Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
20160928-meganeco
Search
Sponsored
·
SiteGround - Reliable hosting with speed, security, and support you can count on.
→
ARIYAMA Keiji
September 28, 2016
Technology
2
3.8k
20160928-meganeco
「TensorFlowで趣味の画像収集サーバーを作る9月特大号」
TensorFlowによる認識処理の高速化と新データセットでの訓練・評価検証
ARIYAMA Keiji
September 28, 2016
Tweet
Share
More Decks by ARIYAMA Keiji
See All by ARIYAMA Keiji
Build with AI
keiji
0
240
DroidKaigi 2023
keiji
0
1.9k
TechFeed Conference 2022
keiji
0
300
Android Bazaar and Conference Diverse 2021 Winter
keiji
0
900
ci-cd-conference-2021
keiji
1
1.3k
Android Bazaar and Conference 2021 Spring
keiji
3
850
TFUG KANSAI 20190928
keiji
0
140
Softpia Japan Seminar 20190724
keiji
1
190
pixiv App Night 20190611
keiji
1
610
Other Decks in Technology
See All in Technology
ランサムウェア対策としてのpnpm導入のススメ
ishikawa_satoru
0
180
Contract One Engineering Unit 紹介資料
sansan33
PRO
0
13k
量子クラウドサービスの裏側 〜Deep Dive into OQTOPUS〜
oqtopus
0
130
~Everything as Codeを諦めない~ 後からCDK
mu7889yoon
3
430
All About Sansan – for New Global Engineers
sansan33
PRO
1
1.4k
10Xにおける品質保証活動の全体像と改善 #no_more_wait_for_test
nihonbuson
PRO
2
320
What happened to RubyGems and what can we learn?
mikemcquaid
0
300
会社紹介資料 / Sansan Company Profile
sansan33
PRO
15
400k
予期せぬコストの急増を障害のように扱う――「コスト版ポストモーテム」の導入とその後の改善
muziyoshiz
1
2k
クレジットカード決済基盤を支えるSRE - 厳格な監査とSRE運用の両立 (SRE Kaigi 2026)
capytan
6
2.8k
StrandsとNeptuneを使ってナレッジグラフを構築する
yakumo
1
120
Why Organizations Fail: ノーベル経済学賞「国家はなぜ衰退するのか」から考えるアジャイル組織論
kawaguti
PRO
1
100
Featured
See All Featured
Building a Modern Day E-commerce SEO Strategy
aleyda
45
8.7k
Dealing with People You Can't Stand - Big Design 2015
cassininazir
367
27k
Rebuilding a faster, lazier Slack
samanthasiow
85
9.4k
Odyssey Design
rkendrick25
PRO
1
500
Responsive Adventures: Dirty Tricks From The Dark Corners of Front-End
smashingmag
254
22k
Darren the Foodie - Storyboard
khoart
PRO
2
2.4k
The Art of Delivering Value - GDevCon NA Keynote
reverentgeek
16
1.8k
Practical Tips for Bootstrapping Information Extraction Pipelines
honnibal
25
1.7k
Why You Should Never Use an ORM
jnunemaker
PRO
61
9.7k
Code Review Best Practice
trishagee
74
20k
Understanding Cognitive Biases in Performance Measurement
bluesmoon
32
2.8k
Connecting the Dots Between Site Speed, User Experience & Your Business [WebExpo 2025]
tammyeverts
11
830
Transcript
C-LIS CO., LTD.
5FOTPS'MPXͰ झຯͷը૾ऩूαʔόʔΛ࡞Δ ݄̕ಛେ߸
C-LIS CO., LTD. ༗ࢁܓೋʢ,FJKJ"3*:"."ʣ C-LIS CO., LTD. AndroidΞϓϦ։ൃऀ ػցֶशॳ৺ऀ
ͬͯ·ͤΜ 1IPUP,PKJ.03*(6$)* "6/$3&"5*7&'*3.
C-LIS CO., LTD.
C-LIS CO., LTD.
લճ·Ͱͷ͓
IUUQTUFDICPPLGFTUPSH"
C-LIS CO., LTD.
