Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
20160928-meganeco
Search
ARIYAMA Keiji
September 28, 2016
Technology
2
3.7k
20160928-meganeco
「TensorFlowで趣味の画像収集サーバーを作る9月特大号」
TensorFlowによる認識処理の高速化と新データセットでの訓練・評価検証
ARIYAMA Keiji
September 28, 2016
Tweet
Share
More Decks by ARIYAMA Keiji
See All by ARIYAMA Keiji
Build with AI
keiji
0
220
DroidKaigi 2023
keiji
0
1.9k
TechFeed Conference 2022
keiji
0
290
Android Bazaar and Conference Diverse 2021 Winter
keiji
0
880
ci-cd-conference-2021
keiji
1
1.2k
Android Bazaar and Conference 2021 Spring
keiji
3
820
TFUG KANSAI 20190928
keiji
0
130
Softpia Japan Seminar 20190724
keiji
1
180
pixiv App Night 20190611
keiji
1
600
Other Decks in Technology
See All in Technology
AI時代こそ求められる設計力- AWSクラウドデザインパターン3選で信頼性と拡張性を高める-
kenichirokimura
3
350
速習AGENTS.md:5分で精度を上げる "3ブロック" テンプレ
ismk
6
1.8k
Digitization部 紹介資料
sansan33
PRO
1
5.6k
Codexとも仲良く。CodeRabbit CLIの紹介
moongift
PRO
1
250
初めてのDatabricks Apps開発
taka_aki
1
190
LLMプロダクトの信頼性を上げるには?LLM Observabilityによる、対話型音声AIアプリケーションの安定運用
ivry_presentationmaterials
0
600
私のMCPの使い方
tsubakimoto_s
0
100
Introduction to Sansan Meishi Maker Development Engineer
sansan33
PRO
0
310
AI Agent Dojo #2 watsonx Orchestrateフローの作成
oniak3ibm
PRO
0
130
CoRL 2025 Survey
harukiabe
1
220
ニッポンの人に知ってもらいたいGISスポット
sakaik
0
170
Oracle Base Database Service 技術詳細
oracle4engineer
PRO
12
81k
Featured
See All Featured
Designing for Performance
lara
610
69k
Balancing Empowerment & Direction
lara
5
690
Agile that works and the tools we love
rasmusluckow
331
21k
10 Git Anti Patterns You Should be Aware of
lemiorhan
PRO
657
61k
Documentation Writing (for coders)
carmenintech
75
5.1k
What’s in a name? Adding method to the madness
productmarketing
PRO
24
3.7k
The Cost Of JavaScript in 2023
addyosmani
55
9k
Principles of Awesome APIs and How to Build Them.
keavy
127
17k
Gamification - CAS2011
davidbonilla
81
5.5k
Dealing with People You Can't Stand - Big Design 2015
cassininazir
367
27k
StorybookのUI Testing Handbookを読んだ
zakiyama
31
6.2k
YesSQL, Process and Tooling at Scale
rocio
173
14k
Transcript
C-LIS CO., LTD.
5FOTPS'MPXͰ झຯͷը૾ऩूαʔόʔΛ࡞Δ ݄̕ಛେ߸
C-LIS CO., LTD. ༗ࢁܓೋʢ,FJKJ"3*:"."ʣ C-LIS CO., LTD. AndroidΞϓϦ։ൃऀ ػցֶशॳ৺ऀ
ͬͯ·ͤΜ 1IPUP,PKJ.03*(6$)* "6/$3&"5*7&'*3.
C-LIS CO., LTD.
C-LIS CO., LTD.
લճ·Ͱͷ͓
IUUQTUFDICPPLGFTUPSH"
C-LIS CO., LTD.
