ1 αΠτ2 Ϣʔβ1 Ϣʔβ2 ࠂ1 ࠂ2 αΠτ1 Ϣʔβ2
…… ಛྔ ॏΈ 0.1 -0.2 1.0 -0.6 -0.3 -0.05 ༧ଌϞσϧ
ຐ๏ͷؔΛ͔͚Δͱ… sigmoid(-0.8) ࠂ1 αΠτ1 Ϣʔβ2 αΠτ1 αΠτ2 Ϣʔβ1 Ϣʔβ2 ࠂ1 ࠂ2
…… ಛྔ ॏΈ 0.1 -0.2 1.0 -0.6 -0.3 -0.05 ༧ଌϞσϧ
CTRग़͖ͯͨʂ sigmoid(-0.8) 0.31 ※దͰ͢ ࠂ1 αΠτ1 Ϣʔβ2 αΠτ1 αΠτ2 Ϣʔβ1 Ϣʔβ2 ࠂ1 ࠂ2
͓͞Β͍
ֶशσʔλ …… 0 …… …… …… 0 1 1. ֶशσʔλͷ࡞
ϩά …… 0
ֶशσʔλ …… 0 …… …… …… Ξ ϧ ΰ
Ϧ ζ Ϝ 0 1 …… 0 2. ༧ଌϞσϧͷ࡞ ༧ଌϞσϧ 0.1 -0.2 1.0 -0.6 -0.3 -0.05 ಛྔ ॏΈ
3. ༧ଌ …… ༧ଌϞσϧ 0.1 -0.2 1.0 -0.6 -0.3 -0.05
ಛྔ ॏΈ ༧ଌ͍ͨ͠ σʔλ 0.31 ༧ଌCTR
զʑͷγεςϜߏ
RTBαʔό ϩά ϩάςʔϒϧ fluentd SQLͷੈք ֶशσʔλ 0.1 0.3 0.2 ༧ଌϞσϧ
Treasure Data redis ίϐʔ ϝϞϦΩϟογϡ ϦΫΤετ Ϩεϙϯε CTRΛ༧ଌ 0.31 ༧ଌϞσϧʹ ΞΫηε όοναʔό td-client-java
RTBαʔό ϩά ϩάςʔϒϧ fluentd SQLͷੈք ֶशσʔλ 0.1 0.3 0.2 ༧ଌϞσϧ
Treasure Data redis ίϐʔ ϝϞϦΩϟογϡ ϦΫΤετ Ϩεϙϯε CTRΛ༧ଌ 0.31 ༧ଌϞσϧʹ ΞΫηε όοναʔό td-client-java 1. ֶशσʔλͷ࡞
RTBαʔό ϩά ϩάςʔϒϧ fluentd SQLͷੈք ֶशσʔλ 0.1 0.3 0.2 ༧ଌϞσϧ
Treasure Data redis ίϐʔ ϝϞϦΩϟογϡ ϦΫΤετ Ϩεϙϯε CTRΛ༧ଌ 0.31 ༧ଌϞσϧʹ ΞΫηε όοναʔό td-client-java 2. ༧ଌϞσϧͷ࡞
RTBαʔό ϩά ϩάςʔϒϧ fluentd SQLͷੈք ֶशσʔλ 0.1 0.3 0.2 ༧ଌϞσϧ
Treasure Data redis ίϐʔ ϝϞϦΩϟογϡ ϦΫΤετ Ϩεϙϯε CTRΛ༧ଌ 0.31 ༧ଌϞσϧʹ ΞΫηε όοναʔό td-client-java 3. ༧ଌ
͓ؾ͖ͮͩΖ͏͔…
RTBαʔό ϩά ϩάςʔϒϧ fluentd SQLͷੈք ֶशσʔλ 0.1 0.3 0.2 ༧ଌϞσϧ
Treasure Data redis ίϐʔ ϝϞϦΩϟογϡ ϦΫΤετ Ϩεϙϯε CTRΛ༧ଌ 0.31 ༧ଌϞσϧʹ ΞΫηε όοναʔό td-client-java ࠷ॳͷ2εςοϓ͕ SQLͰ݁ͯ͠Δʂ
\ ŪƄźō… /
࠷ॳͷ2εςοϓΛSQLͰ࣮ݱ͢Δํ๏ʹ ؔͯ͠ɺHivemall։ൃऀͷ༉Ҫ͞Μ͕ ॻ͍ͨQIitaͷૉΒ͍͠هࣄ͕ ͋Γ·͢ͷͰɺͦͪΒΛࢀর͍ͯͩ͘͠͞ɻ Hive/HivemallΛར༻ͨ͠ࠂΫϦοΫεϧʔ(CTR)ͷਪఆ http://qiita.com/myui/items/f726ca3dcc48410abe45
ͬͱϗϯτʹຊ
Scala͔ΒTDΛ͏
RTBαʔό ϩά ϩάςʔϒϧ fluentd SQLͷੈք ֶशσʔλ 0.1 0.3 0.2 ༧ଌϞσϧ
Treasure Data redis ίϐʔ ϝϞϦΩϟογϡ ϦΫΤετ Ϩεϙϯε CTRΛ༧ଌ 0.31 ༧ଌϞσϧʹ ΞΫηε όοναʔό td-client-java ࠷ॳͷਤ
RTBαʔό ϩά ϩάςʔϒϧ fluentd SQLͷੈք ֶशσʔλ 0.1 0.3 0.2 ༧ଌϞσϧ
