Upgrade to Pro — share decks privately, control downloads, hide ads and more …

ベクトル解析入門pdf化

Sponsored · Your Podcast. Everywhere. Effortlessly. Share. Educate. Inspire. Entertain. You do you. We'll handle the rest.

 ベクトル解析入門pdf化

Avatar for kamakiri1225

kamakiri1225

May 13, 2021
Tweet

More Decks by kamakiri1225

Other Decks in Science

Transcript

  1. 𝛻𝑓 𝛻𝑓 𝑥 𝑦 𝑧 等高線 等高線上では全微分(𝒅𝒇=0) 0 = 𝜕𝑓

    𝜕𝑥 𝑑𝑥 + 𝜕𝑓 𝜕𝑦 𝑑𝑥 𝒚を止めて𝒙に ついての微分 𝒙を止めて𝐲に ついての微分
  2. ·͕͖͑ / ͸͡Ίʹ ຊهࣄͰ͸φϒϥԋࢉࢠΛ࢖ͬͨͱͯ΋ॏཁͳʮޯ഑ gradʯ ʮൃࢄ divʯ ʮճస rotʯ ʹ͍ͭͯͷղઆΛߦ͍·͢ɻॳֶऀ͕ҎԼΛݟͯʮԿͩ͜Ε͸ʁʯͱͳΒͳ͍ͨΊͷ

    ষͰ͢ɻ • ޯ഑ɿgrad f(∇ f) • ൃࢄɿdiv v or ∇ · v • ճసɿrot v or ∇ × v ͜ΜͳํΛର৅ʹ͍ͯ͠·͢ɻ • grad, div, rot ʹۤखҙ͕ࣝ͋Δํ • grad ,div ,rot ͷҙຯ΋ؚΊͯཧղ͍ͨ͠ํ https://takun-physics.net/4487/ – i –
  3. ໨࣍ ·͕͖͑ / ͸͡Ίʹ i ୈ 1 ষ φϒϥԋࢉࢠͷجૅΛཧղ͢Δ 3

    ͭͷϝϦοτ 1 1.1 ෺ཧݱ৅Λ਺ࣜͰදݱͰ͖Δ . . . . . . . . . . . . . . . . . . . . . 1 1.2 ෺ཧݱ৅ͷཧղͷॿ͚ʹͳΔ . . . . . . . . . . . . . . . . . . . . . 4 1.3 ද͕ࣜ؆୯ʹͳΔ . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 ୈ 2 ষ εΧϥʔ৔ͱϕΫτϧ৔ 7 2.1 εΧϥʔ৔ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.2 ϕΫτϧ৔ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.3 φϒϥԋࢉࢠͱ͸ . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 ୈ 3 ষ ޯ഑ 13 3.1 ޯ഑ɿgradient . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 3.1.1 2 ม਺ z = f(x, y) ͷ৔߹ . . . . . . . . . . . . . . . . . . 13 3.1.2 3 ม਺ w = f(x, y, z) ͷ৔߹ . . . . . . . . . . . . . . . . 21 ୈ 4 ষ ൃࢄ 23 4.1 ൃࢄɿdivergence . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 4.1.1 ൃࢄ͕ͳ͍৔߹ . . . . . . . . . . . . . . . . . . . . . . . 24 4.1.2 ൃࢄ͕͋Δ৔߹ . . . . . . . . . . . . . . . . . . . . . . . 25 4.1.3 ٵ͍ࠐΈ . . . . . . . . . . . . . . . . . . . . . . . . . . 27 4.1.4 ͳͥ ∇ ԋࢉࢠͱͷ಺ੵ͕ൃࢄͳͷ͔Λಋग़͢Δ . . . . . . . 28 ୈ 5 ষ ճస 31 5.1 ճసɿrotation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 5.1.1 ͳͥ ∇ ԋࢉࢠͱͷ֎ੵ͕ճసͳͷ͔Λಋग़͢Δ . . . . . . . 34 – iii –
  4. ୈ 1 ষ φϒϥԋࢉࢠͷجૅΛཧ ղ͢Δ 3 ͭͷϝϦοτ φϒϥԋࢉࢠͬͯ͝ଘ͡Ͱ͠ΐ͏͔ʁ ͜ͷষͰ͸φϒϥԋࢉࢠʹ͍ͭͯඞͣཧ ղ͓͍ͯͨ͠ํ͕ྑ͍

    3 ͭͷϝϦοτʹ͍ͭͯղઆΛߦ͍·͢φϒϥԋࢉࢠʢ∇ ˡ͍ͭ͜ʣ͕ͪΐͬͱۤखͳํ΍ɺ˸ͷܭࢉͱͦͷҙຯΛؚΊͯ෮श͍ͨ͠ํΛର ৅ʹɺ࣍ষͰղઆ͢Δޯ഑ɺൃࢄɺճసʹ͍ͭͯཧղ͢Δ͜ͱͰφϒϥԋࢉࢠʹର ͢Δۤखҙࣝ͸ແ͘ͳΔ͜ͱͰ͠ΐ͏ɻ ۩ମతʹφϒϥԋࢉࢠΛཧղ͓͍ͯͨ͠ํ͕ྑ͍ 3 ͭͷϝϦοτΛ·ͱΊΔͱҎԼ ͱͳΓ·͢ɻ • ෺ཧݱ৅Λ਺ࣜͰදݱͰ͖Δ • ෺ཧݱ৅ͷཧղͷॿ͚ʹͳΔ • ද͕ࣜ؆୯ʹͳΔ ˞ඍ෼ɺภඍ෼ɺશඍ෼͕ཧղ͍ͯ͠Δ͜ͱΛલఏͱ͍ͯ͠·͢ɻ ʮͰ͸ɺ͸͡Ί·͠ΐ͏ (^^)/ ʯ https://takun-physics.net/12011/ 1.1 ෺ཧݱ৅Λ਺ࣜͰදݱͰ͖Δ φϒϥԋࢉࢠʹ׳Ε͓ͯ͘ͱྑ͍ϝϦοτͷ 1 ͭ໨͕෺ཧݱ৅Λ਺ࣜͰදݱͨ͠ ࡍʹଟ͘ͷ৔໘Ͱొ৔͢Δ͜ͱͰ͢Ͷɻ෺ཧݱ৅Λهड़͢Δํఔࣜʹ͸φϒϥԋࢉࢠ ∇ Λ࢖ͬͨද͕͍ࣜͬͺ͍͋Γ·͢ɻ͜͜Ͱ͸ɺ෼໺͝ͱʹ෼͚ͯφϒϥԋࢉࢠ ∇ ͕࢖ΘΕΔྫΛ͍͔ͭ͘঺հ͠·͢ɻ – 1 –
  5. ୈ 1 ষ φϒϥԋࢉࢠͷجૅΛཧղ͢Δ 3 ͭͷϝϦοτ ʮࣜͷҙຯΛཧղ͢Δඞཁ͸͋Γ·ͤΜɻ͜Μͳʹ͍ͬͺ͍࢖ΘΕͯΔ Αͬͯ͜ͱΛײ͡औ͍ͬͯͩ͘͞ʯ ྗֶ ෺ମʹՃΘΔྗΛ

