Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Stanford Covid Vaccine 2nd place solution
Search
Kazuki Fujikawa
June 16, 2021
Science
0
44
Stanford Covid Vaccine 2nd place solution
Stanford Covid Vaccine 2nd place solution
Kazuki Fujikawa
June 16, 2021
Tweet
Share
More Decks by Kazuki Fujikawa
See All by Kazuki Fujikawa
H&M Personalized Fashion Recommendation
kfujikawa
0
270
コミュニティ検出 動向紹介
kfujikawa
1
430
Stable Diffusion - Image to Prompts
kfujikawa
3
2.2k
BMS Molecular Translation 3rd place solution
kfujikawa
0
43
ACL2020 best papers
kfujikawa
0
42
Kaggle参加報告: Champs Predicting Molecular Properties
kfujikawa
0
66
NLP@ICLR2019
kfujikawa
0
29
Kaggle参加報告: Quora Insincere Questions Classification
kfujikawa
0
35
Ordered neurons integrating tree structures into recurrent neural networks
kfujikawa
0
36
Other Decks in Science
See All in Science
創薬における機械学習技術について
kanojikajino
16
4.9k
地表面抽出の方法であるSMRFについて紹介
kentaitakura
1
310
Design of three-dimensional binary manipulators for pick-and-place task avoiding obstacles (IECON2024)
konakalab
0
130
解説!データ基盤の進化を後押しする手順とタイミング
shomaekawa
1
400
はじめての「相関と因果とエビデンス」入門:“動機づけられた推論” に抗うために
takehikoihayashi
17
7.3k
All-in-One Bioinformatics Platform Realized with Snowflake ~ From In Silico Drug Discovery, Disease Variant Analysis, to Single-Cell RNA-seq
ktatsuya
0
300
構造設計のための3D生成AI-最新の取り組みと今後の展開-
kojinishiguchi
0
870
統計学入門講座 第1回スライド
techmathproject
0
230
Planted Clique Conjectures are Equivalent
nobushimi
0
110
Valuable Lessons Learned on Kaggle’s ARC AGI LLM Challenge (PyDataGlobal 2024)
ianozsvald
0
210
ベイズ最適化をゼロから
brainpadpr
2
1.1k
SciPyDataJapan 2025
schwalbe10
0
140
Featured
See All Featured
RailsConf 2023
tenderlove
29
1k
[RailsConf 2023 Opening Keynote] The Magic of Rails
eileencodes
28
9.3k
Why Our Code Smells
bkeepers
PRO
336
57k
I Don’t Have Time: Getting Over the Fear to Launch Your Podcast
jcasabona
32
2.1k
Optimising Largest Contentful Paint
csswizardry
34
3.1k
JavaScript: Past, Present, and Future - NDC Porto 2020
reverentgeek
47
5.2k
It's Worth the Effort
3n
184
28k
Chrome DevTools: State of the Union 2024 - Debugging React & Beyond
addyosmani
4
350
Understanding Cognitive Biases in Performance Measurement
bluesmoon
27
1.6k