C-LIS CO., LTD. IUUQBN[OUPC,3N
C-LIS CO., LTD. .FHBOF /PU
Έͷ؟ڸ່ͬը૾ΛࣗಈͰऩू͍ͨ͠
C-LIS CO., LTD. Ϟσϧ 7((/FUΛࢀߟʹΈࠐΈͷ࿈ଓΛ༻͍ͨ$// ʢ$POWPMVUJPOBM/FVSBM/FUXPSLʣϞσϧ DPO YY DPO
YY GD QPPM Y DPO YY DPO YY QPPM Y GD GD PVUQVU
C-LIS CO., LTD. %BUB"VHNFOUBUJPO ը૾Λ ʜ·ͰɺͦΕͧΕճసͨ͠ը૾Λ࡞ ಡΈࠐΈ࣌ͷॲཧ 3BOEPN$SPQʢQYதɺQYྖҬΛ͘Γൈ͘ʣ 3BOEPN'MJQʢԣ࣠ํʹసʣ
3BOEPN6Q%PXOʢॎ࣠ํʹసʣ 3BOEPN#SJHIUOFTT 3BOEPN$POUSBTU
C-LIS CO., LTD. ܇࿅ ֶशΞϧΰϦζϜ"EBN ֶश ϛχόον
C-LIS CO., LTD. ݕূ σʔληοτ͔ΒΛςετ༻ͱͯ͠ ਖ਼ʙ
Πϥετإݕग़ثʢ'BDF%FUFDUPSʣ
C-LIS CO., LTD. Πϥετإσʔληοτ ؟ڸ່ͬͱͦ͏Ͱͳ͍ͷɻ߹Θͤͯ ຕΛ ਖ਼ྫʢʹإʣͱ͢Δʢ͏ͪςετσʔλຕʣ ෛྫɺطଘͷը૾ΛࡉΕʹͯ͠ɺإ͕ͳ͍෦ ຕΛෛྫͱ͢Δʢ͏ͪςετσʔλຕʣ
C-LIS CO., LTD. Πϥετσʔληοτ ਖ਼ྫ ෛྫ ߹ܭ ܇࿅σʔλ 1,600
3,200 4,800 ςετσʔλ 400 800 1,200 ߹ܭ 2,000 4,005 6,000
C-LIS CO., LTD. Ϟσϧ $*'"3νϡʔτϦΞϧͷϞσϧΛࢀߟʹ υϩοϓΞτʢˋʣΛՃͨ͠$//ʢ$POWPMVUJPOBM/FVSBM /FUXPSLʣ DPO YY
GD QPPM Y DPO YY GD PVUQVU MSO MSO QPPM Y
C-LIS CO., LTD. %BUB"VHNFOUBUJPO ը૾Yʹॖখ ը૾Λ ʜɺͦΕͧΕճసͨ͠ը૾Λ࡞ ಡΈࠐΈ࣌ͷॲཧ 3BOEPN$SPQʢQYதɺQYྖҬͰ͘Γൈ͘ʣ
3BOEPN'MJQʢԣ࣠ํʹసʣ 3BOEPN6Q%PXOʢॎ࣠ํʹసʣ 3BOEPN#SJHIUOFTT 3BOEPN$POUSBTU
C-LIS CO., LTD. ܇࿅ ֶशΞϧΰϦζϜ"EBN ֶश ϛχόον
C-LIS CO., LTD. ܇࿅ ϛχόονɺສεςοϓͷ܇࿅Ͱ ϩε͕·ͰԼ ςετσʔλͰͷਖ਼ղ
إݕग़
C-LIS CO., LTD. إͲ͜ʹ͋Δʁ
C-LIS CO., LTD. 4FMFDUJWF4FBSDI 35$PSQPSBUJPOͷʮ༲͛ϩϘοτʯ 5FOTPS'MPXษڧձʢ̐ʣ݄Ͱൃද IUUQXXXTMJEFTIBSFOFU:VLJ/BLBHBXBUFOTPSqPXSFW
C-LIS CO., LTD. 4FMFDUJWF4FBSDI "MQBDBࣾʹΑΔ࣮ IUUQCMPHKQBMQBDBBJFOUSZ EMJCͷ࣮ IUUQTHJUIVCDPNEBWJTLJOHEMJCCMPCNBTUFS QZUIPO@FYBNQMFTpOE@DBOEJEBUF@PCKFDU@MPDBUJPOTQZ
C-LIS CO., LTD. લճͷ՝ ݕग़࣌ؒͷॖ ೝࣝਫ਼ͷ্
ݕग़࣌ؒͷॖ
C-LIS CO., LTD. إݕग़ͷखॱ ީิྖҬͷΓग़͠ SelectiveSearch
C-LIS CO., LTD. إݕग़ͷखॱ إೝࣝ TensorFlow ީิྖҬͷΓग़͠ SelectiveSearch OݸͷީิྖҬ
C-LIS CO., LTD. άϥϑͱηογϣϯΛҙࣝ͢Δ ީิྖҬͷΓग़͠ SelectiveSearch إೝࣝ TensorFlow άϥϑͷ࡞
ηογϣϯͷ։࢝ tf.Session() άϥϑͷ࣮ߦ run OݸͷީิྖҬ ը૾σʔλʴ ը૾σʔλ
C-LIS CO., LTD. إೝࣝ TensorFlow άϥϑͱηογϣϯΛҙࣝ͢Δ άϥϑͷ࡞ ηογϣϯͷ։࢝ tf.Session()
άϥϑͷ࣮ߦ run άϥϑ Ϧηοτ OݸͷྖҬΛͯ͢ධՁ OݸͷީิྖҬ ը૾σʔλʴ
C-LIS CO., LTD. ࠷దͳྖҬΛ୳ࡧʢ3FHSFTTJPOʣ
C-LIS CO., LTD. إೝࣝ TensorFlow ຖճάϥϑΛ࡞ɾηογϣϯΛ։࢝ άϥϑͷ࡞ ηογϣϯͷ։࢝ άϥϑͷ࣮ߦ
run άϥϑ Ϧηοτ OݸͷྖҬΛͯ͢ධՁ OݸͷީิྖҬ ը૾σʔλʴ
