Lock in $30 Savings on PRO—Offer Ends Soon! ⏳
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
フリーランスだらけの ML基盤開発 / ML Infra Development with F...
Search
Kengo Miyakawa
December 12, 2019
Technology
3
2.8k
フリーランスだらけの ML基盤開発 / ML Infra Development with Freelance
Kengo Miyakawa
December 12, 2019
Tweet
Share
Other Decks in Technology
See All in Technology
「図面」から「法則」へ 〜メタ視点で読み解く現代のソフトウェアアーキテクチャ〜
scova0731
0
490
202512_AIoT.pdf
iotcomjpadmin
0
140
Bedrock AgentCore Memoryの新機能 (Episode) を試してみた / try Bedrock AgentCore Memory Episodic functionarity
hoshi7_n
2
1.8k
オープンソースKeycloakのMCP認可サーバの仕様の対応状況 / 20251219 OpenID BizDay #18 LT Keycloak
oidfj
0
170
AWSに革命を起こすかもしれない新サービス・アップデートについてのお話
yama3133
0
500
モダンデータスタックの理想と現実の間で~1.3億人Vポイントデータ基盤の現在地とこれから~
taromatsui_cccmkhd
2
260
LayerX QA Night#1
koyaman2
0
260
Strands AgentsとNova 2 SonicでS2Sを実践してみた
yama3133
1
1.8k
事業の財務責任に向き合うリクルートデータプラットフォームのFinOps
recruitengineers
PRO
2
200
ペアーズにおけるAIエージェント 基盤とText to SQLツールの紹介
hisamouna
2
1.6k
Oracle Database@Google Cloud:サービス概要のご紹介
oracle4engineer
PRO
1
760
Lookerで実現するセキュアな外部データ提供
zozotech
PRO
0
200
Featured
See All Featured
Ethics towards AI in product and experience design
skipperchong
1
140
Skip the Path - Find Your Career Trail
mkilby
0
27
Put a Button on it: Removing Barriers to Going Fast.
kastner
60
4.1k
The AI Search Optimization Roadmap by Aleyda Solis
aleyda
1
5k
VelocityConf: Rendering Performance Case Studies
addyosmani
333
24k
My Coaching Mixtape
mlcsv
0
13
JAMstack: Web Apps at Ludicrous Speed - All Things Open 2022
reverentgeek
1
290
