$30 off During Our Annual Pro Sale. View Details »

20170419-TFUG

 20170419-TFUG

4月19日のTensorFlow User Groupの発表資料です。

ARIYAMA Keiji

April 19, 2017
Tweet

More Decks by ARIYAMA Keiji

Other Decks in Technology

Transcript

  1. C-LIS CO., LTD.

    View Slide

  2. C-LIS CO., LTD.

    ༗ࢁܓೋʢ,FJKJ"3*:"."ʣ
    $-*4$0 -5%
    "OESPJEΞϓϦ։ൃνϣοτσΩϧ
    ػցֶशॳ৺ऀͱɺݴ͍ଓ͚ͯૣ̍೥൒
    Photo : Koji MORIGUCHI (AUN CREATIVE FIRM)

    View Slide

  3. View Slide


  4. ݄̐̕೔ʢ೔ʣ ΞΩόɾεΫΤΞ
    ʰٕज़ॻయ̎ ͓ʔ̍̎ʱʹͯ
    TensorFlow͸͡Ί·ͨ͠

    Super Resolution ʔ ௒ղ૾
    https://goo.gl/Z3Exjo
    ׬ച͠·ͨ͠

    View Slide

  5. ৞ΈࠐΈΦʔτΤϯίʔμʔ

    conv1
    9x9x3
    64
    padding:
    SAME
    conv2
    9x9x64
    128
    conv4
    5x5x128
    64
    conv3-0
    7x7x128
    128
    conv3-1
    7x7x128
    128 dconv1
    9x9x64
    3
    padding:
    SAME
    dconv2
    9x9x128
    64
    dconv4
    5x5x64
    128
    dconv3-1
    7x7x128
    128
    dconv3-2
    7x7x128
    128
    conv3-2
    7x7x128
    128
    dconv3-2
    7x7x128
    128
    256x256 256x256