    F (r)ɺͦΕʹΑΔϙςϯγϟϧΛ U(r) ͱ͠·͢ɻF (r) ͕อଘ ྗʢϙςϯγϟϧྗʣͰ͋Δ৔߹͸ɺҎԼͷΑ͏ͳؔ܎͕ࣜ੒Γཱͪ·͢ɻ ࣜ 1.14: ϙςϯγϟϧྗ F = −∇U (1) ͜ͷ͕ࣜ੒Γཱͭͱ͍͏͜ͱ͸ɺ ࣜ 1.14: ϙςϯγϟϧྗ ∇ × F = 0 (2) ͕੒Γཱͭͱ͍͏͜ͱͱ౳ՁͰ͢ɻ͜Ε͸φϒϥԋࢉࢠΛ࢖ͬͨϕΫτϧެࣜͰ΋ ༗໊ͳ ∇ × F = ∇ × ∇U = 0 ͕੒Γཱ͔ͭΒͰ͢ɻ ͜ͷ࣌఺ͰφϒϥԋࢉࢠΛԡ͓͔͑ͯ͞ͳ͍ͱਏ͘ͳ͖ͬͯ·͢Ͷ (’ Т’) ϊ ి࣓ؾֶ ి࣓ؾֶʹࢸͬͯ͸جૅࣜͰ͋ΔϚΫε΢Σϧํఔࣜ͸ɺ΄ͱΜͲ͕φϒϥԋࢉࢠ Ͱॻ͔Ε͍ͯ·͢ɻ ࣜ 1.14: ϙςϯγϟϧྗ        ∇ · E = ρ ϵ0 ∇ · B = 0 ∇ × E = −∂B ∂t ∇ × B = µ0 j + ϵ0 µ0 ∂E ∂t (3) தֶੜͰशͬͨʮӈͶ͡ͷ๏ଇʯ ʮϑΝϥσʔͷి࣓༠ಋʯͳͲΛࣜͰॻ͖Լ͢ͱ ্هͷΑ͏ͳܗʹ·ͱ·ΔΘ͚Ͱ͢Ͷ (^^) ྔࢠྗֶ ྔࢠྗֶͰ΋φϒϥԋࢉࢠ͸େ׆༂Ͱ͢Ͷɻ ࣜ 1.14: ӡಈྔԋࢉࢠ ˆ p = −iℏ ˆ ∇ – 2 –
  6. 1.1 ෺ཧݱ৅Λ਺ࣜͰදݱͰ͖Δ ͜ͷӡಈྔԋࢉࢠʹΑΓɺ ˆ Hϕ(r) = Eϕ(r) ͔ΒҎԼͷΑ͏ͳγϡϨσΟϯΨʔํ ఔࣜʢ࣌ؒґଘͳ͠ʣ͕ಋ͔Ε·͢ɻ ࣜ

    1.14: γϡϨʔσΟϯΨʔํఔࣜʢ࣌ؒґଘͳ͠ʣ − ℏ2 2m ∇2 + U(r) ϕ(r) = Eϕ(r) (4) γϡϨσΟϯΨʔʹࢸͬͯ͸ ∇2 ͷΑ͏ʹφϒϥԋࢉࢠͷ 2 ৐ؚ͕·Ε͍ͯ· ͢Ͷɻ ྲྀମྗֶ ྲྀମྗֶͷશͯͷجૅࣜʹφϒϥԋࢉࢠؚ͕·Ε͍ͯ·͢ɻ ࣜ 1.14: ࿈ଓͷࣜ ∂ρ ∂t + ∇ · (ρv) = 0 (5) ࣜ 1.14: ӡಈྔอଘ ∂ρv ∂t + ∇ · (ρvv) = ∇ · σ + f (6) ࣜ 1.14: ΤωϧΪʔอଘଇ ∂ρ(e + v·v 2 ) ∂t + ∇ · ρ(e + v · v 2 )v = ∇ · (k∇T) + ∇ · (σ · v) (7) φϒϥԋࢉࢠ͕ݏ͍ͩͱྲྀମྗֶͷࣜΛݟΔͷ΋ݏʹͳΓ·͢ΑͶɻ ఻೤޻ֶ ೤ͷҠಈʹؔͯ͠͸ɺΤωϧΪʔͷҠಈྔ͸Թ౓ࠩʹΑͬͯੜ͍ͯ͡Δͱͯ͠ҎԼ ͷΑ͏ͳϑʔϦΤͷ๏ଇ͕੒Γཱͪ·͢ɻ ෺࣭ͷ೤఻ಋ λ [W/(mɾK)]ɺԹ౓ޯ഑Λ ∇T ͱ͢Δͱɺ೤ྲྀଋ q [W/m2] ͸Ҏ ԼͷࣜͰද͞Ε·͢ɻ ࣜ 1.14: ϑʔϦΤͷ๏ଇ q = −λ∇T (8) – 3 –
  7. ୈ 1 ষ φϒϥԋࢉࢠͷجૅΛཧղ͢Δ 3 ͭͷϝϦοτ ͜Ε͸೤఻ಋʹΑͬͯੜ͡Δ೤ྲྀଋΛදͨࣜ͠Ͱ͢ɻ ͜ͷΑ͏ʹ ∇ Λ࢖ͬͨ෺ཧݱ৅ͷجૅࣜ͸ଟ͘ݟΒΕ·͢ɻ෺ཧݱ৅ͷجૅࣜࣗ

    ମ͕ʮԿ͔෺ཧྔͷมԽྔʢ࣌ؒมԽͩͬͨΓɺۭؒมԽʣ ʯΛද͔ͨࣜͩ͠ΒͰ͢ɻ 1.2 ෺ཧݱ৅ͷཧղͷॿ͚ʹͳΔ φϒϥԋࢉࢠʹ׳Ε͓ͯ͘ͱྑ͍ϝϦοτͷ 2 ͭ໨͕෺ཧݱ৅ͷཧղͷॿ͚ʹͳΔ ͜ͱͰ͢Ͷɻ φϒϥԋࢉࢠͷԋࢉʹ͸ҙຯ͕͋Γ·͢ɻྫ͑͹ɺ ࣜ 1.14: ϙςϯγϟϧྗ F = −∇U (1) Λݟͨͱ͖ʹʮ͋ɺ͜ͷྗ͸อଘྗͩͳʯͱཧղͰ͖·͢ɻ ผͷྫͰ͸ɺ ࣜ 1.14: Ӕͳ͠ྲྀΕ ω = ∇ × v = 0 Ͱ͋Ε͹ʮ͋ɺӔͳ͠ྲྀΕͩͳ (’ Т’) ϊʯͱΘ͔Γ·͢ɻ 1.3 ද͕ࣜ؆୯ʹͳΔ φϒϥԋࢉࢠʹ׳Ε͓ͯ͘ͱྑ͍ϝϦοτͷ 3 ͭ໨͕ද͕ࣜ؆୯ʹͳΔ͜ͱͰ ͢Ͷɻ ྫ͑͹ҎԼͷφϏΤετʔΫεΛ 2 ࣍ݩͷࣜͰॻ͘ͱҎԼͷΑ͏ʹ 2 ͭࣜΛॻ͔ ͳ͚Ε͹ͳΓ·ͤΜɻ ࣜ 1.14: φϏΤετʔΫεํఔࣜ (x ੒෼) ∂u ∂t + u ∂u ∂x + v ∂u ∂y = − 1 ρ ∂p ∂x + ν ∂2u ∂x2 + ∂2u ∂y2 + Fx (9) – 4 –
  8. 1.3 ද͕ࣜ؆୯ʹͳΔ ࣜ 1.14: φϏΤετʔΫεํఔࣜ (y ੒෼) ∂v ∂t +

