Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
フリーランスだらけの ML基盤開発 / ML Infra Development with F...
Search
Kengo Miyakawa
December 12, 2019
Technology
3
2.8k
フリーランスだらけの ML基盤開発 / ML Infra Development with Freelance
Kengo Miyakawa
December 12, 2019
Tweet
Share
Other Decks in Technology
See All in Technology
アクセスピークを制するオートスケール再設計: 障害を乗り越えKEDAで実現したリソース管理の最適化
myamashii
1
330
DatabricksにOLTPデータベース『Lakebase』がやってきた!
inoutk
0
150
60以上のプロダクトを持つ組織における開発者体験向上への取り組み - チームAPIとBackstageで構築する組織の可視化基盤 - / sre next 2025 Efforts to Improve Developer Experience in an Organization with Over 60 Products
vtryo
3
980
Amplify Gen2から知るAWS CDK Toolkit Libraryの使い方/How to use the AWS CDK Toolkit Library as known from Amplify Gen2
fossamagna
1
240
TLSから見るSREの未来
atpons
2
240
Lufthansa ®️ USA Contact Numbers: Complete 2025 Support Guide
lufthanahelpsupport
0
240
[SRE NEXT] ARR150億円_エンジニア140名_27チーム_17プロダクトから始めるSLO.pdf
satos
5
2.1k
20250708オープンエンドな探索と知識発見
sakana_ai
PRO
4
860
大量配信システムにおけるSLOの実践:「見えない」信頼性をSLOで可視化
plaidtech
PRO
0
290
[ JAWS-UG千葉支部 x 彩の国埼玉支部 ]ムダ遣い卒業!FinOpsで始めるAWSコスト最適化の第一歩
sh_fk2
2
150
Claude Code に プロジェクト管理やらせたみた
unson
8
4.9k
TableauLangchainとは何か?
cielo1985
1
150
Featured
See All Featured
The Straight Up "How To Draw Better" Workshop
denniskardys
235
140k
Exploring the Power of Turbo Streams & Action Cable | RailsConf2023
kevinliebholz
34
5.9k
A Modern Web Designer's Workflow
chriscoyier
695
190k
Statistics for Hackers
jakevdp
799
220k
4 Signs Your Business is Dying
shpigford
184
22k
ReactJS: Keep Simple. Everything can be a component!
pedronauck
667
120k
CSS Pre-Processors: Stylus, Less & Sass
