Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
SECIモデルを誤解しよう w/ @m_seki
Search
Sponsored
·
Ship Features Fearlessly
Turn features on and off without deploys. Used by thousands of Ruby developers.
→
Yasunobu Kawaguchi
PRO
February 08, 2012
Programming
6
1.3k
SECIモデルを誤解しよう w/ @m_seki
@m_seki @kawaguti in DevSumi 2012 OpenJam
Yasunobu Kawaguchi
PRO
February 08, 2012
Tweet
Share
More Decks by Yasunobu Kawaguchi
See All by Yasunobu Kawaguchi
Claude Code for NOT Programming
kawaguti
PRO
1
78
Git in Team
kawaguti
PRO
4
630
from Sakichi Toyoda to Agile
kawaguti
PRO
2
160
Agile PBL at New Grads Trainings
kawaguti
PRO
1
1.4k
Last 2 Weeks on PBL
kawaguti
PRO
1
84
Bridging gaps between skills and ideas
kawaguti
PRO
1
91
Definition of Done
kawaguti
PRO
6
660
Nonaka Sensei
kawaguti
PRO
5
1.5k
Ninno LT
kawaguti
PRO
1
230
Other Decks in Programming
See All in Programming
組織で育むオブザーバビリティ
ryota_hnk
0
170
なぜSQLはAIぽく見えるのか/why does SQL look AI like
florets1
0
460
CSC307 Lecture 07
javiergs
PRO
0
550
それ、本当に安全? ファイルアップロードで見落としがちなセキュリティリスクと対策
penpeen
7
3.9k
副作用をどこに置くか問題:オブジェクト指向で整理する設計判断ツリー
koxya
1
610
KIKI_MBSD Cybersecurity Challenges 2025
ikema
0
1.3k
AtCoder Conference 2025
shindannin
0
1.1k
インターン生でもAuth0で認証基盤刷新が出来るのか
taku271
0
190
生成AIを使ったコードレビューで定性的に品質カバー
chiilog
1
270
【卒業研究】会話ログ分析によるユーザーごとの関心に応じた話題提案手法
momok47
0
200
疑似コードによるプロンプト記述、どのくらい正確に実行される?
kokuyouwind
0
380
Best-Practices-for-Cortex-Analyst-and-AI-Agent
ryotaroikeda
1
100
Featured
See All Featured
コードの90%をAIが書く世界で何が待っているのか / What awaits us in a world where 90% of the code is written by AI
rkaga
60
42k
職位にかかわらず全員がリーダーシップを発揮するチーム作り / Building a team where everyone can demonstrate leadership regardless of position
madoxten
57
50k
DBのスキルで生き残る技術 - AI時代におけるテーブル設計の勘所
soudai
PRO
62
49k
CSS Pre-Processors: Stylus, Less & Sass
bermonpainter
359
30k
Ethics towards AI in product and experience design
skipperchong
2
190
Distributed Sagas: A Protocol for Coordinating Microservices
caitiem20
333
22k
Beyond borders and beyond the search box: How to win the global "messy middle" with AI-driven SEO
davidcarrasco
1
51
Leveraging LLMs for student feedback in introductory data science courses - posit::conf(2025)
minecr
0
140
Avoiding the “Bad Training, Faster” Trap in the Age of AI
tmiket
0
76
Leo the Paperboy
mayatellez
4
1.4k
Code Reviewing Like a Champion
maltzj
527
40k
Reality Check: Gamification 10 Years Later
codingconduct
0
2k
Transcript
දग़ԽޡղΛظͯ͠ΔΑ Ծઆ @kawagutiͱ@m_sekiʹΑΔSECIϞσϧͷޡղʹΑΔ৽ͨͳ ޡղͷ࣮ྫ
ͦ͏͍͑Ұࡢ͘Β͍ޡ ղͨ͠ SECIϞσϧͷεύΠϥϧݸਓؒͰ͓͖Δ͔Β৫͔Ͳ ͏͔Ͳ͏Ͱ͍͍Μ͡ΌͶʁ
The dRuby Book amazonͰ༧now
ࣝͷ ͕ࣝΘΔͱͳʹ͔ 100%ͷͬͯͳΜͩΖ͏ ͦΜͳͷ͋Μͷ͔ʁ ϑΟʔυόοΫʹΑΔ֬ೝͱΤϥʔగਖ਼
ޡղͰ͖Δ͋͠Θͤ ޡղ͓͔ͨ͛͠Ͱ͍Ζ͍ΖੜΈग़ͤͨ શͳΫϩʔϯ͕Ίͳ͍͍ͯ͘͡ΌΜ ͱ͍͏ΑΓΉ͠ΖͦͷΤϥʔ͕ͦ͜৽͠ ͍ΛੜΉΜ͡Όͳ͍͔
ͱ͍͏ͱ લ͖Ͱؾָ͕ͩ
SECIϞσϧΛޡղ͢Δͧ http://www.jaist.ac.jp/ks/labs/umemoto/ai_km.html [Nonaka 98] Nonaka, I. and N. Konno (1998).
