Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Collision Prediction and Visual Explanation Gen...
Search
Semantic Machine Intelligence Lab., Keio Univ.
PRO
September 06, 2021
Technology
0
940
Collision Prediction and Visual Explanation Generation for Object Placement Task by Domestic Service Robots
Semantic Machine Intelligence Lab., Keio Univ.
PRO
September 06, 2021
Tweet
Share
More Decks by Semantic Machine Intelligence Lab., Keio Univ.
See All by Semantic Machine Intelligence Lab., Keio Univ.
[Journal club] MOKA: Open-Vocabulary Robotic Manipulation through Mark-Based Visual Prompting
keio_smilab
PRO
0
27
[Journal club] Seeing the Unseen: Visual Common Sense for Semantic Placement
keio_smilab
PRO
0
26
[Journal club] Language-Embedded Gaussian Splats (LEGS): Incrementally Building Room-Scale Representations with a Mobile Robot
keio_smilab
PRO
0
7
[Journal club] RAM: Retrieval-Based Affordance Transfer for Generalizable Zero-Shot Robotic Manipulation
keio_smilab
PRO
1
11
[Journal club] Simplified State Space Layers for Sequence Modeling
keio_smilab
PRO
0
26
[Journal club] Detecting and Preventing Hallucinations in Large Vision Language Models
keio_smilab
PRO
1
72
[IROS24] Object Segmentation from Open-Vocabulary Manipulation Instructions Based on Optimal Transport Polygon Matching with Multimodal Foundation Models
keio_smilab
PRO
0
46
[IROS24] Learning-To-Rank Approach for Identifying Everyday Objects Using a Physical-World Search Engine
keio_smilab
PRO
0
77
[RSJ24] オフライン軌道生成による軌道に基づくOpen-Vocabulary物体操作タスクにおける将来成否予測
keio_smilab
PRO
1
120
Other Decks in Technology
See All in Technology
アジャイルチームがらしさを発揮するための目標づくり / Making the goal and enabling the team
kakehashi
3
170
Amazon CloudWatch Network Monitor のススメ
yuki_ink
1
210
Adopting Jetpack Compose in Your Existing Project - GDG DevFest Bangkok 2024
akexorcist
0
120
複雑なState管理からの脱却
sansantech
PRO
1
160
【Startup CTO of the Year 2024 / Audience Award】アセンド取締役CTO 丹羽健
niwatakeru
0
1.4k
LINEヤフーにおけるPrerender技術の導入とその効果
narirou
1
200
強いチームと開発生産性
onk
PRO
36
12k
組織成長を加速させるオンボーディングの取り組み
sudoakiy
2
250
AWS Lambda のトラブルシュートをしていて思うこと
kazzpapa3
2
200
Terraform Stacks入門 #HashiTalks
msato
0
360
EventHub Startup CTO of the year 2024 ピッチ資料
eventhub
0
130
The Role of Developer Relations in AI Product Success.
giftojabu1
0
150
Featured
See All Featured
Bootstrapping a Software Product
garrettdimon
PRO
305
110k
GitHub's CSS Performance
jonrohan
1030
460k
A Modern Web Designer's Workflow
chriscoyier
693
190k
[RailsConf 2023] Rails as a piece of cake
palkan
52
4.9k
Adopting Sorbet at Scale
ufuk
73
9.1k
VelocityConf: Rendering Performance Case Studies
addyosmani
325
24k
Optimising Largest Contentful Paint
csswizardry
33
2.9k
Visualization
eitanlees
145
15k
The Power of CSS Pseudo Elements
geoffreycrofte
73
5.3k
Testing 201, or: Great Expectations
jmmastey
38
7.1k
Faster Mobile Websites
deanohume
305
30k