    View Slide

  6. View Slide


  7. 5FOTPS'MPX6TFS(SPVQ

    5FOTPS'MPX

    (16

    View Slide


  8. 5FOTPS'MPXͱ(16

    View Slide

  9. લఏ৚݅
    (16$6%"$PNQVUF$BQBCJMJUZ
    $6%"5PPMLJU
    DV%//W
    QJQJOTUBMMUFOTPSqPXHQV

    https://www.tensorflow.org/install/install_linux

    View Slide

  10. (16΁ͷॲཧͷׂΓ౰ͯ
    XJUIUGEFWJDF HQVEJ

    QBTT


    View Slide

  11. Ϛϧν(16
    UPXFS@HSBET<>
    GPSJJOSBOHF '-"(4OVN@HQVT

    XJUIUGEFWJDF HQVEJ

    XJUIUGOBNF@TDPQF T@E 508&3@/".& J

    BTTDPQF

    MPTT@@UPXFS@MPTT TDPQF GJMF@MJTU 

    .0%&-*/165@4*;& .0%&-065165@4*;& 

    '-"(4CBUDI@TJ[F


    UGTVNNBSZTDBMBS UPUBM@MPTT MPTT


    UGHFU@WBSJBCMF@TDPQF
    SFVTF@WBSJBCMFT


    HSBETPQUDPNQVUF@HSBEJFOUT MPTT

    UPXFS@HSBETBQQFOE HSBET


    View Slide

  12. Ϛϧν(16
    BWH@HSBET@@BWFSBHF@HSBEJFOUT UPXFS@HSBET


    BQQMZ@HSBEJFOU@PQ@@BQQMZ@HSBEJFOUT BWH@HSBET PQU HMPCBM@TUFQ


    WBSJBCMF@BWFSBHFTUGUSBJO&YQPOFOUJBM.PWJOH"WFSBHF 

    HMPCBM@TUFQ

    WBSJBCMFT@BWFSBHFT@PQ
    WBSJBCMF@BWFSBHFTBQQMZ UGUSBJOBCMF@WBSJBCMFT



    USBJO@PQUGHSPVQ BQQMZ@HSBEJFOU@PQ WBSJBCMFT@BWFSBHFT@PQ


    View Slide

  13. 5FOTPS#PBSE

    View Slide

  14. (16̍ͭʹׂΓ౰ͯΔॲཧ
    Input Pipeline
    tf.train.shuffle_batch
    Ϟσϧ

    model.inference
    ޡࠩؔ਺

    __loss
    ޯ഑ͷܭࢉ

    compute_gradient
    __tower_loss
    ޯ഑
    ʢgradsʣ
    ֶश

    σʔλ
    ڭࢣ

    σʔλ
    ਪ࿦݁Ռ ޡࠩ

    View Slide

  15. શମͷॲཧ
    TOWER
    ޯ഑
    ʢgradsʣ
    TOWER
    ޯ഑
    ʢgradsʣ
    TOWER
    ޯ഑
    ʢgradsʣ
    TOWER
    ޯ഑
    ʢgradsʣ
    ޯ഑ͷฏۉΛܭࢉ

    __average_gradients
    શମͷޯ഑
    ʢavg_gradsʣ
    ࠷దԽ

    __apply_gradients
    params
    params
    params
    params

    View Slide


  16. %FNP

    View Slide

  17. ৞ΈࠐΈΦʔτΤϯίʔμʔ

    conv2
    9x9x64
    128
    conv4
    5x5x128
    64
    conv3-0
    7x7x128
    128
    conv3-1
    7x7x128
    128
    dconv2
    9x9x128
    64
    dconv4
    5x5x64
    128
    dconv3-1
    7x7x128
    128
    dconv3-2
    7x7x128
    128
    conv3-2
    7x7x128
    128
    dconv3-2
    7x7x128
    128
    256x256 256x256
    conv1
    9x9x3
    64
    padding:
    SAME
    dconv1
    9x9x64
    3
    padding:
    SAME

    View Slide

  18. ख࣋ͪͷ(16αʔόʔ
    $16*OUFM$PSFJ,
    .FNPSZ(#
    44%(#
    (F'PSDF(59(#

    $6%"DPSF

    View Slide

  19. ͘͞ΒͷߴՐྗίϯϐϡʔςΟϯάʢ࣮ݧػʣ
    $169FPO$PSFʷ
    .FNPSZ(#
    44%(#
    (F'PSDF(595*5"/9ʢ1BTDBMΞʔΩςΫνϟʣ(#ʷ

    $6%"DPSF
    (F'PSDF(595Jʢ1BTDBMΞʔΩςΫνϟʣ(#ʷ

    $6%"DPSF

    View Slide


  20. https://blog.keiji.io/2016/05/cuda_error_no_device.html

    View Slide

  21. ύλʔϯ"ɿυϥΠόʔͷΞοϓσʔτ

    View Slide

  22. E tensorflow/stream_executor/cuda/cuda_dnn.cc:347] Loaded runtime CuDNN
    library: 4007 (compatibility version 4000) but source was compiled with
    5103 (compatibility version 5100).

    ύλʔϯ#ɿ5FOTPS'MPXͷΞοϓσʔτ
    https://github.com/tensorflow/tensorflow/issues/4251

    View Slide


  23. ύλʔϯ$

    View Slide

  24. View Slide

  25. View Slide


  26. खݩͰ࣮ߦՄೳͳϞσϧͱɺ

    ࢴ໘ʹܝࡌՄೳͳϞσϧ͸ҧ͏

    View Slide

  27. ։ൃػ
    ͘͞ΒͷߴՐྗαʔόʔʢ2VBE(16Ϟσϧʣ
    $169FPO$PSFʷ
    .FNPSZ(#
    44%(#
    (F'PSDF(595*5"/9ʢ.BYXFMMΞʔΩςΫνϟʣ(#ʷ