bermonpainter
357
30k
Templates, Plugins, & Blocks: Oh My! Creating the theme that thinks of everything
marktimemedia
31
2.4k
YesSQL, Process and Tooling at Scale
rocio
173
14k
Producing Creativity
orderedlist
PRO
346
40k
"I'm Feeling Lucky" - Building Great Search Experiences for Today's Users (#IAC19)
danielanewman
229
22k
Why You Should Never Use an ORM
jnunemaker
PRO
58
9.4k
Transcript
ϑϦʔϥϯεͩΒ͚ͷ MLج൫։ൃ ٶ݈ޗ @MLPP#5 2019/12/12 1
ٶ ݈ޗ (@N30nnnn) ࣗݾհ • ܦӦֶ - ౷ܭֶઐ߈ • ݸਓࣄۀओ
• σʔλੳ → ը૾ܥML → EM + MLOps • ݱࡏ2ࣾͰ MLOps 2
৬ྺ • ࠂཧళ (σʔλੳ) • ਓೳडୗ։ൃ1 (ML) • ਓೳडୗ։ൃ2 (ML,
EM) • (ݱ৬) גࣜձࣾΫϥϏε (MLOps, EM) ᵋ ձܭܥը૾ॲཧ • (ݱ৬) גࣜձࣾϨΞδϣϒ (MLOps) ᵋ ΦϯϥΠϯӳձ EM: HowͱWho EM: HowͱWho 3 ※ڐՄΛड͚ͯެ։ ※2019/12 ݱࡏ
MLνʔϜͷϝϯόʔߏ • (ݱ৬) גࣜձࣾΫϥϏε (MLOps, EM) ᵋ ձܭܥը૾ॲཧ • (ݱ৬)
גࣜձࣾϨΞδϣϒ (MLOps) ᵋ ΦϯϥΠϯӳձ ਖ਼ࣾһ: 2ਓ ϑϦʔ: 7ਓ ਖ਼ࣾһ: 2ਓ ϑϦʔ: 5ਓ 4 ※ڐՄΛड͚ͯެ։ ※2019/12 ݱࡏ
Agenda • ࠷ۙ࡞͍ͬͯΔϓϩμΫτͷߏ • Fargateϕʔε • EKSϕʔε • ϑϦʔϥϯε͕ଟ͍ϓϩδΣΫτͷΈ •
ਓࡐαΠΫϧͷ͞ • ઐྖҬͷҧ͍ • ͞ΕͨMLίʔυཧ • ߨͨ͡ղܾࡦ • ΠϯλʔϑΣʔεͷపఈ - ؔ৺ͷ 5
Fargateͷࣄྫ 6
ϓϩμΫτ: Fargate - ਪڥ • 1API - 1ϦϙδτϦ • gitflowͰ
develop/master → ։ൃ/ຊ൪ • ΠϝʔδϏϧυͱ devσϓϩΠCircleCIͰࣗಈԽ • ΠϯϑϥTerraform 7 ※ڐՄΛड͚ͯެ։
ϓϩμΫτ: Fargate - ࠶ֶशػߏ 8 • ֶशσʔλRDSʹ. • ఆظతʹֶशΛτϦΨ. •
Dynamoʹֶश݁Ռอଘ • Dynamoࢀর͠࠷ྑͷϞσ ϧΛऔಘ • RDSʹཷΊΔͷΈͰɺ ੑೳ্/มԽΛଊ͑ ͍ͨ ※ڐՄΛड͚ͯެ։
ϓϩμΫτ: Fargate - ࠶ֶशػߏ 9 • ֶशσʔλRDSʹ. • ఆظతʹֶशΛτϦΨ. •
Dynamoʹֶश݁Ռอଘ • Dynamoࢀর͠࠷ྑͷϞσ ϧΛऔಘ • RDSʹཷΊΔͷΈͰɺ ੑೳ্/มԽΛଊ͑ ͍ͨ ※ڐՄΛड͚ͯެ։
ϓϩμΫτ: Fargate - ࠶ֶशػߏ 10 • ֶशσʔλRDSʹ. • ఆظతʹֶशΛτϦΨ. •
Dynamoʹֶश݁Ռอଘ • Dynamoࢀর͠࠷ྑͷϞσ ϧΛऔಘ • RDSʹཷΊΔͷΈͰɺ ੑೳ্/มԽΛଊ͑ ͍ͨ ※ڐՄΛड͚ͯެ։
ϓϩμΫτ: Fargate - ࠶ֶशػߏ 11 • ֶशσʔλRDSʹ. • ఆظతʹֶशΛτϦΨ. •
