Upgrade to Pro — share decks privately, control downloads, hide ads and more …

[Journal club] GIRAFFE: Representing Scenes As Compositional Generative Neural Feature Fields

[Journal club] GIRAFFE: Representing Scenes As Compositional Generative Neural Feature Fields

More Decks by Semantic Machine Intelligence Lab., Keio Univ.

Other Decks in Technology

Transcript

  1. GIRAFFE: Representing Scenes As Compositional Generative Neural Feature Fields Michael

    Niemeyer, Andreas Geiger, Max Planck Institute for Intelligent Systems, Tubingen University of Tubingenin In CVPR, 2021, pp. 11453-11464 杉浦孔明研究室 飯岡 雄偉
  2. 関連研究:3Dのシーン構成を教師なしでつかみきれていない 4 model detail GAN [Ian+ NIPS2014] 〇教師なしでの学習 △3Dのシーン構成はブラックボックス化 NeRF

    [Ben+ ECCV2020] 〇3Dのシーン構成をつかむ △カメラパラメータが必要 https://qiita.com/shionhonda/items/330c9fdf78e62db3402b
  3. 提案手法:GIRAFFEの全体構造 5 1. Positional encoding 2. Generative neural feature fields

    3. Compositional encoder 4. Volume rendering 5. 2D neural rendering 6. Discriminator 正規分布
  4. 提案手法:GIRAFFEの各構造 6 ◼ Positional encoding ➢ 座標や視点方向を帯域ごとに区分する ➢ 生成の性能に影響 •

    バンドパスフィルタのように働く • 性能変化の詳細はAppendixに ➢ 本論文では,回転角に対してより正準な角度をとる
  5. 提案手法:GIRAFFEの各構造 7 ◼ Generative neural feature fields ➢ 入力 •

    座標𝐱・視点方向𝐝・形状𝐳𝑆 ・外観𝐳𝑎 • 初期値はすべて正規分布に従う ➢ 出力 • 体積密度𝜎(≈不透明度) • 放射輝度𝐟(≈RGB) アフィン変換によるスケール変更・移動・回転の表現 逆変換でオブジェクト固有の空間へ
  6. 提案手法:GIRAFFEの各構造 8 ◼ Compositional encoder ➢ 物体が普遍的に持つ特徴量を抽出 ➢ 𝑁個のエントリーの重みづけ平均をとる •

    各エントリーはそれぞれ形状・外観・ア フィン変換のパラメータを持つ 不透明度が大きいほど,そのRGB値 の重要度が大きくなる
  7. 提案手法:GIRAFFEの各構造 9 ◼ Volume rendering ➢ ボクセル->ピクセルの中間特徴量を出力(𝑀𝑓 次元) ➢ 𝑁𝑠

    個のレイについて,それぞれ放射輝度を求める • 𝛼𝑗 は体積密度𝜎𝑗 及び𝑗 + 1番目との距離𝛿𝑗 で決まる 𝑗 − 1番目までの透明度 𝑗番目の不透明度
  8. 提案手法:GIRAFFEの各構造 10 ◼ 2D neural rendering ➢ 放射輝度から,2DにおけるRGB値を出力 • Nearest

    NeighborとBilinearによる拡大 • Convolutionによって,チャネル数を減らす
  9. 提案手法:GIRAFFEの各構造 11 ◼ Discriminator / Generator ➢ Adversarial loss(敵対性損失)により学習 1.

    識別性能𝑉を最大化するように識別器𝐷を学習 ✓ 生成画像と実画像を2値で分類 2. その中で𝑉を最小化するように生成器𝐺を学習 ✓ 識別器を騙せる画像の生成が目的 Generator
  10. 実験設定:多様なデータセットで有用性を調べる ✓ 実世界の画像データセット ➢ 単一オブジェクト: CelebA, CompCars等 ✓ シミュレーションの画像データセット(Chairs) ➢

    複数オブジェクト: CLEVR 12 CelebA : https://mmlab.ie.cuhk.edu.hk/projects/CelebA.html CompCars : http://mmlab.ie.cuhk.edu.hk/datasets/comp_cars/ CLEVR : https://cs.stanford.edu/people/jcjohns/clevr/
  11. Appendix:Nearest NeighborとBilinearによる拡大 18 ◼ Nearest Neighbor  元の画素をコピーして拡大していく  素早い補完が可能

     拡大しすぎるとドット絵のようになる ◼ Bilinear  両端の画素の平均値で拡大していく  ドット絵が改善  ぼやけたような画像になる可能性が高い https://qiita.com/yoya/items/f167b2598fec98679422
  12. Appendix:他手法との回転時のゆがみの違い ➢ HoloGANでは平面のように映る前方からや後方 からが苦手 ⇒ 3Dのシーン構成をつかみ切れていないためか ➢ GRAFは回転自体が不得意 ⇒ 背景とオブジェクトを同じ構成でとらえるため,

    回転の難易度が高そう ➢ GIRAFFEはオブジェクトはゆがまないが,実際に背景 はかなりノイズが入った ⇒ epoch数が足りなかったか,背景への表現力も あげるべきか 19