Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Stanford Covid Vaccine 2nd place solution
Search
Kazuki Fujikawa
June 16, 2021
Science
0
40
Stanford Covid Vaccine 2nd place solution
Stanford Covid Vaccine 2nd place solution
Kazuki Fujikawa
June 16, 2021
Tweet
Share
More Decks by Kazuki Fujikawa
See All by Kazuki Fujikawa
H&M Personalized Fashion Recommendation
kfujikawa
0
260
コミュニティ検出 動向紹介
kfujikawa
1
400
Stable Diffusion - Image to Prompts
kfujikawa
3
2.2k
BMS Molecular Translation 3rd place solution
kfujikawa
0
38
ACL2020 best papers
kfujikawa
0
36
Kaggle参加報告: Champs Predicting Molecular Properties
kfujikawa
0
60
NLP@ICLR2019
kfujikawa
0
28
Kaggle参加報告: Quora Insincere Questions Classification
kfujikawa
0
32
Ordered neurons integrating tree structures into recurrent neural networks
kfujikawa
0
32
Other Decks in Science
See All in Science
小杉考司(専修大学)
kosugitti
2
580
深層学習を利用して 大豆の外部欠陥を判別した研究事例の紹介
kentaitakura
0
250
Visual Analytics for R&D Intelligence @Funding the Commons & DeSci Tokyo 2024
hayataka88
0
120
Improving Search @scale with efficient query experimentation @BerlinBuzzwords 2024
searchhub
0
260
(Forkwell Library #48)『詳解 インシデントレスポンス』で学び倒すブルーチーム技術
scientia
2
1.5k
第61回コンピュータビジョン勉強会「BioCLIP: A Vision Foundation Model for the Tree of Life」
x_ttyszk
1
1.6k
As We May Interact: Challenges and Opportunities for Next-Generation Human-Information Interaction
signer
PRO
0
240
テンソル分解を用いた教師なし学習による変数選択法のシングルセルマルチオミックスデータ解析への応用
tagtag
1
110
創薬における機械学習技術について
kanojikajino
13
4.8k
How were Quaternion discovered
kinakomoti321
2
1.1k
インフラだけではない MLOps の話 @事例でわかるMLOps 機械学習の成果をスケールさせる処方箋 発売記念
icoxfog417
PRO
2
640
白金鉱業Meetup Vol.16_数理最適化案件のはじめかた・すすめかた
brainpadpr
3
1.2k
Featured
See All Featured
Practical Orchestrator
shlominoach
186
10k
Bootstrapping a Software Product
garrettdimon
PRO
305
110k
A Modern Web Designer's Workflow
chriscoyier
693
190k
Writing Fast Ruby
sferik
628
61k
Stop Working from a Prison Cell
hatefulcrawdad
267
20k
The Psychology of Web Performance [Beyond Tellerrand 2023]
tammyeverts
45
2.3k
How to Create Impact in a Changing Tech Landscape [PerfNow 2023]
tammyeverts
49
2.2k
ピンチをチャンスに:未来をつくるプロダクトロードマップ #pmconf2020
aki_iinuma
112
50k
Raft: Consensus for Rubyists