Breaking role norms: Why Content Design is so much more than writing copy - Taylor Woolridge
uxyall
0
120
From Legacy to Launchpad: Building Startup-Ready Communities
dugsong
0
110
Code Review Best Practice
trishagee
74
19k
Exploring the relationship between traditional SERPs and Gen AI search
raygrieselhuber
PRO
2
3.4k
Cheating the UX When There Is Nothing More to Optimize - PixelPioneers
stephaniewalter
286
14k
Transcript
ϑϦʔϥϯεͩΒ͚ͷ MLج൫։ൃ ٶ݈ޗ @MLPP#5 2019/12/12 1
ٶ ݈ޗ (@N30nnnn) ࣗݾհ • ܦӦֶ - ౷ܭֶઐ߈ • ݸਓࣄۀओ
• σʔλੳ → ը૾ܥML → EM + MLOps • ݱࡏ2ࣾͰ MLOps 2
৬ྺ • ࠂཧళ (σʔλੳ) • ਓೳडୗ։ൃ1 (ML) • ਓೳडୗ։ൃ2 (ML,
EM) • (ݱ৬) גࣜձࣾΫϥϏε (MLOps, EM) ᵋ ձܭܥը૾ॲཧ • (ݱ৬) גࣜձࣾϨΞδϣϒ (MLOps) ᵋ ΦϯϥΠϯӳձ EM: HowͱWho EM: HowͱWho 3 ※ڐՄΛड͚ͯެ։ ※2019/12 ݱࡏ
MLνʔϜͷϝϯόʔߏ • (ݱ৬) גࣜձࣾΫϥϏε (MLOps, EM) ᵋ ձܭܥը૾ॲཧ • (ݱ৬)
גࣜձࣾϨΞδϣϒ (MLOps) ᵋ ΦϯϥΠϯӳձ ਖ਼ࣾһ: 2ਓ ϑϦʔ: 7ਓ ਖ਼ࣾһ: 2ਓ ϑϦʔ: 5ਓ 4 ※ڐՄΛड͚ͯެ։ ※2019/12 ݱࡏ
Agenda • ࠷ۙ࡞͍ͬͯΔϓϩμΫτͷߏ • Fargateϕʔε • EKSϕʔε • ϑϦʔϥϯε͕ଟ͍ϓϩδΣΫτͷΈ •
ਓࡐαΠΫϧͷ͞ • ઐྖҬͷҧ͍ • ͞ΕͨMLίʔυཧ • ߨͨ͡ղܾࡦ • ΠϯλʔϑΣʔεͷపఈ - ؔ৺ͷ 5
Fargateͷࣄྫ 6
ϓϩμΫτ: Fargate - ਪڥ • 1API - 1ϦϙδτϦ • gitflowͰ
develop/master → ։ൃ/ຊ൪ • ΠϝʔδϏϧυͱ devσϓϩΠCircleCIͰࣗಈԽ • ΠϯϑϥTerraform 7 ※ڐՄΛड͚ͯެ։
ϓϩμΫτ: Fargate - ࠶ֶशػߏ 8 • ֶशσʔλRDSʹ. • ఆظతʹֶशΛτϦΨ. •
Dynamoʹֶश݁Ռอଘ • Dynamoࢀর͠࠷ྑͷϞσ ϧΛऔಘ • RDSʹཷΊΔͷΈͰɺ ੑೳ্/มԽΛଊ͑ ͍ͨ ※ڐՄΛड͚ͯެ։
ϓϩμΫτ: Fargate - ࠶ֶशػߏ 9 • ֶशσʔλRDSʹ. • ఆظతʹֶशΛτϦΨ. •
Dynamoʹֶश݁Ռอଘ • Dynamoࢀর͠࠷ྑͷϞσ ϧΛऔಘ • RDSʹཷΊΔͷΈͰɺ ੑೳ্/มԽΛଊ͑ ͍ͨ ※ڐՄΛड͚ͯެ։
ϓϩμΫτ: Fargate - ࠶ֶशػߏ 10 • ֶशσʔλRDSʹ. • ఆظతʹֶशΛτϦΨ. •
Dynamoʹֶश݁Ռอଘ • Dynamoࢀর͠࠷ྑͷϞσ ϧΛऔಘ • RDSʹཷΊΔͷΈͰɺ ੑೳ্/มԽΛଊ͑ ͍ͨ ※ڐՄΛड͚ͯެ։
ϓϩμΫτ: Fargate - ࠶ֶशػߏ 11 • ֶशσʔλRDSʹ. • ఆظతʹֶशΛτϦΨ. •
Dynamoʹֶश݁Ռอଘ • Dynamoࢀর͠࠷ྑͷϞσ ϧΛऔಘ • RDSʹཷΊΔͷΈͰɺ ੑೳ্/มԽΛଊ͑ ͍ͨ ※ڐՄΛड͚ͯެ։