Dynamoʹֶश݁Ռอଘ • Dynamoࢀর͠࠷ྑͷϞσ ϧΛऔಘ • RDSʹཷΊΔͷΈͰɺ ੑೳ্/มԽΛଊ͑ ͍ͨ ※ڐՄΛड͚ͯެ։
EKSͷࣄྫ 12
ϓϩμΫτ: EKS - ਪڥ • ෳͷೖྗΛ·ͱΊͯਪఆ ΩϡʔܗࣜͷAPI • ࠶ֶशݕ౼த •
develop/master → ։ൃ/ຊ൪ • ΠϝʔδϏϧυ CircleCIͰࣗಈԽ • ΠϯϑϥTerraform 13 ※ڐՄΛड͚ͯެ։
ϓϩμΫτ: EKS - ਪڥ • ෳͷೖྗΛ·ͱΊͯਪఆ ΩϡʔܗࣜͷAPI • ࠶ֶशݕ౼த •
develop/master → ։ൃ/ຊ൪ • ΠϝʔδϏϧυ CircleCIͰࣗಈԽ • ΠϯϑϥTerraform 14 ※ڐՄΛड͚ͯެ։
ϓϩμΫτ: EKS - ਪڥ • ෳͷೖྗΛ·ͱΊͯਪఆ ΩϡʔܗࣜͷAPI • ࠶ֶशݕ౼த •
develop/master → ։ൃ/ຊ൪ • ΠϝʔδϏϧυ CircleCIͰࣗಈԽ • ΠϯϑϥTerraform 15 ※ڐՄΛड͚ͯެ։
ϓϩμΫτ: EKS - ਪڥ • ෳͷೖྗΛ·ͱΊͯਪఆ ΩϡʔܗࣜͷAPI • ࠶ֶशݕ౼த •
develop/master → ։ൃ/ຊ൪ • ΠϝʔδϏϧυ CircleCIͰࣗಈԽ • ΠϯϑϥTerraform 16 ※ڐՄΛड͚ͯެ։
• ͳΔ͘γϯϓϧͳ࡞Γ • δϣΠϯίετݮ • ຊ࣭తͳ։ൃʹઐ೦ • ҰํͰͳΔ͘Ϟμϯʹ • ৽͍ؒ͠ʹདྷͯͨ͘Ίͷڥ࡞Γ
17
ϑϦʔϥϯε͕ଟ͍PJͷΈ 18 • ਓࡐαΠΫϧͷ͞ • ઐྖҬͷҧ͍ • ͞ΕͨMLίʔυཧ
ϑϦʔϥϯε͕ଟ͍PJͷΈ1 • ਓࡐαΠΫϧͷ͞ • 3ϲ݄, 6ϲ݄Ͱ͍ͳ͘ͳΔ͜ͱ • ࠾༻ଆ߹ɾΤϯδχΞଆ߹ ΩϟονΞοϓͷ͕࣌ؒπϥ͍ 19
ϑϦʔϥϯε͕ଟ͍PJͷΈ2 • ઐྖҬͷҧ͍ • ඞͣ͠ML / αʔόʔαΠυ྆ํͷ͕ࣝ༗ΔΘ͚Ͱͳ͍ • αʔόʔαΠυͷ͠͞(e.g. APIपΓ,
ฒߦॲཧ) • MLͷ͠͞(e.g. ੑೳࢦඪ, Train,Validation,Test…) • ඇઐྖҬʹੵۃతͱݶΒͳ͍ ίϛϡχέʔγϣϯίετ͕πϥ͍ 20
ϑϦʔϥϯε͕ଟ͍PJͷΈ3 • ͞ΕͨMLίʔυཧ • લఏͱ͞ΕΔσΟϨΫτϦߏ / ਖ਼ղϥϕϧܗࣜ • ୯ҰͷࣈԽͮ͠Β͍ੑೳධՁ MLͷཧ͕πϥ͍
21
ΠϯλʔϑΣʔεͷపఈ 22
ؔ৺ͷ • Pythonʹଘࡏ͠ͳ͍ΠϯλʔϑΣʔε • σʔλͷࡏΓॲμϯϩʔυͳͲʹؔ༩ͨ͘͠ͳ͍ML • Ϟσϧͷൺֱํ๏લॲཧޙॲཧͳͲʹؔ༩ͨ͘͠ͳ͍αʔό • ͞Εͨίʔυͷ࣮ଶѲΛ؆ૉԽ͍ͨ͠ཧऀ ΠϯλʔϑΣʔεΛݻΊͯίϛϡχέʔγϣϯΛݮΒ͢
23
e.g. ਪఆॲཧͷ߹ 24 αʔόʔαΠυ ML
e.g. ਪఆॲཧͷ߹ 25 αʔόʔαΠυ σʔλͷॴࡏ, औಘํ๏ΛML͔Β ฦ٫࣌ͷܗΛ αʔό͔Β ML σʔλͷॴࡏΛML͕
ؾʹ͢Δඞཁ͕ͳ͍
e.g. ࠶ֶशػߏ αʔόʔαΠυ ML αʔόʔαΠυ 26 ݺͼग़͠
e.g. ࠶ֶशػߏ αʔόʔαΠυ ML αʔόʔαΠυ σʔλͷॴࡏ, औಘํ๏ΛML͔Β σʔλͷॴࡏ, औಘํ๏ΛML͔Β ੑೳൺֱͷ
Ϟσϧબͷ໌ࣔ 27 Ϟσϧաڈใͷॴࡏ, औಘ,هΛ Ϟσϧաڈใͷॴࡏ, औಘ,هΛ
e.g. ࠶ֶशػߏ αʔόʔαΠυ ML αʔόʔαΠυ ࠶ֶश༻σʔλϕʔε •ը૾ྨςʔϒϧ •จࣈྻݕςʔϒϧ •OCRςʔϒϧ •……
நԽ 28
• ݸʑਓͷઐྖҬੌ͍ • ϑϦʔϥϯεͷੜ໋ઢ • ؔ৺֎ʹؔ༩ͯ͠ΒΘͳͯ͘ྑ͍ߏ • ҟͳΔઐؒͰͷίϛϡχέʔγϣϯݮ͠ෛ୲ݮ • αʔόʔαΠυͷΈͳΒͣMLϑϦʔϥϯεͰՄೳʹ
29 ·ͱΊ