Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Stanford Covid Vaccine 2nd place solution
Search
Kazuki Fujikawa
June 16, 2021
Science
0
32
Stanford Covid Vaccine 2nd place solution
Stanford Covid Vaccine 2nd place solution
Kazuki Fujikawa
June 16, 2021
Tweet
Share
More Decks by Kazuki Fujikawa
See All by Kazuki Fujikawa
H&M Personalized Fashion Recommendation
kfujikawa
0
230
コミュニティ検出 動向紹介
kfujikawa
1
300
Stable Diffusion - Image to Prompts
kfujikawa
3
2.1k
BMS Molecular Translation 3rd place solution
kfujikawa
0
31
ACL2020 best papers
kfujikawa
0
27
Kaggle参加報告: Champs Predicting Molecular Properties
kfujikawa
0
51
NLP@ICLR2019
kfujikawa
0
18
Kaggle参加報告: Quora Insincere Questions Classification
kfujikawa
0
22
Ordered neurons integrating tree structures into recurrent neural networks
kfujikawa
0
25
Other Decks in Science
See All in Science
統計的因果探索の方法
sshimizu2006
1
1.1k
Mechanistic Interpretability の紹介
sohtakahashi
0
220
大規模画像テキストデータのフィルタリング手法の紹介
lyakaap
6
1.4k
All-in-One Bioinformatics Platform Realized with Snowflake ~ From In Silico Drug Discovery, Disease Variant Analysis, to Single-Cell RNA-seq
ktatsuya
0
180
Презентация программы магистратуры СПбГУ "Искусственный интеллект и наука о данных"
dscs
0
320
論文紹介: PEFA: Parameter-Free Adapters for Large-scale Embedding-based Retrieval Models (WSDM 2024)
ynakano
0
100
マテリアルズ・インフォマティクスの先端で起きていること / What's Happening at the Cutting Edge of Materials Informatics
snhryt
1
110
作業領域内の障害物を回避可能なバイナリマニピュレータの設計 / Design of binary manipulator avoiding obstacles in workspace
konakalab
0
140
Machine Learning for Materials (Lecture 5)
aronwalsh
0
640
Introduction to Graph Neural Networks
joisino
PRO
4
1.8k
第4回ナレッジグラフ勉強会 Knowledge Graph Embedding
maruru0090
0
230
Leveraging conformal prediction for calibrated probabilistic time series forecasts to accelerate the renewable energy transition
ingevandenende
2
330
Featured
See All Featured
Docker and Python
trallard
39
3k
VelocityConf: Rendering Performance Case Studies
addyosmani
321
23k
YesSQL, Process and Tooling at Scale
rocio
167
14k
It's Worth the Effort
3n
182
27k
Code Review Best Practice
trishagee
62
16k
A Modern Web Designer's Workflow
chriscoyier
690
190k
Speed Design
sergeychernyshev
18
400
For a Future-Friendly Web
brad_frost
173