    $6%"DPSF

    128 sample / batch
    learning rate 0.001

    View Slide

  28. https://www.sakura.ad.jp/press/2017/0417_koukaryoku_hourly/

    View Slide

  29. ݕূػ

    %FMM"-*&/8"3&93
    $16*OUFM$PSFJ,
    .FNPSZ(#
    44%(#
    (F'PSDF(59(#

    $6%"DPSF

    128 sample / batch
    learning rate 0.001

    View Slide

  30. ஗͍ʜʜ
    4UFQ -PTT 5JNFNTTUFQ
    4UFQ -PTT 5JNFNTTUFQ
    4UFQ -PTT 5JNFNTTUFQ
    4UFQ -PTT 5JNFNTTUFQ
    4UFQ -PTT 5JNFNTTUFQ
    4UFQ -PTT 5JNFNTTUFQ

    128 sample / batch
    learning rate 0.001

    View Slide

  31. (PPHMF$MPVE1MBUGPSN
    W$16
    .FNPSZ
    44%
    (F'PSDF5FTMB,ʢ(#ʷʣ

    $6%"DPSF ʷ

    View Slide


  32. View Slide


  33. View Slide


  34. ( Д ) ʄ ʄŴƅƃŕ

    View Slide

  35. ௨ৗ͸ΫΥʔλͰ੍ݶ͞Ε͍ͯΔ

    View Slide


  36. :
    :

    View Slide


  37. Hello,
    Thank you for requesting additional quota.
    To help us ensure that this is a legitimate request and that the resources you requested are available to you,
    please do one of the following:
    Make a payment [1] of $35 or the same amount in your currency from the Transaction History page [2] and
    reply to this message when the charge clears. Your payment will be applied to any charges you incur in the
    future and will be visible as a credit in your account.
    Alternatively, reply to this message with the project ID of another project that you own that has cleared a
    charge of at least the amount mentioned.
    To learn more about project quota requests and cores quota requests, check out the Project Quota Request
    FAQ page at [3] and the Request cores quota increase FAQs page at [4].
    We appreciate your patience.
    Sincerely,
    Cloud Platform Support
    [1] - https://support.google.com/cloud/answer/6294016 [2] - https://console.cloud.google.com/billing [3] -
    https://support.google.com/cloud/answer/6330231 [4] - https://support.google.com/cloud/answer/6376374

    View Slide


  38. Hello,
    Your quota request for Project '632906615582' has been approved and your project quota has been adjusted
    accordingly.
    Changed Quota:
    +--------------------+-----------------+
    | Region: asia-east1 | NVIDIA_K80_GPUS |
    +--------------------+-----------------+
    | Changes | 0 -> 1 |
    +--------------------+-----------------+
    To verify the quota change, please navigate to
    https://console.developers.google.com/project/632906615582/compute/quotas and verify what are your
    current project quotas.
    Happy Computing!
    Google for Work Support
    http://support.google.com/enterprisehelp/

    View Slide

  39. (PPHMF$MPVE1MBUGPSN
    W$16
    .FNPSZ(#
    44%(#
    (F'PSDF5FTMB,ʢ(#ʷʣ

    $6%"DPSF ʷ

    ͋·ΓมΘΒͣ……

    View Slide


  40. ݪҼ͸ʁ

    View Slide

  41. OWJEJBTNJ

    ]/7*%*"4.*%SJWFS7FSTJPO]
    ]
    ](16/BNF1FSTJTUFODF.]#VT*E%JTQ"]7PMBUJMF6ODPSS&$$]
    ]'BO5FNQ1FSG1XS6TBHF$BQ].FNPSZ6TBHF](166UJM$PNQVUF.]
    ]]
    ](F'PSDF(590GG]0O]/"]
    ]$188].J#.J#]%FGBVMU]



    ]1SPDFTTFT(16.FNPSZ]
    ](161*%5ZQF1SPDFTTOBNF6TBHF]
    ]]
    ](VTSMJCYPSH9PSH.J#]
    ]$QZUIPO.J#]