    u ∂v ∂x + v ∂v ∂y = − 1 ρ ∂p ∂y + ν ∂2v ∂x2 + ∂2v ∂y2 + Fy (10) ͨͩɺ͜ΕΛφϒϥԋࢉࢠΛ࢖͍ɺ଎౓ϕΫτϧΛ v ͱॻ͘͜ͱͰ 1 ͭͷࣜͰॻ͘ ͜ͱ͕Ͱ͖·͢ɻ ࣜ 1.14: φϏΤετʔΫεํఔࣜ ∂v ∂t + (v · ∇)v = − 1 ρ ∇p + ν∇2v + F (11) ˞φϏΤετʔΫεํఔࣜ͸੒෼ͷ਺ͷ͕ࣜ͋Γ·͢ɻ ˞ F ɿ֎ྗʢఆϕΫτϧʣ ࠓճ͸ 2 ࣍ݩΛྫʹऔΓ·͕ͨ͠ɺ3 ࣍ݩͷ৔߹͸͸ 3 ͭํఔࣜΛॻ͘ඞཁ͕͋Γ ·͢ɻ͔͠͠ɺφϒϥԋࢉࢠΛ࢖ͬͯॻ͚͹ 2 ࣍ݩͷ࣌ͱಉ༷ʹεοΩϦͱҰͭͷࣜ (11) Ͱॻ͘͜ͱ͕Ͱ͖·͢ɻ – 5 –
  9. ୈ 2 ষ εΧϥʔ৔ͱϕΫτϧ৔ φϒϥԋࢉࢠΛ࢖ͬͨԋࢉΛߦ͏લʹॏཁͳʮεΧϥʔ৔ʯͱʮϕΫτϧ৔ʯʹ ͍ͭͯ؆୯ʹղઆΛ͓͖ͯ͠·͢ɻͳͥɺ ʮεΧϥʔ৔ʯͱʮϕΫτϧ৔ʯʹ͍ͭ ͯղઆ͕ඞཁ͔ͱ͍͏ͱҎޙͷ಺༰ͰφϒϥԋࢉࢠΛ࡞༻ͤͨ݁͞Ռ͸εΧϥʔ ৔ͳͷ͔ϕΫτϧ৔ͳͷ͔ʹΑͬͯ෺ཧతͳҙຯ߹͍͕มΘͬͯ͘Δ͔ΒͰ͢ɻ https://takun-physics.net/4487/

    2.1 εΧϥʔ৔ εΧϥʔ৔͸ɺۭؒͷ֤఺ʹରͯ͠਺஋ʢεΧϥʔྔʣ͕༩͑ΒΕ͍ͯΔঢ়ଶͷ͜ ͱͰ͢ɻ ʮݴ༿Ͱઆ໌ͯ͠΋Α͘Θ͔Βͳ͍ͷͰ۩ମྫΛग़͠·͢ɻʯ ྫ͑͹ɺਤ 2.1 ͷΑ͏ͳ 2 ࣍ݩฏ໘ͰͷԹ౓෼෍͕εΧϥʔ৔ʹ౰ͨΓ·͢ɻ ۭؒ࠲ඪ (x, y) ʹରͯ͠Թ౓͸ T(x, y) ͷΑ͏ͳؔ਺Ͱද͢͜ͱ͕Ͱ͖·͢ɻ͜ͷ Α͏ʹ$(x,y)$ʹରͯͨͩ͠Ұͭͷ஋Λ࣋ͭ΋ͷ͕εΧϥʔ৔Ͱ͢ɻ ͦͷଞʹѹྗ΍ີ౓΋εΧϥʔ৔ʹͳΓ·͢ɻಉ༷ʹ 3 ࣍ݩۭؒΛߟ͑Δͱ (x, y, z) ʹରͯͨͩ͠Ұͭͷ஋Λ࣋ͭ΋ͷ͕εΧϥʔ৔ͰɺԹ౓ΛྫʹऔΔͱ $T(x,y,z)$ͷΑ͏ʹॻ͖·͢ɻ 2.2 ϕΫτϧ৔ ϕΫτϧ৔͸ɺۭؒͷ֤఺ʹରͯ͠ϕΫτϧྔ͕༩͑ΒΕ͍ͯΔঢ়ଶͷ͜ͱͰ͢ɻ ϕΫτϧͱ͸ʮ޲͖ʯͱʮେ͖͞ʯΛ࣋ͬͨྔͰ͢ɻ https://takun-physics.net/11444/ – 7 –
  10. ୈ 2 ষ εΧϥʔ৔ͱϕΫτϧ৔ ˛ ਤ 2.1: Թ౓෼෍ ʮݴ༿Ͱઆ໌ͯ͠΋Α͘Θ͔Βͳ͍ͷͰ۩ମྫΛग़͠·͢ɻʯ ྫ͑͹ɺਤ

    2.3 ͷΑ͏ͳ 2 ࣍ݩฏ໘Ͱͷྲྀ଎ϕΫτϧ෼෍͕ϕΫτϧ৔ʹ౰ͨΓ ·͢ɻ ۭؒ࠲ඪ (x, y) ʹରͯ͠ྲྀ଎͸ v = (vx (x, y), vy (x, y)) ͷΑ͏ʹϕΫτϧͷ x ੒ ෼ɺy ੒෼͸֤఺ͷؔ਺Ͱද͢͜ͱ͕Ͱ͖·͢ɻ ಉ ༷ ʹ 3 ࣍ ݩ ۭ ؒ Λ ߟ ͑ Δ ͱ (x, y, z) ʹ ର ͠ ͯ ϕ Ϋ τ ϧ ৔ ͸ v = (vx (x, y, z), vy (x, y, z), vz (x, y, z)) ͷΑ͏ʹॻ͖·͢ɻ 2.3 φϒϥԋࢉࢠͱ͸ φϒϥԋࢉࢠʢ∇ʣͬͯͦ΋ͦ΋Կ͔ͬͯ͜ͱΛͪΐͼͬͱ࿩͓͔ͯ͠ͳ͍ͱɺ ʮͦ – 8 –
  11. 2.3 φϒϥԋࢉࢠͱ͸ ˛ ਤ 2.2: ϕΫτϧ ͕͜Θ͔ΒΜͷͩʯͬͯࢥΘΕͦ͏ͳͷͰɺ࠷ॳʹ࿩͓͖͍ͯͨ͠ͱࢥ͍·͢ɻ • ∇ɿ ʮφϒϥʯͱݺͼ·͢ɻ

    • ∇ = ( ∂ ∂x , ∂ ∂y , ∂ ∂z ) ˞\(x,y,z\) ͕ม਺ ͱͯ΋؆୯ʹ·ͱΊΔͱҎ্Ͱ͢ɻ ཁ͢Δʹɺ∇ ԋࢉࢠ͸ʮ୭͔Λภඍ෼ͨͯͨ͘͠·Βͳ͍΍ͭʯͱ͘Β͍ʹࢥͬͯ ͓͖·͠ΐ͏ɻ ˙ྫ͑͹ɺf(x, y) = 2x2 + y3 ͱ͍͏ x, y Λม਺ʹ࣋ͬͨؔ਺Λ༻ҙ͠·͢ɻ͜ͷ ؔ਺ʹࠨ͔Βʮ୭͔Λภඍ෼ͨͯͨ͘͠·Βͳ͍ԋࢉࢠ (∇ ԋࢉࢠʣΛ࡞༻ͤ͞Δ͜ ͱΛߟ͑·͢ɻ ͱͯ΋ૉ௚ʹܭࢉ͢Δ͚ͩͰ͢ɻ ࣜ 2.2: φϒϥΛ࡞༻ ∇f(x, y) = ∂ ∂x , ∂ ∂y , ∂ ∂z f(x, y) = ∂f(x, y) ∂x , ∂f(x, y) ∂y , ∂f(x, y) ∂z = 4x, 3y2, 0 – 9 –
  12. ୈ 2 ষ εΧϥʔ৔ͱϕΫτϧ৔ ˛ ਤ 2.3: ྲྀ଎ϕΫτϧ ૉ௚ʹܭࢉͯ͠Έ͚ͨͩͰ͢ɻ εΧϥʔ৔ͷؔ਺

    f(x, y) ʹφϒϥԋࢉࢠΛ࡞༻ͤ͞Δͨ݁Ռ͕ϕΫτϧ৔ʹͳΓ ·ͨ͠Ͷɻ ˙΋͏ͻͱͭྫΛݟͯΈ·͠ΐ͏ɻ ྫ͑͹ɺ͋ΔϕΫτϧ৔ v(x, y) = (vx , vy , vz ) = (2x2, y3, 0) ʹʮ୭͔Λภඍ෼͠ ͨͯͨ͘·Βͳ͍ԋࢉࢠ (∇ ԋࢉࢠʣΛ࡞༻ͤ͞Δ͜ͱߟ͑·͢ɻ ࠓ౓͸಺ੵͷܗͰ࡞༻ͤ͞·͢ɻ ࣜ 2.2: φϒϥͷ಺ੵ ∇ · v(x, y) = ∂vx ∂x + ∂vy ∂y + ∂vz ∂z = 4x + 3y2 ͱͳΓ·͢ɻ ϕΫτϧ৔ͷ v(x, y) ʹφϒϥԋࢉࢠͷ಺ੵΛ࡞༻ͤ͞Δͨ݁Ռ͕εΧϥʔ৔ʹͳ Γ·ͨ͠Ͷɻ – 10 –
  13. ୈ 3 ষ ޯ഑ ͜ΜͳํΛର৅ʹ͍ͯ͠·͢ɻhttps://takun-physics.net/4487/ 3.1 ޯ഑ɿgradient ·ͣ͸φϒϥԋࢉࢠΛ࢖ͬͨ؆୯ͳྫ͸ʮޯ഑ʯͰ͢ɻ ͳͥ grad