"The Concept of 'ba': Building a Foundation for Knowledge Creation," California Management Review , 40-3, pp.40-54, 1998.
νʔϜͰಈ͍ͯΔͱ͖ ΈΜͳͷ݂ʹͳ͍ͬͯΔ ҉ ໘Խ ڞಉԽ ใೱີʹަ͞ΕͯͯΤϥʔగਖ਼සൟ
νʔϜͷ֎ݴ͍;Β͢ ظؒͰશͯΛ͑ΒΕͳ͍ ίϯηϓτʹͯ͠֎ʹग़͢ ͋Δࢹ/ϞσϧͰΓऔͬͯތு͢Δ දग़Խ
୭͔͕ड৴ ड৴ଆͷͬͯΔίϯηϓτͱࠞͥͯड͚Δ ݁߹Խ Τϥʔగਖ਼ͳ͍͠100%ΘΔ͜ͱظ ͯ͠ͳ͍
දग़Խͱ݁߹Խ ՖคΛ·͘ डค͢Δ ੵۃతʹΤϥʔΛ༠͏͜ͱͰࣅ͍ͯΔΑ ͏Ͱҧ͏ͷΛੜΈग़͢ ΑΓΑ͘ͳΔͱݶΒͳ͍ ૠ͠ժΈ͍ͨͳΫϩʔϯ͡Όͳ͍
Τϥʔͷ࣮ྫ TDDΛฉ͍ͯͨΒςετʹۦಈ͞Εͨ։ൃ Λ͢ΔΑ͏ʹͳͬͯͨΘʔ ʮςετʹۦಈ͞Εͨ։ൃʯͱฉ͍ͯखಈ ςετͷྖҬʹͦΕΛ࣋ͪࠐΜ͡Όͬ ͨΒ͘͢͝͏·͍ͬͨ͘Θʔ
Τϥʔͷ࣮ྫ ετʔϦʔΧʔυɺ͔ΜΜ BTSͷνέοτͱ૬ࣅʹݟ͑ͪΌͬͨͷͰ צҧ͍ͯ͠νέοτͰϓϩδΣΫτΛඍ ͯ͠Ϛωδϝϯτͯͨ͠Θʔ ͦͷޙΑ͘ࣅͨίϯηϓτͷʮνέοτ ۦಈʯΛฉ͍ͯࣅͯΔͱࢥͬͨΒ͕ͪͬ ͯͨΘʔ
Τϥʔͷ࣮ྫ !N@TFLJ !LBXBHVUJ +PFM4QPMTLZͷཪ൪ σϒαϛʮͷΞδϟΠϧʯ ʮ91ͷ৽͍͠ͱ͜ΖܭըήʔϜ͚ͩͩͱࢥ͏ʯ ʮ8JLJͰςετέʔεΛཧ͍ͯͯ͠ɺࣗಈͰಈ͘ʯ ʮຖճΒͤͳͯ͘Α͘ͳͬͨςετΛ֎͢ʯ ʮςετΛཧ͢ΔਓࡢͷσϒαϛͰग़ձͬͨʯ 2008ͷؔ͞ΜͷσϒαϛߨԋͰ৮ൃ͞Εͯɺ
͔Θ͙͕ͪΞδϟΠϧͷϓϥΫςΟεΛ ࢝ΊΔ͖͔͚ͬʹʂ
Τϥʔͷ࣮ྫ σϒαϛॳࢀՃɻ࠷ॳͷηογϣϯͷিܸ ܭըήʔϜΈΜͳͰܭը͢Δͷ͔ɺ͍͢͝ΞΠσΞ 91ϖΞϓϩͱ͔ɺνʔϜ͕͍͖ͭͯͯ͘Εͳ͍ͱ Ͱ͖ͳ͍͚ͲɺςετࣗಈԽͷ෦ɺࣗͷٕज़͕ ͋Εɺ݁ߏΈΜͳָ͕ʹͳΔ෦ɻ ͢Εࠓͷঢ়گͰͰ͖Δ͔ʂ ͍ͬͯ͏͔ɺલ͘Β͍͔ΒͬͯΔਓ͕͍Δͷʹ ͳʹͬͯΜͩɺԶɻ ड͚औͬͨσʔλ
ʮܭըήʔϜʯʮWikiͰͷςετࣗಈԽཧʯ ͬͨͷ σϓϩΠࣗಈԽɺ࣍ʹɺεΫϥϜ (શવҧ)
SECIϞσϧΛޡղ͠ޡղ͠Α ͏ ͩΕ͔ͷίϯηϓτʹܹ͞ΕͯผͷԿ͔Λ ࢝ΊΔྫΛࣔͨ͠ ͱ͍͏ͱ͔͍͍͕ͬ͜ݪཧओٛతʹͨ ͩͷצҧ͍͡ΌΜ צҧ͍ͯ͠Δ͔Ͳ͏͔ΑΓࣗͨͪͷΠ ϯελϯε͕͏·͍͔Ͳ͏͔Λָ͠͏
ͯ݁͞߹Խͷ࣌ؒͰ͢ ࠓͷΛޡղ͠Α͏