class FaceDetector(object): image_path = None original_image = None graph
= None sess = None queue = None top_k_indices = None top_k_values = None region_batch = None coord = None configuration = None def __init__(self, image_path, batch_size, train_dir): self.image_path = image_path self.original_image = Image.open(image_path) self.original_image = self.original_image.convert('RGB') checkpoint = tf.train.get_checkpoint_state(train_dir) if not (checkpoint and checkpoint.model_checkpoint_path): print('νΣοΫϙΠϯτϑΝΠϧ͕ݟ͔ͭΓ·ͤΜ') return self.graph, self.queue, self.top_k_indices, self.top_k_values, self.region_batch = \ self._init_graph(self.original_image, batch_size) with self.graph.as_default() as g: self.sess = tf.Session() saver = tf.train.Saver() saver.restore(self.sess, checkpoint.model_checkpoint_path) self.coord = tf.train.Coordinator()
def _init_graph(self, image, batch_size): reshaped_image = np.array(image.getdata()).reshape(image.height, image.width, 3).astype(
np.float32) graph = tf.Graph() with graph.as_default() as g: queue = tf.FIFOQueue(3000, tf.int32, shapes=[4]) region = queue.dequeue() whitten_image = self._load_image(reshaped_image, region) image_batch, region_batch = tf.train.batch( [whitten_image, region], batch_size=batch_size, capacity=10000) logits = tf.nn.softmax(model.inference(image_batch, tf.constant(1.0), batch_size)) top_k_values, top_k_indices = tf.nn.top_k(logits, 2, sorted=True) return graph, queue, top_k_indices, top_k_values, region_batch
def _eval(self, region_list, batch_size): result = [] with
graph.as_default() as g: threads = tf.train.start_queue_runners(sess=sess, coord=coord) step = 0 try: # όοναΠζʹ߹ΘͤͯΛௐ while len(region_list) < batch_size or len(region_list) % batch_size != 0: add = region_list[0:(batch_size - (len(region_list) % batch_size))] region_list = region_list + add region_list = np.array(region_list) enqueue = queue.enqueue_many(region_list) sess.run(enqueue) num_iter = int(math.ceil(len(region_list) / batch_size)) while step < num_iter and not coord.should_stop(): # ҎԼུ