vanstee
137
6.7k
Gamification - CAS2011
davidbonilla
80
5.1k
How to Ace a Technical Interview
jacobian
276
23k
Unsuck your backbone
ammeep
669
57k
Transcript
%4᳒ᰆ ,B[VLJ'VKJLBXB Ꮠუ័୷ΰᏐუ័.PCJMJUZ5FDIOPMPHJFT ,BHHMF$PNQFUJUJPO 4UBOGPSE$PWJE7BDDJOF OEQMBDFTPMVUJPO 5FBN,B[VLJ ,B[VLJ4RVBSFE ,B[VLJ0OPEFSB
,B[VLJ'VKJLBXB
े 4UBOGPSE$PWJE7BDDJOF े ୣணஊ୶୧ணᑁᮉ े உ୩ஙண े 4PMVUJPO "(&/%"
े 4UBOGPSE$PWJE7BDDJOF े ୣணஊ୶୧ணᑁᮉ े உ୩ஙண े 4PMVUJPO "(&/%"
े $07*%ଠடୟୱணಬ᭦ଚଉଘN3/"டୟୱண૾ᔞଇାଘଽ े ༾ᑗଜ᜔ᅴଝജ൙ᛟᧄଜለᬾଙો᷻ᜲᴌႼഋᅌᡡଝჵୄሿଖ े ࿖ᅌଜଛଝག૿ଜᯠẴୄሿଓોରᯔଇାఔ౺૾ᘏ े ࿖ᅌடୟୱண૾ᛛᇡଇାଘ૽౦ങଙඇୄᜲኅଋଽରଙଠᴝ᠊ଠ ଛଅ૽ଙો൏ᮛଇାଘ፡ඇᅌ૾ཉୁାଘଉର े
ଛଠ3/"ᑑᴍ૾൏ᮛଇାଶଋଠ૽ોରញᮌ૾ဍଜ ୣணஊ୶୧ணᑁᮉᦴጳ IUUQTXXXLBHHMFDPNDTUBOGPSEDPWJEWBDDJOFPWFSWJFX 3/"൏ྶଠค༐ଙଠ൏ᮛᴌႼୄቯ࿖ଙ૿ଽఒᕺஒ୷ୄ౬଼ો டୟୱண᷻ᜲଝᄎᠼଘ
े N3/"൏ྶଠค༐ଝଋଽౄ௦ଠᎇ௦ଙଠ෧ᄷᅌୄఒᕺଋଽ े SFBDUJWJUZค༐ଠ෧ᄷᅌ े
[email protected]
@Q)Q)ଙஎୠ୧ୖஐୄตଲᖚྜྷଙଠค༐ଠ෧ᄷᅌ े
[email protected]
@$ݽଙஎୠ୧ୖஐୄตଲᖚྜྷଙଠค༐ଠ෧ᄷᅌ ୣணஊ୶୧ணᑁᮉ୯୩ୟ KWWSVZZZNDJJOHFRPFVWDQIRUGFRYLGYDFFLQHGLVFXVVLRQ
ሷᇶ␒ྕ 6HTXHQFH * * $ $ $ $ * 6WUXFWXUH 3UHGLFWHG/RRS7\SH ( ( ( ( ( 6 6 ሷᇶ␒ྕ UHDFWLYLW\ GHJB0JBS+ GHJB0JB&
े சୟ୩ े .$3.4&ῠஙஐᓍଠ3.4&Ⴅ໎ῡ े ᮨᤚ୷୯୶୩୷୯ῠ1VCMJD-#ῡ े ጃଝ࿚ỿᣨ෪ᄠᕩଠഋ᷶༐ଠN3/"൏ྶ े ଉો4/ᓏ૾ဌଇଁોಘằᅌଠౢ୷୯ଡᯀಃ૽Ḩ༻ଇାଽ
े 4/ᓏଡᮨᤚ୷୯ଠ௨ૺାଽ े ୶୩୷୯ῠ1SJWBUF-#ῡ े ୣணஊ፫᷾௴ଝ௱ᬻଉଘ࿚ỿଇାഋ᷶༐ଠN3/"൏ྶ े 1VCMJD-#ฉᑗો4/ᓏ૾ဌଇ୷୯ଡ፞ᣡᯀಃ૽Ḩ༻ଇାଽ े ߓଅଠᵄ൏ଙ,BHHMFᴛຄଠ1SJWBUF-#ᮣᡴଝஏ୩૾଼ો -#ଠജᮣᡴ૾ᬻୁାଽଅଚଝ ୣணஊ୶୧ணᑁᮉᯀಃ
े 4UBOGPSE$PWJE7BDDJOF े ୣணஊ୶୧ணᑁᮉ े உ୩ஙண े 4PMVUJPO े ,BHHMFୣணஊଝૼଃଽ࿚ỿᡷᚫ
"(&/%"
े 4FRVFODF 4USVDUVSF 1SFEJDUF-PPQ5ZQFୄዥྐྵൕଠଝሄો 3//ῠ-45.(36ῡଙஒ୷சணୠ े IUUQTXXXLBHHMFDPNYIMVMVPQFOWBDDJOFTJNQMFHSVNPEFM உ୩ஙண-45.(36 VWUXFWXUH
VHTXHQFH **$$$$*&8« (PEHGGLQJ (PEHGGLQJ (PEHGGLQJ * * $ SUHGLFWHGBORRSBW\SH (((((66666« ( ( ( /670 *58 UHDFWLYLW\ GHJBS+ GHJB0JBS+ GHJB& GHJB0JB&
े 4USVDUVSF #11ῠ#BTF1BJSJOH1SPCBCJMJUZ.BUSJYῡୄକଘ ୠஙஅୄᑑᇡ े IUUQTXXXLBHHMFDPNNSLNBLSDPWJEBFQSFUSBJOHOOBUUODOO உ୩ஙண(// VHTXHQFH **$$$$*&8« 2+(
2+( 'LVWDQFH0DWUL[ SUHGLFWHGBORRSBW\SH (((((66666« ESS * * $ ( ( ( VWUXFWXUH DGMXVWPHQW *11 UHDFWLYLW\ GHJBS+ GHJB0JBS+ GHJB& GHJB0JB&
े 4UBOGPSE$PWJE7BDDJOF े ୣணஊ୶୧ணᑁᮉ े உ୩ஙண े 4PMVUJPO "(&/%"
4PMVUJPOᑁᮉ IUUQTXXXLBHHMFDPNDTUBOGPSEDPWJEWBDDJOFEJTDVTTJPO
4PMVUJPOᑁᮉ IUUQTXXXLBHHMFDPNDTUBOGPSEDPWJEWBDDJOFEJTDVTTJPO
े ᭲ዝଠ3/"ᑑᴍఒᕺச୪ஐଙଜଽ#11ୄ෪ᄠ े ᮨᤚ୷୯ଠᓝ༗ଉ55"ଝᛟ े ஒ୷ങଙ᭲ዝଠ#11ୄ൙ᛟ 4PMVUJPO%BUB"VHNFOUBUJPO OMP>OPM@
MDBDI<G D@II<½ JIOM<AJG? PK<>F I<NJAO O@MI<AJG?