Exploring the Power of Turbo Streams & Action Cable | RailsConf2023
kevinliebholz
30
4.6k
Rails Girls Zürich Keynote
gr2m
94
13k
Become a Pro
speakerdeck
PRO
26
5.1k
Transcript
%4᳒ᰆ ,B[VLJ'VKJLBXB Ꮠუ័୷ΰᏐუ័.PCJMJUZ5FDIOPMPHJFT ,BHHMF$PNQFUJUJPO 4UBOGPSE$PWJE7BDDJOF OEQMBDFTPMVUJPO 5FBN,B[VLJ ,B[VLJ4RVBSFE ,B[VLJ0OPEFSB
,B[VLJ'VKJLBXB
े 4UBOGPSE$PWJE7BDDJOF े ୣணஊ୶୧ணᑁᮉ े உ୩ஙண े 4PMVUJPO "(&/%"
े 4UBOGPSE$PWJE7BDDJOF े ୣணஊ୶୧ணᑁᮉ े உ୩ஙண े 4PMVUJPO "(&/%"
े $07*%ଠடୟୱணಬ᭦ଚଉଘN3/"டୟୱண૾ᔞଇାଘଽ े ༾ᑗଜ᜔ᅴଝജ൙ᛟᧄଜለᬾଙો᷻ᜲᴌႼഋᅌᡡଝჵୄሿଖ े ࿖ᅌଜଛଝག૿ଜᯠẴୄሿଓોରᯔଇାఔ౺૾ᘏ े ࿖ᅌடୟୱண૾ᛛᇡଇାଘ૽౦ങଙඇୄᜲኅଋଽରଙଠᴝ᠊ଠ ଛଅ૽ଙો൏ᮛଇାଘ፡ඇᅌ૾ཉୁାଘଉର े
ଛଠ3/"ᑑᴍ૾൏ᮛଇାଶଋଠ૽ોରញᮌ૾ဍଜ ୣணஊ୶୧ணᑁᮉᦴጳ IUUQTXXXLBHHMFDPNDTUBOGPSEDPWJEWBDDJOFPWFSWJFX 3/"൏ྶଠค༐ଙଠ൏ᮛᴌႼୄቯ࿖ଙ૿ଽఒᕺஒ୷ୄ౬଼ો டୟୱண᷻ᜲଝᄎᠼଘ
े N3/"൏ྶଠค༐ଝଋଽౄ௦ଠᎇ௦ଙଠ෧ᄷᅌୄఒᕺଋଽ े SFBDUJWJUZค༐ଠ෧ᄷᅌ े
[email protected]
@Q)Q)ଙஎୠ୧ୖஐୄตଲᖚྜྷଙଠค༐ଠ෧ᄷᅌ े
[email protected]
@$ݽଙஎୠ୧ୖஐୄตଲᖚྜྷଙଠค༐ଠ෧ᄷᅌ ୣணஊ୶୧ணᑁᮉ୯୩ୟ KWWSVZZZNDJJOHFRPFVWDQIRUGFRYLGYDFFLQHGLVFXVVLRQ
ሷᇶ␒ྕ 6HTXHQFH * * $ $ $ $ * 6WUXFWXUH 3UHGLFWHG/RRS7\SH ( ( ( ( ( 6 6 ሷᇶ␒ྕ UHDFWLYLW\ GHJB0JBS+ GHJB0JB&
े சୟ୩ े .$3.4&ῠஙஐᓍଠ3.4&Ⴅ໎ῡ े ᮨᤚ୷୯୶୩୷୯ῠ1VCMJD-#ῡ े ጃଝ࿚ỿᣨ෪ᄠᕩଠഋ᷶༐ଠN3/"൏ྶ े ଉો4/ᓏ૾ဌଇଁોಘằᅌଠౢ୷୯ଡᯀಃ૽Ḩ༻ଇାଽ
े 4/ᓏଡᮨᤚ୷୯ଠ௨ૺାଽ े ୶୩୷୯ῠ1SJWBUF-#ῡ े ୣணஊ፫᷾௴ଝ௱ᬻଉଘ࿚ỿଇାഋ᷶༐ଠN3/"൏ྶ े 1VCMJD-#ฉᑗો4/ᓏ૾ဌଇ୷୯ଡ፞ᣡᯀಃ૽Ḩ༻ଇାଽ े ߓଅଠᵄ൏ଙ,BHHMFᴛຄଠ1SJWBUF-#ᮣᡴଝஏ୩૾଼ો -#ଠജᮣᡴ૾ᬻୁାଽଅଚଝ ୣணஊ୶୧ணᑁᮉᯀಃ
े 4UBOGPSE$PWJE7BDDJOF े ୣணஊ୶୧ணᑁᮉ े உ୩ஙண े 4PMVUJPO े ,BHHMFୣணஊଝૼଃଽ࿚ỿᡷᚫ
"(&/%"
े 4FRVFODF 4USVDUVSF 1SFEJDUF-PPQ5ZQFୄዥྐྵൕଠଝሄો 3//ῠ-45.(36ῡଙஒ୷சணୠ े IUUQTXXXLBHHMFDPNYIMVMVPQFOWBDDJOFTJNQMFHSVNPEFM உ୩ஙண-45.(36 VWUXFWXUH
VHTXHQFH **$$$$*&8« (PEHGGLQJ (PEHGGLQJ (PEHGGLQJ * * $ SUHGLFWHGBORRSBW\SH (((((66666« ( ( ( /670 *58 UHDFWLYLW\ GHJBS+ GHJB0JBS+ GHJB& GHJB0JB&
े 4USVDUVSF #11ῠ#BTF1BJSJOH1SPCBCJMJUZ.BUSJYῡୄକଘ ୠஙஅୄᑑᇡ े IUUQTXXXLBHHMFDPNNSLNBLSDPWJEBFQSFUSBJOHOOBUUODOO உ୩ஙண(// VHTXHQFH **$$$$*&8« 2+(
2+( 'LVWDQFH0DWUL[ SUHGLFWHGBORRSBW\SH (((((66666« ESS * * $ ( ( ( VWUXFWXUH DGMXVWPHQW *11 UHDFWLYLW\ GHJBS+ GHJB0JBS+ GHJB& GHJB0JB&
े 4UBOGPSE$PWJE7BDDJOF े ୣணஊ୶୧ணᑁᮉ े உ୩ஙண े 4PMVUJPO "(&/%"
4PMVUJPOᑁᮉ IUUQTXXXLBHHMFDPNDTUBOGPSEDPWJEWBDDJOFEJTDVTTJPO
4PMVUJPOᑁᮉ IUUQTXXXLBHHMFDPNDTUBOGPSEDPWJEWBDDJOFEJTDVTTJPO
े ᭲ዝଠ3/"ᑑᴍఒᕺச୪ஐଙଜଽ#11ୄ෪ᄠ े ᮨᤚ୷୯ଠᓝ༗ଉ55"ଝᛟ े ஒ୷ങଙ᭲ዝଠ#11ୄ൙ᛟ 4PMVUJPO%BUB"VHNFOUBUJPO OMP>OPM@
MDBDI<G D@II<½ JIOM<AJG? PK<>F I<NJAO O@MI<AJG?