    View Slide

  42. ˈUPQ

    View Slide


  43. (16͕ಈ͍ͯͳ͍

    View Slide

  44. DPOGJHUG$POGJH1SPUP 

    BMMPX@TPGU@QMBDFNFOU5SVF 

    MPH@EFWJDF@QMBDFNFOU'-"(4MPH@EFWJDF@QMBDFNFOU

    XJUIUG4FTTJPO DPOGJHDPOGJH
    BTTFTT

    DIFDLQPJOUUGUSBJOHFU@DIFDLQPJOU@TUBUF USBJO@EJS


    MPH@EFWJDF@QMBDFNFOU

    View Slide

  45. I tensorflow/core/common_runtime/simple_placer.cc:841] save/RestoreV2_26: (RestoreV2)/
    job:localhost/replica:0/task:0/cpu:0
    save/RestoreV2_25: (RestoreV2): /job:localhost/replica:0/task:0/cpu:0
    I tensorflow/core/common_runtime/simple_placer.cc:841] save/RestoreV2_25: (RestoreV2)/
    job:localhost/replica:0/task:0/cpu:0
    save/RestoreV2_24: (RestoreV2): /job:localhost/replica:0/task:0/cpu:0
    I tensorflow/core/common_runtime/simple_placer.cc:841] save/RestoreV2_24: (RestoreV2)/
    job:localhost/replica:0/task:0/cpu:0
    save/RestoreV2_23: (RestoreV2): /job:localhost/replica:0/task:0/cpu:0
    I tensorflow/core/common_runtime/simple_placer.cc:841] save/RestoreV2_23: (RestoreV2)/
    job:localhost/replica:0/task:0/cpu:0
    save/RestoreV2_22: (RestoreV2): /job:localhost/replica:0/task:0/cpu:0
    I tensorflow/core/common_runtime/simple_placer.cc:841] save/RestoreV2_22: (RestoreV2)/
    job:localhost/replica:0/task:0/cpu:0
    save/RestoreV2_21: (RestoreV2): /job:localhost/replica:0/task:0/cpu:0
    I tensorflow/core/common_runtime/simple_placer.cc:841] save/RestoreV2_21: (RestoreV2)/
    job:localhost/replica:0/task:0/cpu:0
    save/RestoreV2_20: (RestoreV2): /job:localhost/replica:0/task:0/cpu:0

    View Slide

  46. I tensorflow/core/common_runtime/simple_placer.cc:841] save/RestoreV2_8: (RestoreV2)/
    job:localhost/replica:0/task:0/cpu:0
    save/RestoreV2_7: (RestoreV2): /job:localhost/replica:0/task:0/cpu:0
    I tensorflow/core/common_runtime/simple_placer.cc:841] save/RestoreV2_7: (RestoreV2)/
    job:localhost/replica:0/task:0/cpu:0
    save/RestoreV2_6: (RestoreV2): /job:localhost/replica:0/task:0/cpu:0
    I tensorflow/core/common_runtime/simple_placer.cc:841] save/RestoreV2_6: (RestoreV2)/
    job:localhost/replica:0/task:0/cpu:0
    save/RestoreV2_5: (RestoreV2): /job:localhost/replica:0/task:0/cpu:0
    I tensorflow/core/common_runtime/simple_placer.cc:841] save/RestoreV2_5: (RestoreV2)/
    job:localhost/replica:0/task:0/cpu:0
    save/RestoreV2_4: (RestoreV2): /job:localhost/replica:0/task:0/cpu:0
    I tensorflow/core/common_runtime/simple_placer.cc:841] save/RestoreV2_4: (RestoreV2)/
    job:localhost/replica:0/task:0/cpu:0
    save/RestoreV2_3: (RestoreV2): /job:localhost/replica:0/task:0/cpu:0
    I tensorflow/core/common_runtime/simple_placer.cc:841] save/RestoreV2_3: (RestoreV2)/
    job:localhost/replica:0/task:0/cpu:0
    save/RestoreV2_2: (RestoreV2): /job:localhost/replica:0/task:0/cpu:0