C-LIS CO., LTD. IUUQBN[OUPC,3N
C-LIS CO., LTD. .FHBOF /PU
Έͷ؟ڸ່ͬը૾ΛࣗಈͰऩू͍ͨ͠
C-LIS CO., LTD. Ϟσϧ 7((/FUΛࢀߟʹΈࠐΈͷ࿈ଓΛ༻͍ͨ$// ʢ$POWPMVUJPOBM/FVSBM/FUXPSLʣϞσϧ DPO YY DPO
YY GD QPPM Y DPO YY DPO YY QPPM Y GD GD PVUQVU
C-LIS CO., LTD. %BUB"VHNFOUBUJPO ը૾Λ ʜ·ͰɺͦΕͧΕճసͨ͠ը૾Λ࡞ ಡΈࠐΈ࣌ͷॲཧ 3BOEPN$SPQʢQYதɺQYྖҬΛ͘Γൈ͘ʣ 3BOEPN'MJQʢԣ࣠ํʹసʣ
3BOEPN6Q%PXOʢॎ࣠ํʹసʣ 3BOEPN#SJHIUOFTT 3BOEPN$POUSBTU
C-LIS CO., LTD. ܇࿅ ֶशΞϧΰϦζϜ"EBN ֶश ϛχόον
C-LIS CO., LTD. ݕূ σʔληοτ͔ΒΛςετ༻ͱͯ͠ ਖ਼ʙ
Πϥετإݕग़ثʢ'BDF%FUFDUPSʣ
C-LIS CO., LTD. Πϥετإσʔληοτ ؟ڸ່ͬͱͦ͏Ͱͳ͍ͷɻ߹Θͤͯ ຕΛ ਖ਼ྫʢʹإʣͱ͢Δʢ͏ͪςετσʔλຕʣ ෛྫɺطଘͷը૾ΛࡉΕʹͯ͠ɺإ͕ͳ͍෦ ຕΛෛྫͱ͢Δʢ͏ͪςετσʔλຕʣ
C-LIS CO., LTD. Πϥετσʔληοτ ਖ਼ྫ ෛྫ ߹ܭ ܇࿅σʔλ 1,600
3,200 4,800 ςετσʔλ 400 800 1,200 ߹ܭ 2,000 4,005 6,000
C-LIS CO., LTD. Ϟσϧ $*'"3νϡʔτϦΞϧͷϞσϧΛࢀߟʹ υϩοϓΞτʢˋʣΛՃͨ͠$//ʢ$POWPMVUJPOBM/FVSBM /FUXPSLʣ DPO YY
GD QPPM Y DPO YY GD PVUQVU MSO MSO QPPM Y
C-LIS CO., LTD. %BUB"VHNFOUBUJPO ը૾Yʹॖখ ը૾Λ ʜɺͦΕͧΕճసͨ͠ը૾Λ࡞ ಡΈࠐΈ࣌ͷॲཧ 3BOEPN$SPQʢQYதɺQYྖҬͰ͘Γൈ͘ʣ
3BOEPN'MJQʢԣ࣠ํʹసʣ 3BOEPN6Q%PXOʢॎ࣠ํʹసʣ 3BOEPN#SJHIUOFTT 3BOEPN$POUSBTU
C-LIS CO., LTD. ܇࿅ ֶशΞϧΰϦζϜ"EBN ֶश ϛχόον
C-LIS CO., LTD. ܇࿅ ϛχόονɺສεςοϓͷ܇࿅Ͱ ϩε͕·ͰԼ ςετσʔλͰͷਖ਼ղ
إݕग़
C-LIS CO., LTD. إͲ͜ʹ͋Δʁ
C-LIS CO., LTD. 4FMFDUJWF4FBSDI 35$PSQPSBUJPOͷʮ༲͛ϩϘοτʯ 5FOTPS'MPXษڧձʢ̐ʣ݄Ͱൃද IUUQXXXTMJEFTIBSFOFU:VLJ/BLBHBXBUFOTPSqPXSFW
C-LIS CO., LTD. 4FMFDUJWF4FBSDI "MQBDBࣾʹΑΔ࣮ IUUQCMPHKQBMQBDBBJFOUSZ EMJCͷ࣮ IUUQTHJUIVCDPNEBWJTLJOHEMJCCMPCNBTUFS QZUIPO@FYBNQMFTpOE@DBOEJEBUF@PCKFDU@MPDBUJPOTQZ
C-LIS CO., LTD. લճͷ՝ ݕग़࣌ؒͷॖ ೝࣝਫ਼ͷ্
ݕग़࣌ؒͷॖ
C-LIS CO., LTD. إݕग़ͷखॱ ީิྖҬͷΓग़͠ SelectiveSearch
C-LIS CO., LTD. إݕग़ͷखॱ إೝࣝ TensorFlow ީิྖҬͷΓग़͠ SelectiveSearch OݸͷީิྖҬ
C-LIS CO., LTD. άϥϑͱηογϣϯΛҙࣝ͢Δ ީิྖҬͷΓग़͠ SelectiveSearch إೝࣝ TensorFlow άϥϑͷ࡞
ηογϣϯͷ։࢝ tf.Session() άϥϑͷ࣮ߦ run OݸͷީิྖҬ ը૾σʔλʴ ը૾σʔλ
C-LIS CO., LTD. إೝࣝ TensorFlow άϥϑͱηογϣϯΛҙࣝ͢Δ άϥϑͷ࡞ ηογϣϯͷ։࢝ tf.Session()
άϥϑͷ࣮ߦ run άϥϑ Ϧηοτ OݸͷྖҬΛͯ͢ධՁ OݸͷީิྖҬ ը૾σʔλʴ
C-LIS CO., LTD. ࠷దͳྖҬΛ୳ࡧʢ3FHSFTTJPOʣ
C-LIS CO., LTD. إೝࣝ TensorFlow ຖճάϥϑΛ࡞ɾηογϣϯΛ։࢝ άϥϑͷ࡞ ηογϣϯͷ։࢝ άϥϑͷ࣮ߦ
run άϥϑ Ϧηοτ OݸͷྖҬΛͯ͢ධՁ OݸͷީิྖҬ ը૾σʔλʴ