Treasure Data redis ίϐʔ ϝϞϦΩϟογϡ ϦΫΤετ Ϩεϙϯε CTRΛ༧ଌ 0.31 ༧ଌϞσϧʹ ΞΫηε όοναʔό td-client-java ͜ͷ෦
td-client-java - JavaΫϥΠΞϯτϥΠϒϥϦ - Treasure Dataެࣜ - جຊతʹTDͷAPIΛhttpͰୟ͍ͯΔ͚ͩ
ΫΤϦΛ͛ͯ ݁ՌΛऔಘͯ͠ΈΔ
// hogeςʔϒϧͷதΛऔಘ val sql = ‘SELECT * FROM hoge’ val
client = TDClient.newClient() val jobRequest = TDJobRequest.newPrestoQuery(dbName, sql) val jobId = client.submit(jobRequest) val backOff = new ExponentialBackOff while (!client.jobStatus(jobId).getStatus.isFinished) { Thread.sleep(backOff.nextWaitTimeMillis) } val input = client.jobResult(jobId, TDResultFormat.MESSAGE_PACK_GZ, new Function[InputStream, InputStream] { def apply(input: InputStream) = input } val unpacker = MessagePack.newDefaultUnpacker(new GZIPInputStream(input))
͍…ʢ´ɾωɾʆʣ
// hogeςʔϒϧͷதΛऔಘ val sql = ‘SELECT * FROM hoge’ val
client = TDClient.newClient() val jobRequest = TDJobRequest.newPrestoQuery(dbName, sql) val jobId = client.submit(jobRequest) val backOff = new ExponentialBackOff while (!client.jobStatus(jobId).getStatus.isFinished) { Thread.sleep(backOff.nextWaitTimeMillis) } val input = client.jobResult(jobId, TDResultFormat.MESSAGE_PACK_GZ, new Function[InputStream, InputStream] { def apply(input: InputStream) = input } val unpacker = MessagePack.newDefaultUnpacker(new GZIPInputStream(input)) 1. ΫΤϦΛ࣮ߦ
// hogeςʔϒϧͷதΛऔಘ val sql = ‘SELECT * FROM hoge’ val
client = TDClient.newClient() val jobRequest = TDJobRequest.newPrestoQuery(dbName, sql) val jobId = client.submit(jobRequest) val backOff = new ExponentialBackOff while (!client.jobStatus(jobId).getStatus.isFinished) { Thread.sleep(backOff.nextWaitTimeMillis) } val input = client.jobResult(jobId, TDResultFormat.MESSAGE_PACK_GZ, new Function[InputStream, InputStream] { def apply(input: InputStream) = input } val unpacker = MessagePack.newDefaultUnpacker(new GZIPInputStream(input)) 2. ΫΤϦऴྃ·Ͱͭ