    View Slide

  47. I tensorflow/core/common_runtime/simple_placer.cc:841] save/RestoreV2_2: (RestoreV2)/
    job:localhost/replica:0/task:0/cpu:0
    save/RestoreV2_1: (RestoreV2): /job:localhost/replica:0/task:0/cpu:0
    I tensorflow/core/common_runtime/simple_placer.cc:841] save/RestoreV2_1: (RestoreV2)/
    job:localhost/replica:0/task:0/cpu:0
    save/RestoreV2: (RestoreV2): /job:localhost/replica:0/task:0/cpu:0
    I tensorflow/core/common_runtime/simple_placer.cc:841] save/RestoreV2: (RestoreV2)/
    job:localhost/replica:0/task:0/cpu:0
    conv3/biases/ExponentialMovingAverage: (VariableV2): /job:localhost/replica:0/task:0/
    cpu:0
    I tensorflow/core/common_runtime/simple_placer.cc:841] conv3/biases/
    ExponentialMovingAverage: (VariableV2)/job:localhost/replica:0/task:0/cpu:0
    save/Assign_22: (Assign): /job:localhost/replica:0/task:0/cpu:0
    I tensorflow/core/common_runtime/simple_placer.cc:841] save/Assign_22: (Assign)/
    job:localhost/replica:0/task:0/cpu:0
    conv3/biases/ExponentialMovingAverage/read: (Identity): /job:localhost/replica:0/task:
    0/cpu:0
    I tensorflow/core/common_runtime/simple_placer.cc:841] conv3/biases/

    ҎԼུ

    View Slide

  48. ΦϖϨʔγϣϯ͕࣮ߦ͞ΕΔσόΠε
    (16
    $16

    View Slide

  49. I tensorflow/core/common_runtime/simple_placer.cc:841] tower_0/image_loader_vvv/
    ReaderReadV2: (ReaderReadV2)/job:localhost/replica:0/task:0/cpu:0
    tower_0/image_loader_vvv/DecodeJpeg: (DecodeJpeg): /job:localhost/replica:0/task:
    0/cpu:0
    I tensorflow/core/common_runtime/simple_placer.cc:841] tower_0/image_loader_vvv/
    DecodeJpeg: (DecodeJpeg)/job:localhost/replica:0/task:0/cpu:0
    tower_0/image_loader_vvv/random_crop/Shape: (Shape): /job:localhost/replica:0/
    task:0/gpu:0

    EFDPEF@KQFH

    View Slide


  50. View Slide


  51. View Slide


  52. View Slide


  53. View Slide

  54. I tensorflow/core/common_runtime/simple_placer.cc:841] tower_0/image_loader_vvv/
    ReaderReadV2: (ReaderReadV2)/job:localhost/replica:0/task:0/cpu:0
    tower_0/image_loader_vvv/DecodeJpeg: (DecodeJpeg): /job:localhost/replica:0/task:
    0/cpu:0
    I tensorflow/core/common_runtime/simple_placer.cc:841] tower_0/image_loader_vvv/
    DecodeJpeg: (DecodeJpeg)/job:localhost/replica:0/task:0/cpu:0
    tower_0/image_loader_vvv/random_crop/Shape: (Shape): /job:localhost/replica:0/
    task:0/gpu:0

    EFDPEF@KQFH

    View Slide

  55. DPOGJHUG$POGJH1SPUP 

    BMMPX@TPGU@QMBDFNFOU5SVF 

    MPH@EFWJDF@QMBDFNFOU'-"(4MPH@EFWJDF@QMBDFNFOU

    XJUIUG4FTTJPO DPOGJHDPOGJH
    BTTFTT

    DIFDLQPJOUUGUSBJOHFU@DIFDLQPJOU@TUBUF USBJO@EJS


    BMMPX@TPGU@QMBDFNFOU

    View Slide

  56. BMMPX@TPGU@QMBDFNFOU

    If you would like TensorFlow to automatically choose an existing and
    supported device to run the operations in case the specified one doesn't exist,
    you can set allow_soft_placement to True in the configuration option
    when creating the session.
    https://www.tensorflow.org/tutorials/using_gpu