class FaceDetector(object): image_path = None original_image = None graph
= None sess = None queue = None top_k_indices = None top_k_values = None region_batch = None coord = None configuration = None def __init__(self, image_path, batch_size, train_dir): self.image_path = image_path self.original_image = Image.open(image_path) self.original_image = self.original_image.convert('RGB') checkpoint = tf.train.get_checkpoint_state(train_dir) if not (checkpoint and checkpoint.model_checkpoint_path): print('νΣοΫϙΠϯτϑΝΠϧ͕ݟ͔ͭΓ·ͤΜ') return self.graph, self.queue, self.top_k_indices, self.top_k_values, self.region_batch = \ self._init_graph(self.original_image, batch_size) with self.graph.as_default() as g: self.sess = tf.Session() saver = tf.train.Saver() saver.restore(self.sess, checkpoint.model_checkpoint_path) self.coord = tf.train.Coordinator()
def _init_graph(self, image, batch_size): reshaped_image = np.array(image.getdata()).reshape(image.height, image.width, 3).astype(
np.float32) graph = tf.Graph() with graph.as_default() as g: queue = tf.FIFOQueue(3000, tf.int32, shapes=[4]) region = queue.dequeue() whitten_image = self._load_image(reshaped_image, region) image_batch, region_batch = tf.train.batch( [whitten_image, region], batch_size=batch_size, capacity=10000) logits = tf.nn.softmax(model.inference(image_batch, tf.constant(1.0), batch_size)) top_k_values, top_k_indices = tf.nn.top_k(logits, 2, sorted=True) return graph, queue, top_k_indices, top_k_values, region_batch
def _eval(self, region_list, batch_size): result = [] with
graph.as_default() as g: threads = tf.train.start_queue_runners(sess=sess, coord=coord) step = 0 try: # όοναΠζʹ߹ΘͤͯΛௐ while len(region_list) < batch_size or len(region_list) % batch_size != 0: add = region_list[0:(batch_size - (len(region_list) % batch_size))] region_list = region_list + add region_list = np.array(region_list) enqueue = queue.enqueue_many(region_list) sess.run(enqueue) num_iter = int(math.ceil(len(region_list) / batch_size)) while step < num_iter and not coord.should_stop(): # ҎԼུ
