Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Mambaで物体検出 完全に理解した
Search
Reiki Shirasawa
July 29, 2025
Technology
2
570
Mambaで物体検出 完全に理解した
「エンジニア達の「完全に理解した」Talk #67」(
https://easy2.connpass.com/event/360405/
)にて発表させていただきました。
Reiki Shirasawa
July 29, 2025
Tweet
Share
Other Decks in Technology
See All in Technology
月間数億レコードのアクセスログ基盤を無停止・低コストでAWS移行せよ!アプリケーションエンジニアのSREチャレンジ💪
miyamu
0
740
Bill One急成長の舞台裏 開発組織が直面した失敗と教訓
sansantech
PRO
1
180
ファインディの横断SREがTakumi byGMOと取り組む、セキュリティと開発スピードの両立
rvirus0817
1
1k
変化するコーディングエージェントとの現実的な付き合い方 〜Cursor安定択説と、ツールに依存しない「資産」〜
empitsu
4
1.3k
ClickHouseはどのように大規模データを活用したAIエージェントを全社展開しているのか
mikimatsumoto
0
170
コスト削減から「セキュリティと利便性」を担うプラットフォームへ
sansantech
PRO
3
1.1k
GSIが複数キー対応したことで、俺達はいったい何が嬉しいのか?
smt7174
3
130
Kiro IDEのドキュメントを全部読んだので地味だけどちょっと嬉しい機能を紹介する
khmoryz
0
140
会社紹介資料 / Sansan Company Profile
sansan33
PRO
15
400k
SREが向き合う大規模リアーキテクチャ 〜信頼性とアジリティの両立〜
zepprix
0
380
CDK対応したAWS DevOps Agentを試そう_20260201
masakiokuda
1
170
レガシー共有バッチ基盤への挑戦 - SREドリブンなリアーキテクチャリングの取り組み
tatsukoni
0
190
Featured
See All Featured
Site-Speed That Sticks
csswizardry
13
1.1k
Intergalactic Javascript Robots from Outer Space
tanoku
273
27k
Building a Scalable Design System with Sketch
lauravandoore
463
34k
Mobile First: as difficult as doing things right
swwweet
225
10k
Principles of Awesome APIs and How to Build Them.
keavy
128
17k
Agile Actions for Facilitating Distributed Teams - ADO2019
mkilby
0
110
Dealing with People You Can't Stand - Big Design 2015
cassininazir
367
27k
Accessibility Awareness
sabderemane
0
47
個人開発の失敗を避けるイケてる考え方 / tips for indie hackers
panda_program
122
21k
How Fast Is Fast Enough? [PerfNow 2025]
tammyeverts
3
450
Leveraging Curiosity to Care for An Aging Population
cassininazir
1
150
How to build a perfect <img>
jonoalderson
1
4.9k
Transcript
次世代のアーキテクチャ? Mambaで物体検出 完全に理解した Reiki Shirasawa エンジニア達の「完全に理解した」Talk #67 2025年7 月
29 日
自己 紹介 株式会社TechSword 製造領域の ノーコードAIプラットフォーム - エッジAI - 物体検出AI Reiki
Shirasawa @reikishirasawa
今 日 話す内容 - ふんわりした Mambaって何?なんで 生 まれたの? - ふんわりした
Mambaの画像認識(物体検出)分野への適 用 事例
世はTransformer時代 主要な 大 規模 言 語モデルは Transformer がベースになっている
画像認識の分野でも - DETR( 2 0 2 0 ) Transformer ×
物体検出の先駆け - Swin Transformer(2021) 軽量と 高 精度を両 立 したい - SAM(2023) ゼロショットでセグメンテーション
アーキテクチャの変遷 CNN Transformer ?
Transformerの課題 計算量 大 きくなりがち , はトークン 長 に関連 の計算が発 生
してしまう Q K N O(N2) Attention(Q, K, V) = softmax( QKT dk )V
もっと効率的に! でっかいコンテキスト 入 れたい
Mamba
ここがすごいぞMamba Mamba( 2 0 2 3 ) - 計算量が線形 にスケール
- 同サイズのTransformerの5倍速 O(N)
Mambaってどんなやつ? SSM(構造化状態空間モデル)を発展させたもの
SSMってどんなやつ? SSMの基本式 ht = ¯ Aht−1 + ¯ Bxt yt
= Cht 入力 とひとつ前の状態から 出 力 を決める
SSMの課題 必要な情報を選択する 力 が弱い Transformerの強みだった → 入力 の重要度がわからず全てフラットに 見 てしまう
Mambaの概要 入力 に応じてパラメータを変化させ どのくらい状態に反映させるかを決定 → 重要な部分に注 目 できない弱点を克服! 出典:https://arxiv.org/pdf/2312.00752
LLMにもMamba Codestral Mamba( 2 0 2 4 ) Mistral AI
- より 長 いコンテキスト 長 - より速い応答時間 https://mistral.ai/news/codestral-mamba
画像認識にもMamba Mamba YOLO( 2 0 2 4 ) - Mambaで物体検出してみた
- 画像の局所特徴を捉える 工 夫 - COCOデータセットでSOTA 出典:https://arxiv.org/pdf/2406.05835
物体検出にもMamba MambaNeXt-YOLO( 2 0 2 5 ) - CNNとのハイブリッド -
CNN:局所特徴得意 - Mamba: 長 距離依存得意 - リアルタイム ・ 低リソースな 環境で活躍するぞ! 出典:https://arxiv.org/pdf/2506.03654
まとめ - Mamba が画像認識(物体検出)の分野でも注 目 - これから普及が進んでいったら 面白 いね