4PMVUJPOᑁᮉ IUUQTXXXLBHHMFDPNDTUBOGPSEDPWJEWBDDJOFEJTDVTTJPO
े ᭲ዝଠ#11ୄୱஓዷฎଝᵒᥔ 4PMVUJPO-45.(36ῠ,'ῡ VWUXFWXUH VHTXHQFH **$$$$*&8« (PEHGGLQJ
(PEHGGLQJ (PEHGGLQJ * * $ &RQY' 0D[SRRO SUHGLFWHGBORRSBW\SH (((((66666« ( ( ( ESSV /670 *58 UHDFWLYLW\ GHJBS+ GHJB0JBS+ GHJB& GHJB0JB&
े ᭲ዝଠ#11ଙୠஙஅୄᑑᢀ 4PMVUJPO-45.(36ῠ0OPEFSBῡ VHTXHQFH **$$$$*&8« 2+( 2+( 'LVWDQFH0DWUL[ SUHGLFWHGBORRSBW\SH (((((66666«
ESSV * * $ ( ( ( VWUXFWXUH DGMXVWPHQW *11 UHDFWLYLW\ GHJBS+ GHJB0JBS+ GHJB& GHJB0JB&
4PMVUJPOᑁᮉ IUUQTXXXLBHHMFDPNDTUBOGPSEDPWJEWBDDJOFEJTDVTTJPO
े 3//(//ଠ᭲ዝஒ୷4UBDLJOHଠ00'ଙ1TFVEP-BCFMୄ࿚ዹ े ଅାୄଇଝ4UBDLJOHଋଽଚ00'ଝᴝ࿁ଉ1TFVEP-BCFMஒ୷ଠ JNQPSUBODF૾ག૿ଁଜ଼ଋଽଳો୪ୄૺଘ4UBDLJOH 4PMVUJPO1TFVEP-BCFM QSUDQGRPQRUPDO
4PMVUJPO4UBDLJOH H[S;;;LV$( *11
4PMVUJPO4UBDLJOH
4PMVUJPO4UBDLJOH
4PMVUJPOᑁᮉ IUUQTXXXLBHHMFDPNDTUBOGPSEDPWJEWBDDJOFEJTDVTTJPO
े 1VCMJD1SJWBUFଠག૿ଜೖฎၼᣃൕ᷶ῠWTῡ े $7ଙẻଠೖฎၼୄ౬଼ોག૿ଜᅌᧄඁට૾ᘏ૽឴ᯔ 4PMVUJPO-#୧ஏகஜ୧ண 7UDLQ 3ULYDWHWHVW VHTBOHQJWK VHTBVFRUHG VHTBOHQJWK
VHTBVFRUHG 9DOLG VHTBOHQJWK VHTBVFRUHG 7UDLQ VHTBOHQJWK VHTBVFRUHG 6LPXODWH *11 *58 7UDLQ 9DOLG
े $71VCMJD-#ଡჵଁḂଉଘ $7WT1VCMJD-#
े $71SJWBUF-#ଡஒ୷ଝକଘଡဍଉᅸଠྺ े 4UBDLJOHჵଉ $7WT1SJWBUF-#
े ᭲ዝଠ3/"ᑑᴍఒᕺச୪ஐୄଅଚଙોஒ୷ଠᢱႼୄ ག૿ଁዋଋଽଅଚ૾ଙ૿ े 1TFVEP-BCFM 4UBDLJOH૾ṻ႖ଝ፡ඇକ े ῠჟୱஐଝḢଌῡ1VCMJD1SJWBUFଠ୩ୣၼଡག૿૽କ ῠ1VCMJDYߓ1SJWBUFYῡ े
ଅଠ୩ୣၼଡોසᣍଜ୷୯ᄃუଠᴠଝଽᛣᎋଙଡଜଇଏ ῠ-#୧ஏகஜ୧ணଙଡଜଽೖฎଠᣨୄ៍ଉଘῡ े ༷ዝଶ3/"ᑑᴍଠ୯ணଝག૿ଜᴠ૾କᧄᅌῷ 4PMVUJPOରଚଳ