Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Floating Point 101
Search
Sponsored
·
Your Podcast. Everywhere. Effortlessly.
Share. Educate. Inspire. Entertain. You do you. We'll handle the rest.
→
kida
February 06, 2013
Programming
7
320
Floating Point 101
A very very basic introduction to FP.
With some inaccuracies.
kida
February 06, 2013
Tweet
Share
More Decks by kida
See All by kida
Cognitive Supervision for Laser Phonomicrosurgery
kida
0
55
Towards Cognitive Supervision in robot-assisted surgery
kida
0
190
Other Decks in Programming
See All in Programming
なぜSQLはAIぽく見えるのか/why does SQL look AI like
florets1
0
450
AIによる高速開発をどう制御するか? ガードレール設置で開発速度と品質を両立させたチームの事例
tonkotsuboy_com
7
2.2k
The Past, Present, and Future of Enterprise Java
ivargrimstad
0
540
humanlayerのブログから学ぶ、良いCLAUDE.mdの書き方
tsukamoto1783
0
190
Rust 製のコードエディタ “Zed” を使ってみた
nearme_tech
PRO
0
160
Automatic Grammar Agreementと Markdown Extended Attributes について
kishikawakatsumi
0
180
Fluid Templating in TYPO3 14
s2b
0
130
余白を設計しフロントエンド開発を 加速させる
tsukuha
7
2.1k
QAフローを最適化し、品質水準を満たしながらリリースまでの期間を最短化する #RSGT2026
shibayu36
2
4.3k
KIKI_MBSD Cybersecurity Challenges 2025
ikema
0
1.3k
React 19でつくる「気持ちいいUI」- 楽観的UIのすすめ
himorishige
11
7.3k
プロダクトオーナーから見たSOC2 _SOC2ゆるミートアップ#2
kekekenta
0
200
Featured
See All Featured
Max Prin - Stacking Signals: How International SEO Comes Together (And Falls Apart)
techseoconnect
PRO
0
84
How to Ace a Technical Interview
jacobian
281
24k
Optimising Largest Contentful Paint
csswizardry
37
3.6k
Visualizing Your Data: Incorporating Mongo into Loggly Infrastructure
mongodb
49
9.9k
Refactoring Trust on Your Teams (GOTO; Chicago 2020)
rmw
35
3.4k
Thoughts on Productivity
jonyablonski
74
5k
Everyday Curiosity
cassininazir
0
130
個人開発の失敗を避けるイケてる考え方 / tips for indie hackers
panda_program
122
21k
Chrome DevTools: State of the Union 2024 - Debugging React & Beyond
addyosmani
10
1.1k
Building Flexible Design Systems
yeseniaperezcruz
330
40k
How To Speak Unicorn (iThemes Webinar)
marktimemedia
1
380
Responsive Adventures: Dirty Tricks From The Dark Corners of Front-End
smashingmag
254
22k
Transcript
FLOATING 101 POINT
FLOATING 100.999998 POINT
engineers we are
researchers we are
3.14159265358979 3238462643383279 5028841971693993 7510582097494459 2307816406286208 NUMBERS WE PLAY WITH ALL
DAY LONG
well, sometimes even at night. (yawn).
So, what is a floating point?
A floating point is ± D 1 .D 2 D
3 ···D n x Be
A floating point is sign ± D 1 .D 2
D 3 ···D n x Be
A floating point is significand ± D 1 .D 2
D 3 ···D n x Be
A floating point is base ± D 1 .D 2
D 3 ···D n x Be
A floating point is exponent ± D 1 .D 2
D 3 ···D n x Be
A floating point represents ± (D 1 + D 2
* B-1 + D 3 * B-2 + … + D n * B(n-1)) * Be
For example + 3.14 x 100 = (3 + 1*0.1
+ 4*0.01)*1 = 3.14
The point can float ! + 3.14 x 10-1 =
0.314
The point can float ! + 3.14 x 10+1 =
31.4
What if B = 2 ? + 1.00 x 2+2
= 4.0
Like machines do. http://grouper.ieee.org/groups/754/
Normalization of floating point
Multiple representations + 0.01 x 22 = 1.0 + 0.10
x 21 = 1.0 + 1.00 x 20 = 1.0
Normalized representation + 0.01 x 22 = 1.0 + 0.10
x 21 = 1.0 + 1.00 x 20 = 1.0
Normalized representation + (1.)000 x 20 1 is omitted
Normalized representation + (1.)000 x 20 there's room for an
extra digit!
