Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Mambaで物体検出 完全に理解した
Search
Reiki Shirasawa
July 29, 2025
Technology
2
290
Mambaで物体検出 完全に理解した
「エンジニア達の「完全に理解した」Talk #67」(
https://easy2.connpass.com/event/360405/
)にて発表させていただきました。
Reiki Shirasawa
July 29, 2025
Tweet
Share
Other Decks in Technology
See All in Technology
Platform開発が先行する Platform Engineeringの違和感
kintotechdev
3
530
Skrub: machine-learning with dataframes
gaelvaroquaux
0
120
Language Update: Java
skrb
2
280
生成AI時代のデータ基盤設計〜ペースレイヤリングで実現する高速開発と持続性〜 / Levtech Meetup_Session_2
sansan_randd
1
150
研究開発と製品開発、両利きのロボティクス
youtalk
1
510
BPaaSにおける人と協働する前提のAIエージェント-AWS登壇資料
kentarofujii
0
130
スマートファクトリーの第一歩 〜AWSマネージドサービスで 実現する予知保全と生成AI活用まで
ganota
1
190
下手な強制、ダメ!絶対! 「ガードレール」を「檻」にさせない"ガバナンス"の取り方とは?
tsukaman
2
410
「全員プロダクトマネージャー」を実現する、Cursorによる仕様検討の自動運転
applism118
5
1.9k
未経験者・初心者に贈る!40分でわかるAndroidアプリ開発の今と大事なポイント
operando
3
210
「どこから読む?」コードとカルチャーに最速で馴染むための実践ガイド
zozotech
PRO
0
200
開発者を支える Internal Developer Portal のイマとコレカラ / To-day and To-morrow of Internal Developer Portals: Supporting Developers
aoto
PRO
1
430
Featured
See All Featured
Java REST API Framework Comparison - PWX 2021
mraible
33
8.8k
How GitHub (no longer) Works
holman
315
140k
GitHub's CSS Performance
jonrohan
1032
460k
Speed Design
sergeychernyshev
32
1.1k
Code Reviewing Like a Champion
maltzj
525
40k
ReactJS: Keep Simple. Everything can be a component!
pedronauck
667
120k
Build your cross-platform service in a week with App Engine
jlugia
231
18k
Learning to Love Humans: Emotional Interface Design
aarron
273
40k
I Don’t Have Time: Getting Over the Fear to Launch Your Podcast
jcasabona
33
2.4k
Building Adaptive Systems
keathley
43
2.7k
RailsConf & Balkan Ruby 2019: The Past, Present, and Future of Rails at GitHub
eileencodes
139
34k
Dealing with People You Can't Stand - Big Design 2015
cassininazir
367
27k
Transcript
次世代のアーキテクチャ? Mambaで物体検出 完全に理解した Reiki Shirasawa エンジニア達の「完全に理解した」Talk #67 2025年7 月
29 日
自己 紹介 株式会社TechSword 製造領域の ノーコードAIプラットフォーム - エッジAI - 物体検出AI Reiki
Shirasawa @reikishirasawa
今 日 話す内容 - ふんわりした Mambaって何?なんで 生 まれたの? - ふんわりした
Mambaの画像認識(物体検出)分野への適 用 事例
世はTransformer時代 主要な 大 規模 言 語モデルは Transformer がベースになっている
画像認識の分野でも - DETR( 2 0 2 0 ) Transformer ×
物体検出の先駆け - Swin Transformer(2021) 軽量と 高 精度を両 立 したい - SAM(2023) ゼロショットでセグメンテーション
アーキテクチャの変遷 CNN Transformer ?
Transformerの課題 計算量 大 きくなりがち , はトークン 長 に関連 の計算が発 生
してしまう Q K N O(N2) Attention(Q, K, V) = softmax( QKT dk )V
もっと効率的に! でっかいコンテキスト 入 れたい
Mamba
ここがすごいぞMamba Mamba( 2 0 2 3 ) - 計算量が線形 にスケール
- 同サイズのTransformerの5倍速 O(N)
Mambaってどんなやつ? SSM(構造化状態空間モデル)を発展させたもの
SSMってどんなやつ? SSMの基本式 ht = ¯ Aht−1 + ¯ Bxt yt
= Cht 入力 とひとつ前の状態から 出 力 を決める
SSMの課題 必要な情報を選択する 力 が弱い Transformerの強みだった → 入力 の重要度がわからず全てフラットに 見 てしまう
Mambaの概要 入力 に応じてパラメータを変化させ どのくらい状態に反映させるかを決定 → 重要な部分に注 目 できない弱点を克服! 出典:https://arxiv.org/pdf/2312.00752
LLMにもMamba Codestral Mamba( 2 0 2 4 ) Mistral AI
- より 長 いコンテキスト 長 - より速い応答時間 https://mistral.ai/news/codestral-mamba
画像認識にもMamba Mamba YOLO( 2 0 2 4 ) - Mambaで物体検出してみた
- 画像の局所特徴を捉える 工 夫 - COCOデータセットでSOTA 出典:https://arxiv.org/pdf/2406.05835
物体検出にもMamba MambaNeXt-YOLO( 2 0 2 5 ) - CNNとのハイブリッド -
CNN:局所特徴得意 - Mamba: 長 距離依存得意 - リアルタイム ・ 低リソースな 環境で活躍するぞ! 出典:https://arxiv.org/pdf/2506.03654
まとめ - Mamba が画像認識(物体検出)の分野でも注 目 - これから普及が進んでいったら 面白 いね