    ͱॻ͘ͷ͔ͱ͍͏ͱޯ഑ͷӳޠ͕ gradient ͔ͩΒͦͷ๯಄ 3 จࣈΛ࢖ͬ ͯ grad ͱॻ͘ͷͰ͢ɻ ʮޯ഑ʯʹؔ͢Δॻ͖ํ͸ɺgrad f ͩͬͨΓ ∇f ͩͬͨΓ͠·͕͢ɺ͋Δؔ਺ f ʹ ∇ ԋࢉࢠΛ࡞༻ͤ͞Δૢ࡞ʹΑͬͯͰ͖·͢ɻ ͜Μͳײ͡Ͱॻ͖·͢ɻ ࣜ 3.7: gradient grad f = ∇f = ∂f ∂x , ∂f ∂y ؆୯ͳྫͰݟͯΈ·͠ΐ͏ɻ ͜ΕΛݟΕ͹ɺ∇ ԋࢉࢠΛ͋Δؔ਺ f ʹ࡞༻ͤ͞Δૢ࡞͕ʮޯ഑ʯͰ͋Δ͜ͱ͕Θ ͔Δ͔ͱࢥ͍·͢ɻ 3.1.1 2 ม਺ z = f(x, y) ͷ৔߹ 2 ม਺ (x, y) ͷ৔߹ͷશඍ෼Λߟ͑·͠ΐ͏ɻ – 13 –
  14. ୈ 3 ষ ޯ഑ ˛ ਤ 3.1: 2 ม਺ʹ͓͚Δޯ഑ ͜͜Ͱ

    (x, y) ฏ໘্Ͱ (x, y) ͔Β (x + ∆x, y + ∆y) ΁มԽͨ͠ͱ͖ʹߴ͞ํ޲ͷ ∆f = f(x + ∆x, x + ∆y) − f(x, y) ͸ͲͷΑ͏ʹॻ͚Δ͔Λߟ͑·͢ɻ ֆͰඳ͘ਤ 3.2 ͷͱ͜Μͳײ͡ɻ – 14 –
  15. 3.1 ޯ഑ɿgradient ˛ ਤ 3.2: dx ͱ dy ʹ͓͚Δ f(x,

    y) ͷมԽྔ ͜ΕΛͻͱͭͻͱͭߟ͑ͯΈ·͢ɻ – 15 –
  16. ୈ 3 ষ ޯ഑ y ํ޲ΛࢭΊͯ x ํ޲͚ͩͷมԽΛߟ͑·͢ɻ ˛ ਤ

    3.3: y ํ޲ΛࢭΊͯ x ํ޲มԽʹ͓͚Δ f(x, y) ͷมԽྔ ࣜ 3.7: y ʹ͓͚Δ f ͷมԽྔ f(x + ∆x, y) − f(x, y) ∆x ∆x → ∆x→0 = ∂f ∂x dx ͱͳΓ·͢ɻ ˞ ∂f ∂x ͸ y Λݻఆͯ͠ x ͰͷΈඍ෼Λߦ͏͜ͱΛҙຯ͠·͢ʢx ʹΑΔภඍ෼ʣ – 16 –
  17. 3.1 ޯ഑ɿgradient x ํ޲ΛࢭΊͯ y ํ޲͚ͩͷมԽΛߟ͑·͢ɻ ˛ ਤ 3.4: x

    ํ޲ΛࢭΊͯ y ํ޲มԽʹ͓͚Δ f(x, y) ͷมԽྔ ࣜ 3.7: x ʹ͓͚Δ f ͷมԽྔ f(x, y + ∆y) − f(x, y) ∆y ∆y → ∆y→0 = ∂f ∂y dy ͱͳΓ·͢ɻ ˞ ∂f ∂y ͸ x Λݻఆͯ͠ y ͰͷΈඍ෼Λߦ͏͜ͱΛҙຯ͠·͢ʢx ʹΑΔภඍ෼ʣ Ҏ্ΑΓ ∆f = f(x + ∆x, x + ∆y) − f(x, y) ͸ᶃ + ᶄͰ͋Δ͜ͱ͕Θ͔Γ·͢ɻ – 17 –
  18. ୈ 3 ষ ޯ഑ ˛ ਤ 3.5: f(x, y) ͷมԽྔ

    ඍ෼͸্ͷදࣜʹͳΓ·͢ɻ ࣜ 3.7: શඍ෼ df = ∂f ∂x dx + ∂f ∂y dy ͜ΕΛ͜ͷΑ͏ʹ֤੒෼ʹ෼ղͯ͠಺ੵͷܗͰॻ͘ͱɺ ࣜ 3.7: x ʹ͓͚Δ f ͷมԽྔ df = ∂f ∂x , ∂f ∂y · (dx, dy) ͱͳΓ·͢ɻ ͓ͬͱɺ ʮ ∂f ∂x , ∂f ∂y ͕ग़͖ͯͨͰ͸͋Γ·ͤΜ͔ʯͱ͍͏͜ͱʹͳΓ·͢ɻ ͜ΕΛɺ – 18 –
  19. 3.1 ޯ഑ɿgradient ࣜ 3.7: x ʹ͓͚Δ f ͷมԽྔ grad f

