Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
テストデータ生成支援ツールをChatGPTで作った話+@
Search
kazuhiro-togo
October 09, 2024
Programming
0
62
テストデータ生成支援ツールをChatGPTで作った話+@
トピック:SQL性能改善、テストデータ生成、プロパティベーステスト、o1-mini、自由研究
kazuhiro-togo
October 09, 2024
Tweet
Share
More Decks by kazuhiro-togo
See All by kazuhiro-togo
PostmanでAPIレスポンスを見やすく!Visualize機能とPostbotの活用術
kazuhiro_togo
0
120
Postmanを活用して業務プロセスを改善するアイデアを紹介します!
kazuhiro_togo
0
350
ChatGPT x Postmanを活用してAPI定義〜テストワークフロー化までを5分で紹介してみる
kazuhiro_togo
2
310
Other Decks in Programming
See All in Programming
実践AIチャットボットUI実装入門
syumai
7
2.5k
Go Conference 2025: Goで体感するMultipath TCP ― Go 1.24 時代の MPTCP Listener を理解する
takehaya
7
1.6k
overlayPreferenceValue で実現する ピュア SwiftUI な AdMob ネイティブ広告
uhucream
0
110
AI Coding Meetup #3 - 導入セッション / ai-coding-meetup-3
izumin5210
0
610
Advance Your Career with Open Source
ivargrimstad
0
360
CSC509 Lecture 05
javiergs
PRO
0
300
Reduxモダナイズ 〜コードのモダン化を通して、将来のライブラリ移行に備える〜
pvcresin
2
690
CSC509 Lecture 04
javiergs
PRO
0
300
開発生産性を上げるための生成AI活用術
starfish719
1
180
Pull-Requestの内容を1クリックで動作確認可能にするワークフロー
natmark
2
460
Domain-centric? Why Hexagonal, Onion, and Clean Architecture Are Answers to the Wrong Question
olivergierke
0
220
Swift Concurrency - 状態監視の罠
objectiveaudio
2
470
Featured
See All Featured
Optimising Largest Contentful Paint
csswizardry
37
3.4k
ReactJS: Keep Simple. Everything can be a component!
pedronauck
667
120k
Building Adaptive Systems
keathley
43
2.8k
Designing for humans not robots
tammielis
254
25k
4 Signs Your Business is Dying
shpigford
185
22k
Rebuilding a faster, lazier Slack
samanthasiow
84
9.2k
Let's Do A Bunch of Simple Stuff to Make Websites Faster
chriscoyier
507
140k
JavaScript: Past, Present, and Future - NDC Porto 2020
reverentgeek
52
5.6k
Music & Morning Musume
bryan
46
6.8k
It's Worth the Effort
3n
187
28k
Product Roadmaps are Hard
iamctodd
PRO
54
11k
Why Our Code Smells
bkeepers
PRO
339
57k
Transcript
date: テストデータ生成支援ツール をChatGPTで作った話+@ トピック:SQL性能改善、テストデータ生成、プロパティベーステスト、o1-mini、自由研究 2024/09/30 東郷
性能改善したSQLの動作確認どうやってますか? 背景 • 確認準備の難しさ ◦ 元のSQLからテストパターンを網羅的に出す ▪ 生成AI使えば、まぁまぁいけそう ◦ 網羅的に出したテストパターンのデータの準備
▪ それっぽい大量のデータ準備 ▪ 様々なデータパターンのデータ準備 ▪ 関連テーブルの関係を保ったデータの準備 🧐 テストデータの準備めっちゃ大変やん!
テストデータ生成言語を作って大量のデータを簡単に生成できるようにする コンセプト
• ChatGPTにPythonコードをJavaに置き換える依頼する ◦ コードが期待通りに動かない ◦ プロンプトに期待値を入れる ▪ 正しく期待値を理解した様子 • もう一度お願いする
◦ コードが期待通りに動かない ◦ 理由を説明させたところ原因は理解している • もう一度お願いする ◦ コードが期待通りに動かない。。ループ Python->Javaの移植で問題発生 🧐
• もしかして理解はできるけど期待するコードを生成する能力 が足りていない?? • GPT-4oモデルの能力の限界感、、 ◦ そんな時OpenAIから新しいモデルの発表 Python->Javaの移植で問題発生
o1の紹介文
使ってみる コンセプト実装だけに集中。実装はo1-previewにおまかせ!
完成間近で問題発生 o1-preview の場合は週 50 クエリまで \(^o^)/オワタ
o1-miniの紹介文 とりあえず使ってみる
できたもの https://github.com/kazuhiro-togo/test-data-generator
ChatGPT o1-preview, o1-mini 結論:コーディングにはo1-mini使うで良さそう 利用制限 o1-preview:週50回 o1-mini:1日50回 https://openai.com/index/openai-o1-mini-advancing-cost-efficient-reasoning/ o1-miniとo1-previewとGPT-4oのコーディング能力比較
• 実際のテーブルに対してDSL書こうとするとDDL見ながら書くので単調で辛い ◦ 対応案:生成AI使ってDDL読ませてそれに合うDSLを出力してもらうとか • どこまでランダムなデータにするかサジ加減に悩む ◦ 実際にあり得るデータとあり得そうなデータは違う ◦ テストデータの準備は通常の機能を通して作る必要があるのか
番外編:作った後の課題 ランダムなデータの扱いめっちゃ悩むやん! 🧐
プロパティベーステスト
プロパティベーステスト https://speakerdeck.com/twada/intro-to-property-based-testing
まとめ(個人的に生成AIを使って開発するときの良い点と注意点) 良い点 • アイデアを形にしやすい • コンセプトに注力できる • 動くものがすぐできるのでモチベーションが維持しやすい • 失敗してもコンセプトは他で活かせることもある
注意点 • 「理解した」ように見えるけど「作れない」があり得る ◦ プロンプトで先に期待値を確認した後コード出力させても異なる 結果になる場合がある。 ▪ 理解能力が高くても生成能力が伴わない場合がある