Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Floating Point 101
Search
kida
February 06, 2013
Programming
7
310
Floating Point 101
A very very basic introduction to FP.
With some inaccuracies.
kida
February 06, 2013
Tweet
Share
More Decks by kida
See All by kida
Cognitive Supervision for Laser Phonomicrosurgery
kida
0
44
Towards Cognitive Supervision in robot-assisted surgery
kida
0
190
Other Decks in Programming
See All in Programming
Developer Joy - The New Paradigm
hollycummins
1
250
『毎日の移動』を支えるGoバックエンド内製開発
yutautsugi
2
260
大規模アプリのDIフレームワーク刷新戦略 ~過去最大規模の並行開発を止めずにアプリ全体に導入するまで~
mot_techtalk
1
470
組込みだけじゃない!TinyGo で始める無料クラウド開発入門
otakakot
1
330
Claude CodeによるAI駆動開発の実践 〜そこから見えてきたこれからのプログラミング〜
iriikeita
0
310
開発生産性を上げるための生成AI活用術
starfish719
3
1.5k
TFLintカスタムプラグインで始める Terraformコード品質管理
bells17
2
330
タスクの特性や不確実性に応じた最適な作業スタイルの選択(ペアプロ・モブプロ・ソロプロ)と実践 / Optimal Work Style Selection: Pair, Mob, or Solo Programming.
honyanya
3
180
Go言語はstack overflowの夢を見るか?
logica0419
0
490
アメ車でサンノゼを走ってきたよ!
s_shimotori
0
230
Swift Concurrency - 状態監視の罠
objectiveaudio
2
550
What's new in Spring Modulith?
olivergierke
1
160
Featured
See All Featured
Docker and Python
trallard
46
3.6k
The Language of Interfaces
destraynor
162
25k
Cheating the UX When There Is Nothing More to Optimize - PixelPioneers
stephaniewalter
285
14k
Six Lessons from altMBA
skipperchong
29
4k
Git: the NoSQL Database
bkeepers
PRO
431
66k
Being A Developer After 40
akosma
91
590k
StorybookのUI Testing Handbookを読んだ
zakiyama
31
6.2k
Become a Pro
speakerdeck
PRO
29
5.6k
Designing for humans not robots
tammielis
254
26k
KATA
mclloyd
PRO
32
15k
Performance Is Good for Brains [We Love Speed 2024]
tammyeverts
12
1.2k
Visualization
eitanlees
149
16k
Transcript
FLOATING 101 POINT
FLOATING 100.999998 POINT
engineers we are
researchers we are
3.14159265358979 3238462643383279 5028841971693993 7510582097494459 2307816406286208 NUMBERS WE PLAY WITH ALL
DAY LONG
well, sometimes even at night. (yawn).
So, what is a floating point?
A floating point is ± D 1 .D 2 D
3 ···D n x Be
A floating point is sign ± D 1 .D 2
D 3 ···D n x Be
A floating point is significand ± D 1 .D 2
D 3 ···D n x Be
A floating point is base ± D 1 .D 2
D 3 ···D n x Be
A floating point is exponent ± D 1 .D 2
D 3 ···D n x Be
A floating point represents ± (D 1 + D 2
* B-1 + D 3 * B-2 + … + D n * B(n-1)) * Be
For example + 3.14 x 100 = (3 + 1*0.1
+ 4*0.01)*1 = 3.14
The point can float ! + 3.14 x 10-1 =
0.314
The point can float ! + 3.14 x 10+1 =
31.4
What if B = 2 ? + 1.00 x 2+2
= 4.0
Like machines do. http://grouper.ieee.org/groups/754/
Normalization of floating point
Multiple representations + 0.01 x 22 = 1.0 + 0.10
x 21 = 1.0 + 1.00 x 20 = 1.0
Normalized representation + 0.01 x 22 = 1.0 + 0.10
x 21 = 1.0 + 1.00 x 20 = 1.0
Normalized representation + (1.)000 x 20 1 is omitted
Normalized representation + (1.)000 x 20 there's room for an
extra digit!
Excess-127 representation -127 → 0 -126 → +1 … -1
→ +126 0 → +127
#include <float.h> FLT_MIN, FLT_MAX, ... #include <math.h> M_PI, M_E, NAN,
INFINITY, ...
Why no exact representation for 0.1?
FLOATING POINT REAL NUMBERS is used to represent
FLOATING POINT RATIONAL NUMBERS denotes a (finite) subset of
0.1 cannot be expressed as a power of 2 +
??? x 2??
+ 00 x 20 1 It's also a matter of
precision
+ 01 x 20 1 1.25 It's also a matter
of precision
+ 10 x 20 1 1.25 1.5 It's also a
matter of precision
+ 11 x 20 1 1.25 1.5 1.75 It's also
a matter of precision
+ 11 x 20 π/2 It's also a matter of
precision
+ 11 x 20 π/2 It's also a matter of
precision
+ 00 x 21 1 1.25 1.5 1.75 2.0 Not
just a matter of precision or basis...
+ 01 x 21 1 1.25 1.5 1.75 2.0 2.5
Not just a matter of precision or basis...
+ 10 x 21 1 1.25 1.5 1.75 2.0 2.5
3.0 Not just a matter of precision or basis...
Like death and taxes rounding errors are a fact of
life. http://wiki.octave.org/FAQ
+ 110 x 21 Operands that differ greatly + 100
x 2-2
+ 110000 x 21 Operands that differ greatly + 000101
x 21
+ 110000 x 21 Operands that differ greatly + 000101
x 21 = 110
None
Operands that are really close + 111 x 21 -
110 x 21 = 001 x 21
Operands that are really close + 111 x 21 -
110 x 21 = 100 x 2-2
None
Fixed point representation + 100.001010 = 22 + 2-3+ 2-5
= 4.15625
POINT WHAT'S THE WITH FLOATING
FP ARITHMETIC IS FAST Embedded in HW.
Single precision up to ~10+38. FP REPRESENTS A WIDE RANGE
HE APPROVES FP
Anyway, errors still there.
Okay, what about increasing the number of digits use decimal
representations estimating errors think before you type
More digits, please! double (52 significant bits) long double (112
significant bits) arbitrary precision * * language support needed
Use decimal representations! decimal (C# only) BigDecimal (Java only) std::decimal
(C++, coming soon)* * after IEEE-754 2008
Estimate the error of your algo rel_err = fabs(f –
fp) / f
Use float to represent time float time; while (true) time
+= 0.20;
Use float to represent time float time; while (true) time
+= 0.20; This is BAD. And you should feel BAD.
Compare float numbers (a == b)
Compare float numbers (a == b) fabs(a -b) <= FLT_EPSILON
Compare float numbers (a == b) fabs(a -b) <= FLT_EPSILON
fabs(a - b) <= max(fabs(a),fabs(b)) * pc
There is no silver bullet.
Use libraries (when available).
Vector addition (naive) float t[SIZE]; float result; for (i =
0; i < SIZE; ++i) result += t[i];
RESCUE GNU GSL TO THE
None
that's all folks! @lorisfichera – https://kid-a.github.com References and source code
available at https://github.com/kid-a/floating-point-seminar Credits Font: Yanone Kaffeesatz (http://www.yanone.de/typedesign/kaffeesatz/)