    View Slide

  57. EFG@MPBE@JNBHF GJMF@MJTU JOQVU@TJ[F PVUQVU@TJ[F DIBOOFMT TDBMF

    XJUIUGOBNF@TDPQF JNBHF@MPBEFS@WWW

    GJMFOBNF@RVFVFUGUSBJOTUSJOH@JOQVU@QSPEVDFS GJMF@MJTU 

    TIVGGMF5SVF

    SFBEFSUG8IPMF'JMF3FBEFS

    @ WBMVFSFBEFSSFBE GJMFOBNF@RVFVF


    JNBHFUGJNBHFEFDPEF@KQFH WBMVF DIBOOFMTDIBOOFMT

    DSPQQFE@JNBHFUGSBOEPN@DSPQ JNBHF JOQVU@TJ[F JOQVU@TJ[F DIBOOFMT



    MS@JNBHFUGJNBHFSFTJ[F@JNBHFT DSPQQFE@JNBHF JOQVU@TJ[FTDBMF 

    JOQVU@TJ[FTDBMF

    NFUIPEUGJNBHF3FTJ[F.FUIPE#*$6#*$


    MS@JNBHFUGJNBHFSFTJ[F@JNBHFT MS@JNBHF JOQVU@TJ[F JOQVU@TJ[F

    NFUIPEUGJNBHF3FTJ[F.FUIPE#*$6#*$


    PGGTFU@MFGU JOQVU@TJ[FPVUQVU@TJ[F

    PGGTFU@UPQ JOQVU@TJ[FPVUQVU@TJ[F

    HSPVOE@USVUIUGJNBHFDSPQ@UP@CPVOEJOH@CPY DSPQQFE@JNBHF 

    PGGTFU@UPQ PGGTFU@MFGU 

    PVUQVU@TJ[F PVUQVU@TJ[F


    SFUVSOMS@JNBHF HSPVOE@USVUI

    View Slide


  58. 510x510
    decode_jpeg
    random_crop

    View Slide


  59. όονʹ͖ͭɺ

    ϑΝΠϧͷಡΈࠐΈɾσίʔυ͕

    ճൃੜ͢Δ

    View Slide

  60. EFG@MPBE@JNBHF GJMF@MJTU JOQVU@TJ[F PVUQVU@TJ[F DIBOOFMT TDBMF CBUDI@TJ[F

    XJUIUGOBNF@TDPQF JNBHF@MPBEFS@WWW

    GJMFOBNF@RVFVFUGUSBJOTUSJOH@JOQVU@QSPEVDFS GJMF@MJTU 

    TIVGGMF5SVF

    SFBEFSUG8IPMF'JMF3FBEFS

    @ WBMVFSFBEFSSFBE GJMFOBNF@RVFVF

    JNBHFUGJNBHFEFDPEF@KQFH WBMVF DIBOOFMTDIBOOFMT


    View Slide

  61. MS@JNBHFT<>

    HSPVOE@USVUIT<>


    GPSJJOSBOHF CBUDI@TJ[F

    DSPQQFE@JNBHFUGSBOEPN@DSPQ JNBHF JOQVU@TJ[F JOQVU@TJ[F DIBOOFMT


    MS@JNBHFUGJNBHFSFTJ[F@JNBHFT DSPQQFE@JNBHF JOQVU@TJ[FTDBMF 

    JOQVU@TJ[FTDBMF

    NFUIPEUGJNBHF3FTJ[F.FUIPE#*$6#*$

    MS@JNBHFUGJNBHFSFTJ[F@JNBHFT MS@JNBHF JOQVU@TJ[F JOQVU@TJ[F

    NFUIPEUGJNBHF3FTJ[F.FUIPE#*$6#*$

    MS@JNBHFUGFYQBOE@EJNT MS@JNBHF EJN

    MS@JNBHFTBQQFOE MS@JNBHF