Optimizing for Happiness
mojombo
376
70k
Transcript
畑中駿平1,上田雄斗1,植田有咲1,平川翼2,山下隆義2,藤吉弘亘2,杉浦孔明1 1慶應義塾大学,2中部大学 生活支援ロボットによる物体配置タスクにおける 危険性予測および視覚的説明生成
背景:生活支援ロボットは安全にものを置くことが求められる • 人手不足の解決策として生活支援ロボットは有望視 • 生活支援ロボットの基本的動作のひとつに物体配置 − 安全配置のために衝突回避は重要 2 https://global.toyota/jp/download/8725215
問題設定:軽微な接触の連鎖から生じる衝突を予測することは難しい 1. ロボットのアームがペットボトルに接触 2. ペットボトルがマヨネーズに接触 3. マヨネーズが落下する危険な衝突が発生 物体同士の物理的相互作用の連鎖の 予測は難しい 3
✓ 衝突確率の予測 ✓ 安全領域の可視化 本研究のタスク
既存研究:生活支援ロボットが行うべき代表的なサブタスク 4 サブタスク 代表的研究 概要 Pick & Place [Zeng+, ICRA18]
新規の物体を把持して認識可能 Grasping DIRL [Tanwani+, CoRL20] 敵対的学習を用いた実環境転用 Placing PonNet [Magassouba+, AR21] Transformer PonNet [植田+, JSAI21] Attention Branch Network [Fukui+, CVPR19] を 用いて物体同士の衝突確率を予測 DIRL Transformer PonNet [Zeng+, ICRA18]
既存手法の問題点:安全である領域のみを可視化することができない Transformer PonNet では安全領域と危険領域が混合して可視化されていた − ユーザに安全領域を事前に提示できれば,物体配置の最終的な判断を仰ぐことが可能 5 安全領域 危険領域
安全領域のみ可視化する手法を提案 • ABN の特徴:画像内のどの領域に注目しているかを示す attention map を可視化
提案手法:対象物体を配置する際の衝突確率の予測・安全領域の可視化 6 入力:対象物体と配置場所のRGBD画像 出力:衝突確率・安全領域の可視化画像
デモ動画:衝突確率を予測し、安全である場合に物体を配置 7
構造 ( 1/4 ):3つのモジュールから構成 8 ①Feature Extractor,②Attention Branch,③Transformer Perception Branch
の3つから構成 ① ② ③
✓ Feature Extractor ( FE ) 配置領域・対象物体のRGBD画像の特徴量を ResNet18 の前半部分で抽出 構造
( 2/4 ):配置領域と対象物体画像の特徴量抽出 9 切り出し ゼロ埋め 𝒙 𝑘 dst 𝒙 𝑘 trg 𝑘 ∈ {rgb, depth} FE FE 配置領域 対象物体
構造 ( 3/4 ):衝突に関連する部分に注目して重み付け ✓ Attention Branch ( AB )
𝑤𝑘∈{rgb,depth} = 1 + 𝑎𝑘 ⨀ 𝑓𝑘 10 Attention Map 𝑎𝑘
構造 ( 4/4 ):RGBとdepthの特徴量を融合して衝突確率を予測 ✓ Transformer Perception Branch ( TPB
) ABNのPerception branch構造にTransformerを導入 [ 植田+, JSAI21 ] 11 𝑸(i)= 𝑊 𝑞 (𝑖)𝑜 𝑘 (𝑖), 𝑲(i) = 𝑊 𝑘 (𝑖)𝑜 𝑘 (𝑖), 𝑽(i) = 𝑊𝑣 (𝑖)𝑜 𝑘 (𝑖) 𝜔𝑘 = 𝑽(𝑖) softmax 𝑸(i) 𝑲 𝑖 T 𝑑𝑘 , 𝑑𝑘 = 𝐻 𝐴 𝑚𝑘 = 𝑸(i) + 𝛼 ⨀ 𝒉(i) 𝐻 は入力𝑜 𝑘 (𝑖)の次元数 𝐴 はヘッド数を表す
新規性:Attention map と 平面検出による安全領域 𝑠 の可視化 𝑠 = 𝑎rgb +
𝑎depth 2 ⨀ℎ ℎ :平面と検出されたピクセルの集合 ⊕ ⨀ Plane detection ℎ [Wang+, 3DV18] 安全領域 𝑠 12 𝑎rgb 𝑎depth
実験設定:simulation 環境によるデータセット 各配置場所はシミュレータによって自動的にラベル付け 13 PonNet-A-Sim データセット − 中心領域のみに配置 − 約
12,000 の衝突サンプルが記録 PonNet-B-Sim データセット − 9 領域に配置 − 各領域 1,500,合計約 13,500 の衝突サンプルが記録 − 家具,明るさ,背景の異なる 5 種類の場面を使用
定性的結果:シミュレーションデータの成功例 ✓ 障害物を避けた領域を安全領域 として獲得 RGB 画像 安全領域 𝒔 TN (
非衝突 ) TP ( 衝突 ) 14 ✓ 顕著な安全領域は可視化されない
Method Accuracy Train : A-Sim Test : A-Sim Train :
B-Sim Test : B-Sim Plane detection [Wang+, 3DV18] 82.5 72.30 PonNet [Magassouba+, AR21] 90.94±0.22 82.29±0.68 Transformer PonNet [植田+, JSAI21] パラメータ数:約2600万 91.26±0.21 82.10±0.52 Ours パラメータ数:約900万 91.23±0.32 82.28±1.77 定量的結果:ベースラインと同等または上回る結果 ✓ 提案手法はパラメータ数を削減しつつベースライン手法と同等の精度 15
エラー分析:透過物体や人から見ても判断が難しい例 入力画像 ( RGB ) 16 Attention map ( RGB
) Attention map ( Depth ) 例1 例2 正解:衝突 予測:非衝突 透過物体を捉える 人の目から見ても 判断が難しい衝突
追加実験:実機環境によるデータ収集・実験 17 • トヨタの生活支援ロボット Human Support Robot ( HSR )
を使用 • 収集した 200 個のデータを Train / Test 用に分割 ✓ 実機環境への転用の可能性を示唆 Method Accuracy Train : A-Sim + Real ( 100 ) Test : Real ( 100 ) Ours 87.39±3.12
結論:衝突確率の低い安全領域を可視化する手法の提案 本研究のポイント ✓ Attention mapと平面検出を組み合わせて 安全な領域の候補を可視化 18