    = ∇f = ∂f ∂x , ∂f ∂y ͱॻ͍ͯޯ഑Λද͢ͷͰ͢ɻ Ͱ͸ɺͳͥޯ഑ͱݺͿͷ͔ɾɾɾɾwikipedia ʹ͸ʮޯ഑;gradientʯʹ͍ͭͯɺ ˝ ޯ഑ (grad) ͱ͸ ϕΫτϧղੳʹ͓͚ΔεΧϥʔ৔ͷޯ഑(gradient; άϥσΟΤϯτ ʣ ͸ ɺ ֤఺› ›ʹ͓͍ͯͦͷεΧϥʔ৔ͷมԽ཰͕࠷େͱͳΔํ޲΁ͷมԽ཰ͷ஋Λେ͖͞ʹ΋› ›ͭϕΫτϧΛରԠͤ͞ΔϕΫτϧ৔Ͱ͋Δ ɻ ͜ͷΑ͏ʹॻ͍͍ͯ·͢ɻ εΧϥʔ৔ͷมԽ཰͕࠷େͱͳΔํ޲΁ͷมԽ཰ͱॻ͍ͯ͋Γ·͢ɻ ʮݴ༿Ͱઆ໌ͯ͠Πϝʔδͭ͘ਓ΋͍ͳ͍Ͱ͠ΐ͏ʂ ʯ ͱ͍͏Θ͚Ͱ ∇f Λޯ഑ͱ͍͏ҙຯ͕Θ͔ΔΑ͏ʹ gradf ͷҙຯΛߟ͑ͯΈ·͢ɻ ౳ߴઢʹରͯ͠ਨ௚ͳํ޲͕ ∇f ͷํ޲ ઌ΄Ͳॻ͍͕ͨࣜ಺ੵͷܗͰॻ͘͜ͱ͕Ͱ͖ͨͷͰɺҎԼͷΑ͏ʹॻ͖·͠ΐ͏ɻ ࣜ 3.7: x ʹ͓͚Δ f ͷมԽྔ df = |grad f| |∆r| cos θ • x, y ฏ໘্ͷඍখมԽΛ r = (dx, dy) ͱॻ͖·ͨ͠ɻ • grad f ͱ ∆r ͷͳ֯͢౓Λ cos θ ͱ͍ͯ͠·͢ɻ ʮ౳ߴઢʹରͯ͠ਨ௚ͳํ޲͕ ∇ f ͷํ޲ʯͱ͸Ͳ͏͍͏ҙຯ͔ߟ͑ͯΈ·͠ΐ͏ɻ ౳ߴઢΛඳ͍ͯߟ͑ͯΈ·͢ɻ∆r ͷಈ͔͠ํΛ࣍ͷ 2 ௨Γͷ৔߹Ͱߟ͑ͯΈ ·͢ɻ • ∆r Λ౳ߴઢͷํ޲ʹಈ͔͢৔߹ • ∆r Λ df ͕࠷େʹͳΔΑ͏ʹಈ͔͢৔߹ ˙ ∆r Λ౳ߴઢͷํ޲ʹಈ͔͢৔߹ʹ͍ͭͯ – 19 –
  20. ୈ 3 ষ ޯ഑ ˛ ਤ 3.6: grad ͸౳ߴઢʹରͯ͠ਨ௚ ∆r

    Λ౳ߴઢͷํ޲ʹಈ͔͢ͱɺ$df$ͷߴ͕͞มΘΒͳ͍ͨΊ$df=0$ͱͳΓ·͢ɻ ͳͷͰɺ಺ੵͷఆ͔ٛΒ θ = 90 ͱͳΓɺgrad f ͱ ∆r ͸௚ަ͍ͯ͠Δ͜ͱ͕Θ͔Γ ·͢ɻ ͭ·Γɺgrad f ͸౳ߴઢରͯ͠ਨ௚Ͱ͋Δ͜ͱ͕Θ͔Γ·͢ɻ ˙ ∆r Λ df ͕࠷େʹͳΔΑ͏ʹಈ͔͢৔߹ – 20 –
  21. 3.1 ޯ഑ɿgradient ˛ ਤ 3.7: grad ͸ df ͕࠷େมԽ͢Δํ޲ʹ޲͍͍ͯΔ ∆r

    Λ$df$͕࠷େʹͳΔํ޲ʹಈ͔ͨ͠৔߹ɺ ಺ੵͷఆ͔ٛΒ θ = 0 ͱͳΓɺ grad f ͱ ∆r ͕ಉ͡ํ޲Λ޲͍͍ͯΔ͜ͱ͕Θ͔Γ·͢ɻ ͭ·Γɺgrad f ͸ df ͕࠷େʹͳΔํ޲Λ޲͍͍ͯΔ͕Θ͔Γ·͢ɻ Ώ͑ʹɺgrad f ͸εΧϥʔ৔ͷมԽ཰͕࠷େͱͳΔํ޲ͱઆ໌Ͱ͖ΔΘ͚Ͱ͢ɻ Ͱ͸ɺ3 ม਺ͩͬͨΒʁ 3.1.2 3 ม਺ w = f(x, y, z) ͷ৔߹ 3 ม਺ʹͳΔදݱ͢ΔͨΊͷ͕࣠଍Γͳ͍ͷͰ w ͷେ͖͞͸৭ͱ͔Ͱ۠ผ͢Δ͠ ͔ͳ͍Ͱ͢ɻ ઌ΄Ͳʮ2 ม਺Ͱ౳ߴઢ (z = f(x, y) ͷ஋͕ৗʹಉ͡)ʯΛߟ͑ͨΑ͏ʹɺ ʮ3 ม਺ Ͱ౳Ґ໘ (w = f(x, y, z) ͷ஋͕ৗʹಉ͡)ʯ৔߹Ͱͷ ∇ f ͷํ޲Λߟ͑Δ͜ͱ͕Ͱ͖ ·͢ɻ3 ม਺Ͱͷ౳Ґ໘Ͱͷ ∇f ͷํ޲͸ɺ౳Ґ໘ʹରͯ͠ਨ௚ͳํ޲Ͱ͢ɻ – 21 –
  22. ୈ 3 ষ ޯ഑ ˛ ਤ 3.8: 3 ม਺ʹ͓͚Δ grad

    ͸౳Ґ໘ʹରͯ͠ਨ௚ͳํ޲Λ޲͍͍ͯΔ ͜͜·Ͱ཈͓͚͑ͯ͹جຊతͳ͜ͱ͸ OK Ͱ͢ʂ – 22 –
  23. ୈ 4 ষ ൃࢄ ຊهࣄͰ͸φϒϥԋࢉࢠΛ࢖ͬͨͱͯ΋ॏཁͳʮޯ഑ gradʯ ʮൃࢄ divʯ ʮճస rotʯʹ͍ͭͯͷղઆΛߦ͍·͢ɻॳֶऀ͕ҎԼΛݟͯʮԿͩ͜Ε͸ʁʯͱͳΒͳ͍

    ͨΊͷষͰ͢ɻ* ޯ഑ɿgrad f(∇ f) * ൃࢄɿdiv v or ∇ · v * ճసɿrot v or ∇ × v ͜ΜͳํΛର৅ʹ͍ͯ͠·͢ɻ • div ʹۤखҙ͕ࣝ͋Δํ • div ͷҙຯ΋ؚΊͯཧղ͍ͨ͠ํ https://takun-physics.net/4487/ 4.1 ൃࢄɿdivergence ਺ֶه߸Ͱͷൃࢄͷදݱ͸ div ͔ ∇· ͱͳΓ·͢ɻ∇ ԋࢉࢠͱ͋ΔϕΫτϧ৔ v ͱ ͷ಺ੵͰ͋Δͱ͓͖֮͑ͯ·͠ΐ͏ɻ@href{https://takun-physics.net/11522/} ͳͥ div ͱॻ͘ͷ͔ͱ͍͏ͱൃࢄͷӳޠ͕ divergence ͔ͩΒͦͷ๯಄ 3 จࣈΛ ࢖ͬͯ div ͱॻ͘ͷͰ͢ɻ ·ͨɺ∇ = ( ∂ ∂x , ∂ ∂y , ∂ ∂z ) Λ࢖ͬͯɺ͋ΔϕΫτϧͱͷ಺ੵΛͱΔͱͦΕ͸ൃࢄΛҙ ຯ͢Δ͜ͱʹͳΓ·͢ɻ ࣜ 4.16: div div v = ∇ · v ͱॻ͖·͢ɻ φϒϥԋࢉࢠͷ෦෼ʹ͍ͭͯɺ ʮه߸Λ࢖͍ͬͯͯ͸Θ͔Βͳ͍ʯͬͯํ͸ɺ࣮ࡍ ʹ಺ੵΛܭࢉͯ͠΍Δͱɺ ࣜ 4.16: div div v = ∂vx ∂x + ∂vy ∂y + ∂vz ∂z – 23 –
  24. ୈ 4 ষ ൃࢄ ͱͳΔ͜ͱΛ͓͚֮͑ͯ͹ྑ͍Ͱ͠ΐ͏ɻ ͔͠͠ɺ਺ֶه߸ͰൃࢄͱݴΘΕͯ΋ϐϯͱ͜ͳ͍ͷ͕;ͭ͏Ͱ͋Δͱࢥ͍·͢ɻ ·ͣ͸؆୯ʹΠϝʔδΛ಄ʹΠϯϓοτ͢ΔͨΊʹɺ͋ΔϕΫτϧ৔Λྲྀ଎ϕΫτ ϧ v ͱͯ͠઒ͷྲྀΕΛߟ͑ͯɺ