C-LIS CO., LTD. إೝࣝ TensorFlow ީิྖҬͷΈ༩͑Δ άϥϑͷ࡞ ηογϣϯͷ։࢝ άϥϑͷ࣮ߦ
run άϥϑ Ϧηοτ OݸͷྖҬΛͯ͢ධՁ ը૾σʔλ OݸͷީิྖҬ
ೝࣝਫ਼ͷ্ σʔληοτͷ֦ॆ
C-LIS CO., LTD. 5XJUUFS"1* ಛఆͷϢʔβʔͷλΠϜϥΠϯʹߘ͞ΕͨϝσΟΞ ʢը૾ʣΛμϯϩʔυ ϋογϡΛܭࢉͯ͠ॏෳը૾ΛϑΟϧλϦϯά ʢαΠζҧ͍ͳͲͷྨࣅը૾ফ͖͠Εͳ͍ʣ
C-LIS CO., LTD. Πϥετإσʔλऩूʹ ࠷దͳΞΧϯτ !CPU@FSFDUJPO IUUQTUXJUUFSDPNCPU@FSFDUJPO
C-LIS CO., LTD. ࿐ࠎʹੑతͳը૾ɺ΄΅ଘࡏ͠ͳ͍ πΠʔτʹඞͣը૾͕ఴ͞Ε͍ͯΔ ը૾ʹਓҎ্ͷঁͷࢠͷإؚ͕·Ε͍ͯΔ
5XJUUFS͔Βऔಘͨ͠ϑΝΠϧ ݕग़ͨ͠إྖҬͷɹɹɹɹɹɹɹɹ
C-LIS CO., LTD. { "detected_faces": { "mode": "selective_search", "regions": [
{ "label": 1, "rect": { "left": 212.0, "bottom": 654.0, "top": 94.0, "right": 483.0 }, "probability": 0.9994481205940247 } ] }, "created_at": "2016-09-28T03:37:16.223942", "file_name": "kage_maturi-CAARxE8UwAEzAjJ.jpg", "generator": "Megane Co" } ݁ՌΛ+40/Ͱॻ͖ग़͠
C-LIS CO., LTD. 3FHJPO$SPQQFS +BWB'9 ,PUMJO IUUQTHJUIVCDPNLFJKJSFHJPO@DSPQQFS
%FNP
C-LIS CO., LTD. 3FHJPO$SPQQFS /FXGFBUVSF ɾબதͷྖҬΛϑΥʔΧε ɾ6OEP ɾTFUUJOHTKTPOʹΑΔઃఆ ɹϥϕϧ͝ͱͷઢ৭ ɹฤूɺআͷՄ൱
IUUQTHJUIVCDPNLFJKJSFHJPO@DSPQQFS
C-LIS CO., LTD. ݕग़ͨ͠إྖҬͷʢॏෳΛআʣɹɹɹɹɹɹɹɹ إʢਖ਼ྫʣ ޡݕग़ʢෛྫʣ
C-LIS CO., LTD. ৽σʔληοτ ਖ਼ྫ ෛྫ ߹ܭ ܇࿅σʔλ 10,453
10,792 21,245 ςετσʔλ 2,619 2,703 5,322 ߹ܭ 13,072 13,495 26,567
C-LIS CO., LTD. ৽σʔληοτʹΑΔ܇࿅ ϛχόονɺສεςοϓͷ܇࿅Ͱ ϩε͕·ͰԼ ςετσʔλʹΑΔݕূͰͷਖ਼ղ
C-LIS CO., LTD. چσʔληοτ ਖ਼ྫ ෛྫ ߹ܭ ܇࿅σʔλ 1,600
3,200 4,800 ςετσʔλ 400 800 1,200 ߹ܭ 2,000 4,005 6,000
C-LIS CO., LTD. چσʔληοτͷ܇࿅ ϛχόονɺສεςοϓͷ܇࿅Ͱ ϩε͕·ͰԼ ςετσʔλͰͷݕূͰͷਖ਼ղ
C-LIS CO., LTD. ৽Ϟσϧੑೳ͕ѱ͍ʁ چςετσʔλ چϞσϧ ৽ςετσʔλ ৽Ϟσϧ
C-LIS CO., LTD. ৽چͷςετσʔλΛަ چϞσϧ ৽ςετσʔλ چςετσʔλ ৽Ϟσϧ
C-LIS CO., LTD. ৽چͷςετσʔλΛݕূ چϞσϧ ৽ςετσʔλ چςετσʔλ ৽Ϟσϧ
چςετσʔλ چϞσϧ ৽ςετσʔλ ৽Ϟσϧ
C-LIS CO., LTD. إೝࣝʹࣦഊͨ͠σʔλΛݕূ ʢچςετσʔλʣ OPU@GBDF GBDF
C-LIS CO., LTD. إೝࣝʹࣦഊͨ͠σʔλΛݕূ ʢ৽ςετσʔλʣ OPU@GBDF GBDF
࣍ճ༧ࠂ
C-LIS CO., LTD. σʔλͷΫϨϯδϯάʹΑΔೝࣝਫ਼ͷมԽΛݟΔ ݕग़Λ͞Βʹվળ͢Δ ࣍ճ༧ࠂ IUUQTXXXTBLVSBBEKQLPVLBSZPLV
C-LIS CO., LTD. C-LIS CO., LTD. ຊࢿྉɺ༗ݶձࣾγʔϦεͷஶ࡞Ͱ͢ɻܝࡌ͞Ε͍ͯΔΠϥετʹݸผʹஶ࡞ݖ͕͋Γ·͢ɻ ຊࢿྉͷશ෦ɺ·ͨҰ෦ʹ͍ͭͯɺஶ࡞ऀ͔ΒจॻʹΑΔڐΛಘͣʹෳ͢Δ͜ͱې͡ΒΕ͍ͯ·͢ɻ ໊֤ɾϒϥϯυ໊ɺձ໊ࣾͳͲɺҰൠʹ֤ࣾͷඪ·ͨొඪͰ͢ɻຊࢿྉதͰɺɺɺäΛׂѪͯ͠ ͍·͢ɻ