Excess-127 representation -127 → 0 -126 → +1 … -1
→ +126 0 → +127
#include <float.h> FLT_MIN, FLT_MAX, ... #include <math.h> M_PI, M_E, NAN,
INFINITY, ...
Why no exact representation for 0.1?
FLOATING POINT REAL NUMBERS is used to represent
FLOATING POINT RATIONAL NUMBERS denotes a (finite) subset of
0.1 cannot be expressed as a power of 2 +
??? x 2??
+ 00 x 20 1 It's also a matter of
precision
+ 01 x 20 1 1.25 It's also a matter
of precision
+ 10 x 20 1 1.25 1.5 It's also a
matter of precision
+ 11 x 20 1 1.25 1.5 1.75 It's also
a matter of precision
+ 11 x 20 π/2 It's also a matter of
precision
+ 11 x 20 π/2 It's also a matter of
precision
+ 00 x 21 1 1.25 1.5 1.75 2.0 Not
just a matter of precision or basis...
+ 01 x 21 1 1.25 1.5 1.75 2.0 2.5
Not just a matter of precision or basis...
+ 10 x 21 1 1.25 1.5 1.75 2.0 2.5
3.0 Not just a matter of precision or basis...
Like death and taxes rounding errors are a fact of
life. http://wiki.octave.org/FAQ
+ 110 x 21 Operands that differ greatly + 100
x 2-2
+ 110000 x 21 Operands that differ greatly + 000101
x 21
+ 110000 x 21 Operands that differ greatly + 000101
x 21 = 110
None
Operands that are really close + 111 x 21 -
110 x 21 = 001 x 21
Operands that are really close + 111 x 21 -
110 x 21 = 100 x 2-2
None
Fixed point representation + 100.001010 = 22 + 2-3+ 2-5
= 4.15625
POINT WHAT'S THE WITH FLOATING
FP ARITHMETIC IS FAST Embedded in HW.
Single precision up to ~10+38. FP REPRESENTS A WIDE RANGE
HE APPROVES FP
Anyway, errors still there.
Okay, what about increasing the number of digits use decimal
representations estimating errors think before you type
More digits, please! double (52 significant bits) long double (112
significant bits) arbitrary precision * * language support needed
Use decimal representations! decimal (C# only) BigDecimal (Java only) std::decimal
(C++, coming soon)* * after IEEE-754 2008
Estimate the error of your algo rel_err = fabs(f –
fp) / f
Use float to represent time float time; while (true) time
+= 0.20;
Use float to represent time float time; while (true) time
+= 0.20; This is BAD. And you should feel BAD.
Compare float numbers (a == b)
Compare float numbers (a == b) fabs(a -b) <= FLT_EPSILON
Compare float numbers (a == b) fabs(a -b) <= FLT_EPSILON
fabs(a - b) <= max(fabs(a),fabs(b)) * pc
There is no silver bullet.
Use libraries (when available).
Vector addition (naive) float t[SIZE]; float result; for (i =
0; i < SIZE; ++i) result += t[i];
RESCUE GNU GSL TO THE
None
that's all folks! @lorisfichera – https://kid-a.github.com References and source code
available at https://github.com/kid-a/floating-point-seminar Credits Font: Yanone Kaffeesatz (http://www.yanone.de/typedesign/kaffeesatz/)