    ʮൃࢄʯʹ͍ͭͯཧղ͍͖͍ͯͨ͠ͱࢥ͍·͢ɻ 4.1.1 ൃࢄ͕ͳ͍৔߹ ൃࢄ͕ͳ͍৔߹ͱ͍͏ɺ ʮൃࢄʯͱ͍͏ݴ༿Λ࢖͏ͱΑ͘Θ͔Βͳ͍͜ͱͰ͠ΐ ͏Ͷɻ ൃࢄ͕ͳ͍৔߹ͱ͍͏ͷ͸ɺ ʮൃࢄʹग़͍ͯͬͨྔʢྲྀग़ʣʔೖ͖ͬͯͨྔʢྲྀೖʣ ʯ ͸ 0 ͱ͍͏৔߹Λҙຯ͍ͯ͠·͢ɻ େࣄͳͷ͸ɺൃࢄ͸ਖ਼ຯʹग़͍ͯͬͨྔͱ͍͏͜ͱͰ͢ɻ ྲྀྔ͸ग़͍ͯ͘ΜͰ͚͢Ͳɺೖͬͯ͘Δྔ΋߹Θͤͯɺ ʮ࣮ࡍͲΕ͚ͩग़͍ͯͬͨ ͷ͔ʁʯ͕ൃࢄͷҙຯͰ͢ɻ ˛ ਤ 4.1: ྲྀೖͱྲྀग़ɿൃࢄແ͠ ྫ͑͹্ͷֆͷΑ͏ʹ 1 ࣍ݩͷྲྀ଎͕ҰఆͷྲྀΕ͕͋Δ৔߹Λߟ͑·͢ɻ ͜ͷ৔߹͸ɺ྘ͷ൒ಁ໌ʹೖ͖ͬͯͨਫͷྔͱग़͍ͯͬͨਫͷྔ͸ಉ͡Ͱ͢ΑͶɻ ͔ͩΒɺ ʮൃࢄʹग़͍ͯͬͨྔʢྲྀग़ʣʔೖ͖ͬͯͨྔʢྲྀೖʣ ʯ͸ 0 ͱ͍͏͜ͱʹ ͳΓ·͢ɻ – 24 –
  25. 4.1 ൃࢄɿdivergence ൃࢄه߸Ͱॻ͘ͱɺ ࣜ 4.16: ൃࢄ͕ͳ͍৔߹ div v = 0

    Ͱ͢ɻ φϒϥԋࢉࢠΛ༻͍Δͱɺ ࣜ 4.16: ൃࢄ͕ͳ͍৔߹ (φϒϥԋࢉࢠΛ࢖ͬͨදݱ) ∇ · v = 0 Ͱ͢ɻ ࣮ࡍɺྲྀΕ͸ҰఆͳͷͰ͔͢Β dv dx = 0 Ͱ͋Γ·͢ɻ 3 ࣍ݩͰͷൃࢄແ͠ͷ৔߹΋ɺ1 ࣍ݩͷ৔߹ͱಉ༷ʹɺ ࣜ 4.16: 3 ࣍ݩɿൃࢄ͕ͳ͍৔߹ (φϒϥԋࢉࢠΛ࢖ͬͨදݱ) ∇ · v = ∂vx ∂x + ∂vy ∂y + ∂vz ∂z = 0 ͱॻ͘͜ͱ͕Ͱ͖·͢ɻ 4.1.2 ൃࢄ͕͋Δ৔߹ ࠓ౓͸ൃࢄ͕͋Γͷ৔߹ʹ͍ͭͯߟ͑ͯΈ·͠ΐ͏ɻൃࢄ͕͋Δ৔߹ͱ͍͏ͷ͸ɺ ʮൃࢄʹग़͍ͯͬͨྔʢྲྀग़ʣʔೖ͖ͬͯͨྔʢྲྀೖʣ ʯ͸ 0 Ͱ͸ͳ͍ͱ͍͏͜ͱΛҙ ຯ͍ͯ͠·͢ɻྲྀೖ͖ͯͨ͠ྔʹରͯ͠ʮ༙͖ग़͠ʯ΋͘͠͸ʮٵ͍ࠐΈʯ͕͋Δͱ ͍͏͜ͱͰ͢ɻ – 25 –
  26. ୈ 4 ষ ൃࢄ ༙͖ग़͠ ˛ ਤ 4.2: ྲྀೖͱྲྀग़ɿൃࢄ͋Γ ਤ

    4.2 ͷֆͷΑ͏ʹӈʹ͍͘΄Ͳʢ\(x\) ͷ૿Ճͱͱ΋ʹ) ྲྀ଎͕૿͍͍͑ͯͬͯ Δ৔߹ͷྲྀΕͰ͸ɺ྘ͷಁ໌ʹೖ͖ͬͯͨਫͷྔΑΓग़͍ͯ͘ਫͷྔͷํ͕ଟ͍ͷ Ͱɺਖ਼ຯͷग़͍ͯͬͨྔͱ͍͏ͷ͸ 0 ΑΓେ͖͍Ͱ͢ɻ ͜ΕΛ༙͖ग़͠ͱݴ͍·͢ɻ ࣜ 4.16: ൃࢄ͋Γ (༙͖ग़͠) div v > 0 Ͱ͢ɻ φϒϥԋࢉࢠΛ༻͍Δͱɺ ࣜ 4.16: ൃࢄ͋Γ (༙͖ग़͠) ∇ · v > 0 ͱॻ͘͜ͱ͕Ͱ͖·͢ɻ – 26 –
  27. 4.1 ൃࢄɿdivergence 4.1.3 ٵ͍ࠐΈ ༙͖ग़͠ͷٯͷٵ͍ࠐΈͷ৔߹Λߟ͑·͠ΐ͏ɻ ˛ ਤ 4.3: ྲྀೖͱྲྀग़ɿൃࢄ͋Γ ਤ

    4.3 ͷΑ͏ʹɺ྘ͷಁ໌ʹೖ͖ͬͯͨਫͷྔྲྀೖ͖ͯͨ͠ྔʹରͯ͠ग़͍ͯ͘ਫ ͷྔͷํ͕ଟগͳ͍৔߹͸ਖ਼ຯͷग़͍ͯͬͨྔͱ͍͏ͷ͸ 0 ΑΓখ͘͞ͳΓ·͢ɻ ͜ΕΛٵ͍ࠐΈͱݴ͍·͢ɻ ࣜ 4.16: ൃࢄ͋Γ (ٵ͍ࠐΈ) div v < 0 φϒϥԋࢉࢠΛ༻͍Δͱɺ ࣜ 4.16: ൃࢄ͋Γ (ٵ͍ࠐΈ) ∇ · v < 0 ͱॻ͘͜ͱ͕Ͱ͖·͢ɻ – 27 –
  28. ୈ 4 ষ ൃࢄ 4.1.4 ͳͥ ∇ ԋࢉࢠͱͷ಺ੵ͕ൃࢄͳͷ͔Λಋग़͢Δ Ͱ͸ͳͥ ∇