// hogeςʔϒϧͷதΛऔಘ val sql = ‘SELECT * FROM hoge’ val
client = TDClient.newClient() val jobRequest = TDJobRequest.newPrestoQuery(dbName, sql) val jobId = client.submit(jobRequest) val backOff = new ExponentialBackOff while (!client.jobStatus(jobId).getStatus.isFinished) { Thread.sleep(backOff.nextWaitTimeMillis) } val input = client.jobResult(jobId, TDResultFormat.MESSAGE_PACK_GZ, new Function[InputStream, InputStream] { def apply(input: InputStream) = input } val unpacker = MessagePack.newDefaultUnpacker(new GZIPInputStream(input)) 3. ݁ՌΛऔಘ
- ਖ਼͍ʹ͍͘ - ScalaͬΆ͘ͳ͍ - ͦͦTDͷςʔϒϧΛϓϩάϥϜ ͔ΒಡΉ͜ͱࣗମ͋·Γఆ͞Εͯͳ͍
- ਖ਼͍ʹ͍͘ - ScalaͬΆ͘ͳ͍ - ͦͦTDͷςʔϒϧΛϓϩάϥϜ ͔ΒಡΉ͜ͱࣗମ͋·Γఆ͞Εͯͳ͍ ͡Ό͋Ͳ͏͢Δ
Result ExportΛ ͍·͠ΐ͏
Result Export - ΫΤϦ͕ऴΘͬͨλΠϛϯάͰ ݁ՌΛࢦఆͨ͠ॴʹసૹ͢Δ - సૹઌ - S3 -
RDB - Mongo - etc…
RTBαʔό ϩά ϩάςʔϒϧ fluentd SQLͷੈք ֶशσʔλ 0.1 0.3 0.2 ༧ଌϞσϧ
Treasure Data redis ίϐʔ ϝϞϦΩϟογϡ ϦΫΤετ Ϩεϙϯε CTRΛ༧ଌ 0.31 ༧ଌϞσϧʹ ΞΫηε όοναʔό td-client-java ༧ଌϞσϧͷ࡞࣌ʹ S3ʹͰExport͓͚ͯ͠… S3
RTBαʔό ϩά ϩάςʔϒϧ fluentd SQLͷੈք ֶशσʔλ 0.1 0.3 0.2 ༧ଌϞσϧ
Treasure Data redis ίϐʔ ϝϞϦΩϟογϡ ϦΫΤετ Ϩεϙϯε CTRΛ༧ଌ 0.31 ༧ଌϞσϧʹ ΞΫηε όοναʔό td-client-java ؆୯ʂ S3
ͦͷଞͷϢʔεέʔε Scala x TreasureData
ScalaͰੜͨ͠σʔλΛ TDʹΞοϓϩʔυ
Bulk Import - TDʹσʔλΛΞοϓϩʔυ͢ΔίϚϯυ - ίϚϯυϥΠϯͳͲ͔Β͑Δ - JavaϥΠϒϥϦʹରԠ͕ؔ͋Δ
͋Εɺಈ͔ͳ͍…
͋Εɺಈ͔ͳ͍… ͍߹ΘͤΔ
None
ʂʁ
None
ͱ͍͏Θ͚ͰEmbulk ͍·͠ΐ͏
- Ϗοάσʔλ༻σʔλϩʔμ - fluentdͷϏοάσʔλ൛Έ͍ͨͳײ͡ - TD͕։ൃ͍ͯ͠Δ - Φʔϓϯιʔε - Ϋδϥ
γϟν͕͔Θ͍͍
Αʔ͠Scala͔Β Embulk͏ͧʔ…
ͦ͜·ͰͰ͖·ͤΜͰͨ͠ ʢ࣌ؒΕʣ
·ͱΊ
1. TDͱHivemallͰCTR༧ଌϞσϧ࡞·Ͱ SQLͰ݁͢ΔΑʂ 2. Scala͔ΒTDͷςʔϒϧಡΉͷେม => Result ExportΛ͏·͓͘͏ 3. Scala͔ΒTDʹσʔλ্͛ΔͷEmbulkͰ
=> ୭͔Γํڭ͍͑ͯͩ͘͞
\ ͋Γ͕ͱ͏͍͟͝·ͨ͠ /
None