EKSͷࣄྫ 12
ϓϩμΫτ: EKS - ਪڥ • ෳͷೖྗΛ·ͱΊͯਪఆ ΩϡʔܗࣜͷAPI • ࠶ֶशݕ౼த •
develop/master → ։ൃ/ຊ൪ • ΠϝʔδϏϧυ CircleCIͰࣗಈԽ • ΠϯϑϥTerraform 13 ※ڐՄΛड͚ͯެ։
ϓϩμΫτ: EKS - ਪڥ • ෳͷೖྗΛ·ͱΊͯਪఆ ΩϡʔܗࣜͷAPI • ࠶ֶशݕ౼த •
develop/master → ։ൃ/ຊ൪ • ΠϝʔδϏϧυ CircleCIͰࣗಈԽ • ΠϯϑϥTerraform 14 ※ڐՄΛड͚ͯެ։
ϓϩμΫτ: EKS - ਪڥ • ෳͷೖྗΛ·ͱΊͯਪఆ ΩϡʔܗࣜͷAPI • ࠶ֶशݕ౼த •
develop/master → ։ൃ/ຊ൪ • ΠϝʔδϏϧυ CircleCIͰࣗಈԽ • ΠϯϑϥTerraform 15 ※ڐՄΛड͚ͯެ։
ϓϩμΫτ: EKS - ਪڥ • ෳͷೖྗΛ·ͱΊͯਪఆ ΩϡʔܗࣜͷAPI • ࠶ֶशݕ౼த •
develop/master → ։ൃ/ຊ൪ • ΠϝʔδϏϧυ CircleCIͰࣗಈԽ • ΠϯϑϥTerraform 16 ※ڐՄΛड͚ͯެ։
• ͳΔ͘γϯϓϧͳ࡞Γ • δϣΠϯίετݮ • ຊ࣭తͳ։ൃʹઐ೦ • ҰํͰͳΔ͘Ϟμϯʹ • ৽͍ؒ͠ʹདྷͯͨ͘Ίͷڥ࡞Γ
17
ϑϦʔϥϯε͕ଟ͍PJͷΈ 18 • ਓࡐαΠΫϧͷ͞ • ઐྖҬͷҧ͍ • ͞ΕͨMLίʔυཧ
ϑϦʔϥϯε͕ଟ͍PJͷΈ1 • ਓࡐαΠΫϧͷ͞ • 3ϲ݄, 6ϲ݄Ͱ͍ͳ͘ͳΔ͜ͱ • ࠾༻ଆ߹ɾΤϯδχΞଆ߹ ΩϟονΞοϓͷ͕࣌ؒπϥ͍ 19
ϑϦʔϥϯε͕ଟ͍PJͷΈ2 • ઐྖҬͷҧ͍ • ඞͣ͠ML / αʔόʔαΠυ྆ํͷ͕ࣝ༗ΔΘ͚Ͱͳ͍ • αʔόʔαΠυͷ͠͞(e.g. APIपΓ,
ฒߦॲཧ) • MLͷ͠͞(e.g. ੑೳࢦඪ, Train,Validation,Test…) • ඇઐྖҬʹੵۃతͱݶΒͳ͍ ίϛϡχέʔγϣϯίετ͕πϥ͍ 20
ϑϦʔϥϯε͕ଟ͍PJͷΈ3 • ͞ΕͨMLίʔυཧ • લఏͱ͞ΕΔσΟϨΫτϦߏ / ਖ਼ղϥϕϧܗࣜ • ୯ҰͷࣈԽͮ͠Β͍ੑೳධՁ MLͷཧ͕πϥ͍
21
ΠϯλʔϑΣʔεͷపఈ 22
ؔ৺ͷ • Pythonʹଘࡏ͠ͳ͍ΠϯλʔϑΣʔε • σʔλͷࡏΓॲμϯϩʔυͳͲʹؔ༩ͨ͘͠ͳ͍ML • Ϟσϧͷൺֱํ๏લॲཧޙॲཧͳͲʹؔ༩ͨ͘͠ͳ͍αʔό • ͞Εͨίʔυͷ࣮ଶѲΛ؆ૉԽ͍ͨ͠ཧऀ ΠϯλʔϑΣʔεΛݻΊͯίϛϡχέʔγϣϯΛݮΒ͢
23
e.g. ਪఆॲཧͷ߹ 24 αʔόʔαΠυ ML
e.g. ਪఆॲཧͷ߹ 25 αʔόʔαΠυ σʔλͷॴࡏ, औಘํ๏ΛML͔Β ฦ٫࣌ͷܗΛ αʔό͔Β ML σʔλͷॴࡏΛML͕
ؾʹ͢Δඞཁ͕ͳ͍
e.g. ࠶ֶशػߏ αʔόʔαΠυ ML αʔόʔαΠυ 26 ݺͼग़͠
e.g. ࠶ֶशػߏ αʔόʔαΠυ ML αʔόʔαΠυ σʔλͷॴࡏ, औಘํ๏ΛML͔Β σʔλͷॴࡏ, औಘํ๏ΛML͔Β ੑೳൺֱͷ
Ϟσϧબͷ໌ࣔ 27 Ϟσϧաڈใͷॴࡏ, औಘ,هΛ Ϟσϧաڈใͷॴࡏ, औಘ,هΛ
e.g. ࠶ֶशػߏ αʔόʔαΠυ ML αʔόʔαΠυ ࠶ֶश༻σʔλϕʔε •ը૾ྨςʔϒϧ •จࣈྻݕςʔϒϧ •OCRςʔϒϧ •……
நԽ 28
• ݸʑਓͷઐྖҬੌ͍ • ϑϦʔϥϯεͷੜ໋ઢ • ؔ৺֎ʹؔ༩ͯ͠ΒΘͳͯ͘ྑ͍ߏ • ҟͳΔઐؒͰͷίϛϡχέʔγϣϯݮ͠ෛ୲ݮ • αʔόʔαΠυͷΈͳΒͣMLϑϦʔϥϯεͰՄೳʹ
29 ·ͱΊ