    ԋࢉࢠͷ಺ੵ͕ൃࢄΛҙຯ͍ͯ͠Δͷ͔Λߟ͍͑ͨͱࢥ͍·͢ɻ x, y, z ํ޲ʹਨ௚ͳ໘͔Βग़͍ͯ͘ਖ਼ຯͷྲྀྔΛߟ͑Δ͜ͱͰൃࢄΛཧղ͍ͨ͠ͱ ࢥ͍·͢ɻ ˛ ਤ 4.4: x ํ޲ʹਨ௚ͳ໘͔Βग़͍ͯ͘ਖ਼ຯͷྔ ͯ͞ɺӈͷ໘͔Βग़͍ͯ͘ྲྀྔͱࠨͷ໘͔Βೖͬͯ͘Δྲྀྔͱ͍͏ͷΛߟ͑·͢ɻ • ग़͍ͯ͘ྲྀྔɿvx (x + dx)dydz • ೖͬͯ͘Δྲྀྔɿvx (x)dydz ˞ dx, dy, dz ͸ඍখྔͱ͍ͯ͠·͢ɻ ͢Δͱਖ਼ຯͷग़͍ͯ͘ྲྀྔ͸ɺ ࣜ 4.16: x ํ޲ʹਨ௚ͳ໘͔Βग़͍ͯ͘ਖ਼ຯͷྔ vx (x + dx)dydz − vx (x)dydz ͱ͍͏͜ͱʹͳΓ·͢ɻ͜ΕΛ΋͏গࣜ͠มܗͯ͠Έ·͠ΐ͏ɻ – 28 –
  29. 4.1 ൃࢄɿdivergence ࣜ 4.16: x ํ޲ʹਨ௚ͳ໘͔Βग़͍ͯ͘ਖ਼ຯͷྔ vx (x+dx)dydz−vx (x)dydz =

    (vx (x+dx)−vx (x))dydz = vx (x + dx) − vx (x) dx dxdydz ͜͜Ͱ dx ˠ 0 ͱ͢Δͱɺvx(x+dx)−vx(x) dx = dvx dx ͔ͩΒɺ x ํ޲ʹਨ௚ͳ໘͔Βग़͍ͯ͘ਖ਼ຯͷྲྀྔ ࣜ 4.16: x ํ޲ʹਨ௚ͳ໘͔Βग़͍ͯ͘ਖ਼ຯͷྔ dvx dx dxdydz ͱͳΓ·͢ɻ ಉ༷ͷखॱΛʮy ํ޲ʹਨ௚ͳ໘ʯ ʮz ํ޲ʹਨ௚ͳ໘ʯͷਖ਼ຯͷग़͍ͯͬͨྔΛՃ ͑Ε͹ྑ͍͚ͩͰ͢ɻ ΋͏Ұ౓ࣜมܗΛ͢Δ·Ͱ΋ͳ͘ɺ y ํ޲ʹਨ௚ͳ໘͔Βग़͍ͯ͘ਖ਼ຯͷྲྀྔ ࣜ 4.16: y ํ޲ʹਨ௚ͳ໘͔Βग़͍ͯ͘ਖ਼ຯͷྔ dvz dz dxdydz z ํ޲ʹਨ௚ͳ໘͔Βग़͍ͯ͘ਖ਼ຯͷྲྀྔ ࣜ 4.16: z ํ޲ʹਨ௚ͳ໘͔Βग़͍ͯ͘ਖ਼ຯͷྔ dvy dy dxdydz ͜ΕΒΛ଍͢ͱɺ ࣜ 4.16: x, y, z ํ޲ʹਨ௚ͳ໘͔Βग़͍ͯ͘ਖ਼ຯͷྔ dvx dx + dvy dy + dvz dz dxdydz ͱͳΓ·͢ɻ – 29 –
  30. ୈ 4 ষ ൃࢄ ࠓߟ͍͑ͯΔ௚ํମ͸೚ҙͳେ͖͞ʹ͍ͯ͠·ͨ͠ʢͱΓ͋͑ͣͱͯ΋খ͍͞ͱߟ ͍͑ͯ·ͨ͠ʣͷͰɺ୯Ґମੵ͋ͨΓʹग़͍ͯͬͨਖ਼ຯͷྲྀྔ͸ɺ ࣜ 4.16: x, y,

    z ํ޲ʹਨ௚ͳ໘͔Βग़͍ͯ͘ਖ਼ຯͷྔ dvx dx + dvy dy + dvz dz = ∇ · v = div v ͱͳΓ·͢ɻ͜ΕͰൃࢄΛ਺ࣜͰදݱ͢Δ͜ͱ͕Ͱ͖·ͨ͠ɻ Α͘ݟΔͱ ∇ ԋࢉࢠͱͷ಺ੵʹͳ͍ͬͯΔͷ͕Θ͔Γ·͢Ͷɻ – 30 –
  31. ୈ 5 ষ ճస ຊهࣄͰ͸φϒϥԋࢉࢠΛ࢖ͬͨͱͯ΋ॏཁͳʮޯ഑ gradʯ ʮൃࢄ divʯ ʮճస rotʯʹ͍ͭͯͷղઆΛߦ͍·͢ɻॳֶऀ͕ҎԼΛݟͯʮԿͩ͜Ε͸ʁʯͱͳΒͳ͍

    ͨΊͷষͰ͢ɻ* ޯ഑ɿgrad f(∇ f) * ൃࢄɿdiv v or ∇ · v * ճసɿrot v or ∇ × v ͜ΜͳํΛର৅ʹ͍ͯ͠·͢ɻ • rot ʹۤखҙ͕ࣝ͋Δํ • rot ͷҙຯ΋ؚΊͯཧղ͍ͨ͠ํ ͜ΜͳํΛର৅ʹ͍ͯ͠·͢ɻ • grad, div, rot ʹۤखҙ͕ࣝ͋Δํ • grad, div, rot ͷҙຯ΋ؚΊͯཧղ͍ͨ͠ํ https://takun-physics.net/4487/ 5.1 ճసɿrotation ਺ֶه߸Ͱͷճసͷදݱ͸$\mathrm{rot}$͔ ∇× ͱͳΓ·͢ɻ ∇ ԋࢉࢠͱ͋ΔϕΫτϧ৔ v ͱͷ֎ੵͰ͋Δͱ͓͖֮͑ͯ·͠ΐ͏ɻ @href{https://takun-physics.net/11678/} ͳͥ rot ͱॻ͘ͷ͔ͱ͍͏ͱճసͷӳޠ͕ rotation ͔ͩΒͦͷ๯಄ 3 จࣈΛ࢖ͬ ͯ rot ͱॻ͘ͷͰ͢ɻ ·ͨɺ∇ = ( ∂ ∂x , ∂ ∂y , ∂ ∂z ) Λ࢖ͬͯɺ͋ΔϕΫτϧͱͷ֎ੵΛͱΔͱͦΕ͸ճసΛҙ ຯ͢Δ͜ͱʹͳΓ·͢ɻ ࣜ 5.11: rot rot v = ∇ × v ͱॻ͖·͢ɻ ͜ΕΛ੒෼͝ͱʹॻ͍ͯΈ·͢ɻ – 31 –
  32. ୈ 5 ষ ճస ࣜ 5.11: rot ͷܭࢉ  

    ∂ ∂x ∂ ∂y ∂ ∂z   ×   vx vy vz   =    ∂vz ∂y − ∂vy ∂z ∂vx ∂z − ∂vz ∂x ∂vy ∂x − ∂vx ∂y    ͜ͷΑ͏ʹͳΓ·͢ɻ ݟͯͷ௨Γ grad ΍ div ͱൺֱ͢ΔͱΊͪΌ֮͑ʹ͍͘Ͱ͢ɻ Ͱ͢ͷͰ֮͑ํΛࣗ෼ͳΓʹ͓࣋ͬͯ͘ඞཁ͕͋Γ·͢ɻ ͜͜Ͱ͸ɺ2 ௨Γͷ֮͑ํΛ঺հ͠·͢ͷͰ֮͑΍͍͢ํΛࣗ෼ͳΓʹબΜͰ֮͑ ͓͖ͯ·͠ΐ͏ɻ 3 ߦ 3 ྻͷߦྻ͔ࣜΒʮαϥεͷެࣜʯΛ࢖͏ ΋͠ઢܗ୅਺ΛطʹཤमࡁΈͰʮαϥεͷެࣜΛ஌͍ͬͯΔΑʯͬͯํͰͨ͠Β֮ ͑΍͍͢ํ๏ͩͱࢥ͍·͢ɻ ࣜ 5.11: i j k ∂ ∂x ∂ ∂y ∂ ∂z vx vy vz ͜ͷΑ͏ʹ 3 ߦ 3 ྻͷߦྻࣜΛ༻ҙ͠·͢ɻ ͜͜Ͱɺi, j, k ͸ͦΕͧΕ x, y, z ํ޲ͷ୯ҐϕΫτϧΛද͍ͯ͠·͢ɻ ʮαϥεͷ ެࣜʯ͸ 3 ߦ 3 ྻͷߦྻࣜΛܭࢉ͢Δͱ͖ʹͷެࣜͰ͕͢ɺެࣜ௨Γʹै͑͹ ∇ ԋ ࢉࢠͷ֎ੵΛܭࢉ͍ͯ͠Δ͜ͱʹͳΓ·͢ɻ Ͱ͸ɺ ʮαϥεͷެࣜʯ௨Γʹܭࢉͯ͠Έ·͢ɻ ˛ ਤ 5.1: αϥεͷެࣜ – 32 –
  33. 5.1 ճసɿrotation (ᶃʴᶄʴᶅ)-(ᶆ + ᶇ + ᶈ) Λܭࢉ͢Ε͹ྑ͍Ͱ͢ɻ ࣜ 5.4:

    ∂vz ∂y i + ∂vx ∂z j + ∂vy ∂x k − ∂vx ∂y k + ∂vy ∂z i + ∂vz ∂x j ͜ΕΛ΋͏গ͠·ͱΊΔͱɺ ∂vz ∂y − ∂vy ∂z i + ∂vx ∂z − ∂vz ∂x j + ∂vy ∂x − ∂vx ∂y k ͱɺ͜ͷΑ͏ʹͳΓ·͢ɻ ֤੒෼ΛݟΔͱ͔֬ʹ ∇ ԋࢉࢠͱͷ֎ੵͷ݁Ռͱಉ͡Ͱ͢Ͷɻ ·ͨผͷํ๏ͱͯ͠ ∇ ԋࢉࢠͱͷ֎ੵΛ͍֮͑ͯ·͢ɻ∇ ԋࢉࢠͱͷ֎ੵͱ͍͏ Θ͚Ͱ͸ͳ͘ɺ֎ੵͷܭࢉͦͷ΋ͷͰ͋ΔͨΊɺϕΫτϧͷ֎ੵܭࢉʹ΋࢖͏͜ͱ͕ Ͱ͖·͢ɻ ʮΫϩεͯ͠ʯ ʮͦΕҎ֎ͷ੒෼ʹॻ͘ʯ ʮΫϩεͯ͠ʯ ʮͦΕҎ֎ͷ੒෼ʹॻ͘ʯ ɾɾɾͱढจͷΑ͏ʹ͍֮͑ͯΔ͜ͷํ๏ ͸ɺ݁ߏྑ͍͔ͳͱࢥ͍ͬͯ·͢ɻ ʮ୭ʹशͬͨͷ͔͸๨Ε·͕ͨ͠ɾɾɾʯ खॱ͸͜Μͳײ͡Ͱ͢ɻ ˛ ਤ 5.2: ϕΫτϧͷ֎ੵʢz ੒෼ʣ – 33 –
  34. ୈ 5 ষ ճస ˛ ਤ 5.3: ϕΫτϧͷ֎ੵʢy ੒෼ʣ ˛

    ਤ 5.4: ϕΫτϧͷ֎ੵʢx ੒෼ʣ ݴ༿Ͱॻ͘ΑΓ΋ֆΛ࢖ͬͨํ͕Θ͔Γ΍͍͢ͷͰֆͰදݱͯ͠Έ·ͨ͠ɻ ʮͲ͏Ͱ͔͢Ͷɻ݁ߏ֮͑΍͍͢ͱࢥ͏ͷͰ͕͢Ͷɻʯ 5.1.1 ͳͥ ∇ ԋࢉࢠͱͷ֎ੵ͕ճసͳͷ͔Λಋग़͢Δ ͯ͞ɺnabla ԋࢉࢠͷ֎ੵͷܗࣜ͸Θ͔Γ·͕ͨ͠ɺճస rot ͱදݱ͞ΕΔॴҎΛ ཧղ͢Δඞཁ͕͋Γ·͢ɻ – 34 –
  35. 5.1 ճసɿrotation ൃࢄͷ৔߹͸ʮ͋ΔඍখମੵΛग़ೖΓͨ͠ྔʯͰͨ͠ΑͶɻ ճసͷ৔߹͸ʮ͋ΔඍখྖҬ·ΘΓͷϞʔϝϯτʯΛߟ͑Ε͹ྑ͍ͷͰ͢ɻϞʔϝ ϯτͳͷͰճసͬͯ͜ͱͰ͢ɻ ˛ ਤ 5.5: ఺ (x,

    y) ·ΘΓͷϞʔϝϯτ ؆୯ͷͨΊʹ 2 ࣍ݩʹͯ͠ɺਤ 5.5 ͷΑ͏ʹ͋Δ఺ (x, y) ·ΘΓͷϞʔϝϯτΛߟ ͑ͯΈ·͠ΐ͏ɻ ˞ 2dx = 2dy = 2da ͷඍখྖҬͰͷ z ࣠ํ޲·ΘΓͷϞʔϝϯτΛߟ͑·͢ɻ ൓࣌ܭճΓΛਖ਼ํ޲ʹͯ͠ɾɾɾɾ ࣜ 5.11: vy (x + dx, y)dx + vx (x, y − dy)dy − vx (x, y + dy)dy − vy (x − dx, y)dx ࣜ 5.11: vy (x + dx, y) − vy (x − dx, y) 2dx 2dx dy − vx (x, y + dy) − vx (x, y − dy) 2dy 2dx dy – 35 –
  36. ୈ 5 ষ ճస ࣜ 5.11: ∂vy ∂x − ∂vx

    ∂y 2da2 ͱͳΓ·͢ɻ ࣜ 5.11: 1 2 ∂vy ∂x − ∂vx ∂y 4da2 ͱ͓ͯ͘͠ͱɺඍখྖҬ 4dx dy = 4da2 ͸೚ҙʹબΜͩྖҬͰ͢ͷͰɺ୯Ґ໘ੵ͋ ͨΓͷϞʔϝϯτ͸ɺ ࣜ 5.11: ୯Ґ໘ੵ͋ͨΓͷϞʔϝϯτ 1 2 ∂vy ∂x − ∂vx ∂y ͱͳΓ·͢ɻ1 2 ͕͍ͭͯ͠·͍ͬͯ·͕͢ɺຊ࣭తʹ͸͜Ε͸ z ࣠·ΘΓͷճసΛ ҙຯ͍ͯ͠·͢ɻ z ࣠·ΘΓͷճస͸ɺ ࣜ 5.11: z ࣠·ΘΓͷճస ∇ × v z = ∂vy ∂x − ∂vx ∂y ͱͳΔͷͰɺrot ͷ݁Ռ͸ z ࣠·ΘΓͷճసʹ૬౰͢ΔྔͰ͋Δ͜ͱ͕Θ͔Γ·͢ɻ ͜ΕΛ x ࣠·ΘΓͱ y ࣠·ΘΓϞʔϝϯτʢճసʣΛߟ͑Δͱɺ3 ࣠ͰͷճసΛߟ ͑Δ͜ͱ͕Ͱ͖Δͱ͍͏Θ͚Ͱ͢ɻ – 36 –
  37. ϕΫτϧղੳೖ໳ ॳֶऀͷͨΊޯ഑ grad, ൃࢄ div, ճస rot 2021 ೥ 5

    ݄ 12 ೔ɹ ver 1.0 ஶɹऀ Ӊ஦ʹೖͬͨΧϚΩϦ © 2021 Ӊ஦ʹೖͬͨΧϚΩϦ (powered by Re:VIEW Starter)