4PMVUJPOᑁᮉ IUUQTXXXLBHHMFDPNDTUBOGPSEDPWJEWBDDJOFEJTDVTTJPO
े ᭲ዝଠ#11ୄୱஓዷฎଝᵒᥔ 4PMVUJPO-45.(36ῠ,'ῡ VWUXFWXUH VHTXHQFH **$$$$*&8« (PEHGGLQJ
(PEHGGLQJ (PEHGGLQJ * * $ &RQY' 0D[SRRO SUHGLFWHGBORRSBW\SH (((((66666« ( ( ( ESSV /670 *58 UHDFWLYLW\ GHJBS+ GHJB0JBS+ GHJB& GHJB0JB&
े ᭲ዝଠ#11ଙୠஙஅୄᑑᢀ 4PMVUJPO-45.(36ῠ0OPEFSBῡ VHTXHQFH **$$$$*&8« 2+( 2+( 'LVWDQFH0DWUL[ SUHGLFWHGBORRSBW\SH (((((66666«
ESSV * * $ ( ( ( VWUXFWXUH DGMXVWPHQW *11 UHDFWLYLW\ GHJBS+ GHJB0JBS+ GHJB& GHJB0JB&
4PMVUJPOᑁᮉ IUUQTXXXLBHHMFDPNDTUBOGPSEDPWJEWBDDJOFEJTDVTTJPO
े 3//(//ଠ᭲ዝஒ୷4UBDLJOHଠ00'ଙ1TFVEP-BCFMୄ࿚ዹ े ଅାୄଇଝ4UBDLJOHଋଽଚ00'ଝᴝ࿁ଉ1TFVEP-BCFMஒ୷ଠ JNQPSUBODF૾ག૿ଁଜ଼ଋଽଳો୪ୄૺଘ4UBDLJOH 4PMVUJPO1TFVEP-BCFM QSUDQGRPQRUPDO
4PMVUJPO4UBDLJOH H[S;;;LV$( *11
4PMVUJPO4UBDLJOH
4PMVUJPO4UBDLJOH
4PMVUJPOᑁᮉ IUUQTXXXLBHHMFDPNDTUBOGPSEDPWJEWBDDJOFEJTDVTTJPO
े 1VCMJD1SJWBUFଠག૿ଜೖฎၼᣃൕ᷶ῠWTῡ े $7ଙẻଠೖฎၼୄ౬଼ોག૿ଜᅌᧄඁට૾ᘏ૽឴ᯔ 4PMVUJPO-#୧ஏகஜ୧ண 7UDLQ 3ULYDWHWHVW VHTBOHQJWK VHTBVFRUHG VHTBOHQJWK
VHTBVFRUHG 9DOLG VHTBOHQJWK VHTBVFRUHG 7UDLQ VHTBOHQJWK VHTBVFRUHG 6LPXODWH *11 *58 7UDLQ 9DOLG
े $71VCMJD-#ଡჵଁḂଉଘ $7WT1VCMJD-#
े $71SJWBUF-#ଡஒ୷ଝକଘଡဍଉᅸଠྺ े 4UBDLJOHჵଉ $7WT1SJWBUF-#
े ᭲ዝଠ3/"ᑑᴍఒᕺச୪ஐୄଅଚଙોஒ୷ଠᢱႼୄ ག૿ଁዋଋଽଅଚ૾ଙ૿ े 1TFVEP-BCFM 4UBDLJOH૾ṻ႖ଝ፡ඇକ े ῠჟୱஐଝḢଌῡ1VCMJD1SJWBUFଠ୩ୣၼଡག૿૽କ ῠ1VCMJDYߓ1SJWBUFYῡ े
ଅଠ୩ୣၼଡોසᣍଜ୷୯ᄃუଠᴠଝଽᛣᎋଙଡଜଇଏ ῠ-#୧ஏகஜ୧ணଙଡଜଽೖฎଠᣨୄ៍ଉଘῡ े ༷ዝଶ3/"ᑑᴍଠ୯ணଝག૿ଜᴠ૾କᧄᅌῷ 4PMVUJPOରଚଳ