C-LIS CO., LTD. إೝࣝ TensorFlow ީิྖҬͷΈ༩͑Δ άϥϑͷ࡞ ηογϣϯͷ։࢝ άϥϑͷ࣮ߦ
run άϥϑ Ϧηοτ OݸͷྖҬΛͯ͢ධՁ ը૾σʔλ OݸͷީิྖҬ
ೝࣝਫ਼ͷ্ σʔληοτͷ֦ॆ
C-LIS CO., LTD. 5XJUUFS"1* ಛఆͷϢʔβʔͷλΠϜϥΠϯʹߘ͞ΕͨϝσΟΞ ʢը૾ʣΛμϯϩʔυ ϋογϡΛܭࢉͯ͠ॏෳը૾ΛϑΟϧλϦϯά ʢαΠζҧ͍ͳͲͷྨࣅը૾ফ͖͠Εͳ͍ʣ
C-LIS CO., LTD. Πϥετإσʔλऩूʹ ࠷దͳΞΧϯτ !CPU@FSFDUJPO IUUQTUXJUUFSDPNCPU@FSFDUJPO
C-LIS CO., LTD. ࿐ࠎʹੑతͳը૾ɺ΄΅ଘࡏ͠ͳ͍ πΠʔτʹඞͣը૾͕ఴ͞Ε͍ͯΔ ը૾ʹਓҎ্ͷঁͷࢠͷإؚ͕·Ε͍ͯΔ
5XJUUFS͔Βऔಘͨ͠ϑΝΠϧ ݕग़ͨ͠إྖҬͷɹɹɹɹɹɹɹɹ
C-LIS CO., LTD. { "detected_faces": { "mode": "selective_search", "regions": [
{ "label": 1, "rect": { "left": 212.0, "bottom": 654.0, "top": 94.0, "right": 483.0 }, "probability": 0.9994481205940247 } ] }, "created_at": "2016-09-28T03:37:16.223942", "file_name": "kage_maturi-CAARxE8UwAEzAjJ.jpg", "generator": "Megane Co" } ݁ՌΛ+40/Ͱॻ͖ग़͠
C-LIS CO., LTD. 3FHJPO$SPQQFS +BWB'9 ,PUMJO IUUQTHJUIVCDPNLFJKJSFHJPO@DSPQQFS
%FNP
C-LIS CO., LTD. 3FHJPO$SPQQFS /FXGFBUVSF ɾબதͷྖҬΛϑΥʔΧε ɾ6OEP ɾTFUUJOHTKTPOʹΑΔઃఆ ɹϥϕϧ͝ͱͷઢ৭ ɹฤूɺআͷՄ൱
IUUQTHJUIVCDPNLFJKJSFHJPO@DSPQQFS
C-LIS CO., LTD. ݕग़ͨ͠إྖҬͷʢॏෳΛআʣɹɹɹɹɹɹɹɹ إʢਖ਼ྫʣ ޡݕग़ʢෛྫʣ
C-LIS CO., LTD. ৽σʔληοτ ਖ਼ྫ ෛྫ ߹ܭ ܇࿅σʔλ 10,453
10,792 21,245 ςετσʔλ 2,619 2,703 5,322 ߹ܭ 13,072 13,495 26,567
C-LIS CO., LTD. ৽σʔληοτʹΑΔ܇࿅ ϛχόονɺສεςοϓͷ܇࿅Ͱ ϩε͕·ͰԼ ςετσʔλʹΑΔݕূͰͷਖ਼ղ
C-LIS CO., LTD. چσʔληοτ ਖ਼ྫ ෛྫ ߹ܭ ܇࿅σʔλ 1,600
3,200 4,800 ςετσʔλ 400 800 1,200 ߹ܭ 2,000 4,005 6,000
C-LIS CO., LTD. چσʔληοτͷ܇࿅ ϛχόονɺສεςοϓͷ܇࿅Ͱ ϩε͕·ͰԼ ςετσʔλͰͷݕূͰͷਖ਼ղ
C-LIS CO., LTD. ৽Ϟσϧੑೳ͕ѱ͍ʁ چςετσʔλ چϞσϧ ৽ςετσʔλ ৽Ϟσϧ
C-LIS CO., LTD. ৽چͷςετσʔλΛަ چϞσϧ ৽ςετσʔλ چςετσʔλ ৽Ϟσϧ
C-LIS CO., LTD. ৽چͷςετσʔλΛݕূ چϞσϧ ৽ςετσʔλ چςετσʔλ ৽Ϟσϧ
چςετσʔλ چϞσϧ ৽ςετσʔλ ৽Ϟσϧ
C-LIS CO., LTD. إೝࣝʹࣦഊͨ͠σʔλΛݕূ ʢچςετσʔλʣ OPU@GBDF GBDF
C-LIS CO., LTD. إೝࣝʹࣦഊͨ͠σʔλΛݕূ ʢ৽ςετσʔλʣ OPU@GBDF GBDF
࣍ճ༧ࠂ
C-LIS CO., LTD. σʔλͷΫϨϯδϯάʹΑΔೝࣝਫ਼ͷมԽΛݟΔ ݕग़Λ͞Βʹվળ͢Δ ࣍ճ༧ࠂ IUUQTXXXTBLVSBBEKQLPVLBSZPLV
C-LIS CO., LTD. C-LIS CO., LTD. ຊࢿྉɺ༗ݶձࣾγʔϦεͷஶ࡞Ͱ͢ɻܝࡌ͞Ε͍ͯΔΠϥετʹݸผʹஶ࡞ݖ͕͋Γ·͢ɻ ຊࢿྉͷશ෦ɺ·ͨҰ෦ʹ͍ͭͯɺஶ࡞ऀ͔ΒจॻʹΑΔڐΛಘͣʹෳ͢Δ͜ͱې͡ΒΕ͍ͯ·͢ɻ ໊֤ɾϒϥϯυ໊ɺձ໊ࣾͳͲɺҰൠʹ֤ࣾͷඪ·ͨొඪͰ͢ɻຊࢿྉதͰɺɺɺäΛׂѪͯ͠ ͍·͢ɻ