9.3k
Rails Girls Zürich Keynote
gr2m
93
13k
Gamification - CAS2011
davidbonilla
79
4.9k
Debugging Ruby Performance
tmm1
72
12k
Easily Structure & Communicate Ideas using Wireframe
afnizarnur
190
16k
Transcript
%4᳒ᰆ ,B[VLJ'VKJLBXB Ꮠუ័୷ΰᏐუ័.PCJMJUZ5FDIOPMPHJFT ,BHHMF$PNQFUJUJPO 4UBOGPSE$PWJE7BDDJOF OEQMBDFTPMVUJPO 5FBN,B[VLJ ,B[VLJ4RVBSFE ,B[VLJ0OPEFSB
,B[VLJ'VKJLBXB
े 4UBOGPSE$PWJE7BDDJOF े ୣணஊ୶୧ணᑁᮉ े உ୩ஙண े 4PMVUJPO "(&/%"
े 4UBOGPSE$PWJE7BDDJOF े ୣணஊ୶୧ணᑁᮉ े உ୩ஙண े 4PMVUJPO "(&/%"
े $07*%ଠடୟୱணಬ᭦ଚଉଘN3/"டୟୱண૾ᔞଇାଘଽ े ༾ᑗଜ᜔ᅴଝജ൙ᛟᧄଜለᬾଙો᷻ᜲᴌႼഋᅌᡡଝჵୄሿଖ े ࿖ᅌଜଛଝག૿ଜᯠẴୄሿଓોରᯔଇାఔ౺૾ᘏ े ࿖ᅌடୟୱண૾ᛛᇡଇାଘ૽౦ങଙඇୄᜲኅଋଽରଙଠᴝ᠊ଠ ଛଅ૽ଙો൏ᮛଇାଘ፡ඇᅌ૾ཉୁାଘଉର े
ଛଠ3/"ᑑᴍ૾൏ᮛଇାଶଋଠ૽ોରញᮌ૾ဍଜ ୣணஊ୶୧ணᑁᮉᦴጳ IUUQTXXXLBHHMFDPNDTUBOGPSEDPWJEWBDDJOFPWFSWJFX 3/"൏ྶଠค༐ଙଠ൏ᮛᴌႼୄቯ࿖ଙ૿ଽఒᕺஒ୷ୄ౬଼ો டୟୱண᷻ᜲଝᄎᠼଘ
े N3/"൏ྶଠค༐ଝଋଽౄ௦ଠᎇ௦ଙଠ෧ᄷᅌୄఒᕺଋଽ े SFBDUJWJUZค༐ଠ෧ᄷᅌ े
[email protected]
@Q)Q)ଙஎୠ୧ୖஐୄตଲᖚྜྷଙଠค༐ଠ෧ᄷᅌ े
[email protected]
@$ݽଙஎୠ୧ୖஐୄตଲᖚྜྷଙଠค༐ଠ෧ᄷᅌ ୣணஊ୶୧ணᑁᮉ୯୩ୟ KWWSVZZZNDJJOHFRPFVWDQIRUGFRYLGYDFFLQHGLVFXVVLRQ
ሷᇶ␒ྕ 6HTXHQFH * * $ $ $ $ * 6WUXFWXUH 3UHGLFWHG/RRS7\SH ( ( ( ( ( 6 6 ሷᇶ␒ྕ UHDFWLYLW\ GHJB0JBS+ GHJB0JB&
े சୟ୩ े .$3.4&ῠஙஐᓍଠ3.4&Ⴅ໎ῡ े ᮨᤚ୷୯୶୩୷୯ῠ1VCMJD-#ῡ े ጃଝ࿚ỿᣨ෪ᄠᕩଠഋ᷶༐ଠN3/"൏ྶ े ଉો4/ᓏ૾ဌଇଁોಘằᅌଠౢ୷୯ଡᯀಃ૽Ḩ༻ଇାଽ
े 4/ᓏଡᮨᤚ୷୯ଠ௨ૺାଽ े ୶୩୷୯ῠ1SJWBUF-#ῡ े ୣணஊ፫᷾௴ଝ௱ᬻଉଘ࿚ỿଇାഋ᷶༐ଠN3/"൏ྶ े 1VCMJD-#ฉᑗો4/ᓏ૾ဌଇ୷୯ଡ፞ᣡᯀಃ૽Ḩ༻ଇାଽ े ߓଅଠᵄ൏ଙ,BHHMFᴛຄଠ1SJWBUF-#ᮣᡴଝஏ୩૾଼ો -#ଠജᮣᡴ૾ᬻୁାଽଅଚଝ ୣணஊ୶୧ணᑁᮉᯀಃ
े 4UBOGPSE$PWJE7BDDJOF े ୣணஊ୶୧ணᑁᮉ े உ୩ஙண े 4PMVUJPO े ,BHHMFୣணஊଝૼଃଽ࿚ỿᡷᚫ
"(&/%"
े 4FRVFODF 4USVDUVSF 1SFEJDUF-PPQ5ZQFୄዥྐྵൕଠଝሄો 3//ῠ-45.(36ῡଙஒ୷சணୠ े IUUQTXXXLBHHMFDPNYIMVMVPQFOWBDDJOFTJNQMFHSVNPEFM உ୩ஙண-45.(36 VWUXFWXUH
VHTXHQFH **$$$$*&8« (PEHGGLQJ (PEHGGLQJ (PEHGGLQJ * * $ SUHGLFWHGBORRSBW\SH (((((66666« ( ( ( /670 *58 UHDFWLYLW\ GHJBS+ GHJB0JBS+ GHJB& GHJB0JB&
े 4USVDUVSF #11ῠ#BTF1BJSJOH1SPCBCJMJUZ.BUSJYῡୄକଘ ୠஙஅୄᑑᇡ े IUUQTXXXLBHHMFDPNNSLNBLSDPWJEBFQSFUSBJOHOOBUUODOO உ୩ஙண(// VHTXHQFH **$$$$*&8« 2+(
2+( 'LVWDQFH0DWUL[ SUHGLFWHGBORRSBW\SH (((((66666« ESS * * $ ( ( ( VWUXFWXUH DGMXVWPHQW *11 UHDFWLYLW\ GHJBS+ GHJB0JBS+ GHJB& GHJB0JB&
े 4UBOGPSE$PWJE7BDDJOF े ୣணஊ୶୧ணᑁᮉ े உ୩ஙண े 4PMVUJPO "(&/%"
4PMVUJPOᑁᮉ IUUQTXXXLBHHMFDPNDTUBOGPSEDPWJEWBDDJOFEJTDVTTJPO
4PMVUJPOᑁᮉ IUUQTXXXLBHHMFDPNDTUBOGPSEDPWJEWBDDJOFEJTDVTTJPO
े ᭲ዝଠ3/"ᑑᴍఒᕺச୪ஐଙଜଽ#11ୄ෪ᄠ े ᮨᤚ୷୯ଠᓝ༗ଉ55"ଝᛟ े ஒ୷ങଙ᭲ዝଠ#11ୄ൙ᛟ 4PMVUJPO%BUB"VHNFOUBUJPO OMP>OPM@
MDBDI<G D@II<½ JIOM<AJG? PK<>F I<NJAO O@MI<AJG?