    PGGTFU@MFGU JOQVU@TJ[FPVUQVU@TJ[F

    PGGTFU@UPQ JOQVU@TJ[FPVUQVU@TJ[F

    HSPVOE@USVUIUGJNBHFDSPQ@UP@CPVOEJOH@CPY DSPQQFE@JNBHF 

    PGGTFU@UPQ PGGTFU@MFGU 

    PVUQVU@TJ[F PVUQVU@TJ[F

    HSPVOE@USVUIUGFYQBOE@EJNT HSPVOE@USVUI EJN

    HSPVOE@USVUITBQQFOE HSPVOE@USVUI


    MS@JNBHFTUGDPODBU MS@JNBHFT BYJT

    HSPVOE@USVUITUGDPODBU HSPVOE@USVUIT BYJT


    SFUVSOMS@JNBHFT HSPVOE@USVUIT


    View Slide


  62. 510x510
    decode_jpeg
    random_crop

    View Slide

  63. MPBE@JNBHF

    [batch_size, height, width, channels]
    [height, width, channels]

    View Slide

  64. MS@JNBHF@CBUDI HSPVOE@USVUI@CBUDIUGUSBJOTIVGGMF@CBUDI 


    CBUDI@TJ[F'-"(4CBUDI@TJ[F 

    DBQBDJUZDBQBDJUZ 

    FORVFVF@NBOZ5SVF 

    NJO@BGUFS@EFRVFVF'-"(4NJO@BGUFS@EFRVFVF 

    OVN@UISFBET'-"(4OVN@UISFBET


    UGUSBJOTIV⒐F@CBUDI

    View Slide


  65. 4UFQ -PTT 5JNFNTTUFQ
    4UFQ -PTT 5JNFNTTUFQ
    4UFQ -PTT 5JNFNTTUFQ
    4UFQ -PTT 5JNFNTTUFQ
    4UFQ -PTT 5JNFNTTUFQ
    4UFQ -PTT 5JNFNTTUFQ
    4UFQ -PTT 5JNFNTTUFQ
    4UFQ -PTT 5JNFNTTUFQ
    4UFQ -PTT 5JNFNTTUFQ
    4UFQ -PTT 5JNFNTTUFQ
    4UFQ -PTT 5JNFNTTUFQ
    4UFQ -PTT 5JNFNTTUFQ
    128 sample / batch
    learning rate 0.001

    View Slide


  66. ύλʔϯ$ɿ$16ͷΦʔόʔϔου

    View Slide

  67. ·ͱΊ
    (16͸଎͍ɻίʔυ͕গ͠൥ࡶʹͳΔ͚ͲɺಘΒΕΔ଎͞͸ັྗ
    ͘͞ΒͷߴՐྗ͸շదɻଟগɺඇޮ཰తͳίʔυΛॻ͍ͯ΋ؾ͔ͮͳ͍͘Β͍
    ($&ͷ(16Πϯελϯε΋଎͍ɻW$16ͷ਺ͱ͔ϝϞϦ༰ྔͱ͔ɺ՝୊ʹର͢
    Δ࠷దεϖοΫΛಋ͘ϊ΢ϋ΢͕ཉ͍͠
    .-&OHJOFʜʜʁ

    View Slide

  68. Impress R&DࣾΑΓ

    Print On Demand ˍ ిࢠॻ੶Ͱ
    ݄̑Լ० ൃചܾఆ
    ݄̐̕೔ʢ೔ʣ ΞΩόɾεΫΤΞ
    ʰٕज़ॻయ̎ ͓ʔ̍̎ʱʹͯ
    TensorFlow͸͡Ί·ͨ͠

    Super Resolution ʔ ௒ղ૾
    ׬ച͠·ͨ͠

    View Slide

  69. C-LIS CO., LTD.
    ֤੡඼໊ɾϒϥϯυ໊ɺձ໊ࣾͳͲ͸ɺҰൠʹ֤ࣾͷ঎ඪ·ͨ͸ొ࿥঎ඪͰ͢ɻຊࢿྉதͰ͸ɺ˜ɺšɺäΛׂѪ͍ͯ͠·͢ɻ
    ຊࢿྉ͸ɺ༗ݶձࣾγʔϦεͷஶ࡞෺Ͱ͋ΓɺΫϦΤΠςΟϒίϞϯζͷදࣔඇӦརܧঝ6OQPSUFEϥΠηϯεͷݩͰެ։͍ͯ͠·͢ɻ

    View Slide