4PMVUJPOᑁᮉ IUUQTXXXLBHHMFDPNDTUBOGPSEDPWJEWBDDJOFEJTDVTTJPO
े ᭲ዝଠ#11ୄୱஓዷฎଝᵒᥔ 4PMVUJPO-45.(36ῠ,'ῡ VWUXFWXUH VHTXHQFH **$$$$*&8« (PEHGGLQJ
(PEHGGLQJ (PEHGGLQJ * * $ &RQY' 0D[SRRO SUHGLFWHGBORRSBW\SH (((((66666« ( ( ( ESSV /670 *58 UHDFWLYLW\ GHJBS+ GHJB0JBS+ GHJB& GHJB0JB&
े ᭲ዝଠ#11ଙୠஙஅୄᑑᢀ 4PMVUJPO-45.(36ῠ0OPEFSBῡ VHTXHQFH **$$$$*&8« 2+( 2+( 'LVWDQFH0DWUL[ SUHGLFWHGBORRSBW\SH (((((66666«
ESSV * * $ ( ( ( VWUXFWXUH DGMXVWPHQW *11 UHDFWLYLW\ GHJBS+ GHJB0JBS+ GHJB& GHJB0JB&
4PMVUJPOᑁᮉ IUUQTXXXLBHHMFDPNDTUBOGPSEDPWJEWBDDJOFEJTDVTTJPO
े 3//(//ଠ᭲ዝஒ୷4UBDLJOHଠ00'ଙ1TFVEP-BCFMୄ࿚ዹ े ଅାୄଇଝ4UBDLJOHଋଽଚ00'ଝᴝ࿁ଉ1TFVEP-BCFMஒ୷ଠ JNQPSUBODF૾ག૿ଁଜ଼ଋଽଳો୪ୄૺଘ4UBDLJOH 4PMVUJPO1TFVEP-BCFM QSUDQGRPQRUPDO
4PMVUJPO4UBDLJOH H[S;;;LV$( *11
4PMVUJPO4UBDLJOH
4PMVUJPO4UBDLJOH
4PMVUJPOᑁᮉ IUUQTXXXLBHHMFDPNDTUBOGPSEDPWJEWBDDJOFEJTDVTTJPO
े 1VCMJD1SJWBUFଠག૿ଜೖฎၼᣃൕ᷶ῠWTῡ े $7ଙẻଠೖฎၼୄ౬଼ોག૿ଜᅌᧄඁට૾ᘏ૽឴ᯔ 4PMVUJPO-#୧ஏகஜ୧ண 7UDLQ 3ULYDWHWHVW VHTBOHQJWK VHTBVFRUHG VHTBOHQJWK
VHTBVFRUHG 9DOLG VHTBOHQJWK VHTBVFRUHG 7UDLQ VHTBOHQJWK VHTBVFRUHG 6LPXODWH *11 *58 7UDLQ 9DOLG
े $71VCMJD-#ଡჵଁḂଉଘ $7WT1VCMJD-#
े $71SJWBUF-#ଡஒ୷ଝକଘଡဍଉᅸଠྺ े 4UBDLJOHჵଉ $7WT1SJWBUF-#
े ᭲ዝଠ3/"ᑑᴍఒᕺச୪ஐୄଅଚଙોஒ୷ଠᢱႼୄ ག૿ଁዋଋଽଅଚ૾ଙ૿ े 1TFVEP-BCFM 4UBDLJOH૾ṻ႖ଝ፡ඇକ े ῠჟୱஐଝḢଌῡ1VCMJD1SJWBUFଠ୩ୣၼଡག૿૽କ ῠ1VCMJDYߓ1SJWBUFYῡ े
ଅଠ୩ୣၼଡોසᣍଜ୷୯ᄃუଠᴠଝଽᛣᎋଙଡଜଇଏ ῠ-#୧ஏகஜ୧ணଙଡଜଽೖฎଠᣨୄ៍ଉଘῡ े ༷ዝଶ3/"ᑑᴍଠ୯ணଝག૿ଜᴠ૾କᧄᅌῷ 4PMVUJPOରଚଳ