Upgrade to PRO for Only $50/Year—Limited-Time Offer! 🔥
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Floating Point 101
Search
kida
February 06, 2013
Programming
7
310
Floating Point 101
A very very basic introduction to FP.
With some inaccuracies.
kida
February 06, 2013
Tweet
Share
More Decks by kida
See All by kida
Cognitive Supervision for Laser Phonomicrosurgery
kida
0
51
Towards Cognitive Supervision in robot-assisted surgery
kida
0
190
Other Decks in Programming
See All in Programming
LLM Çağında Backend Olmak: 10 Milyon Prompt'u Milisaniyede Sorgulamak
selcukusta
0
120
CSC509 Lecture 14
javiergs
PRO
0
220
ゲームの物理 剛体編
fadis
0
340
S3 VectorsとStrands Agentsを利用したAgentic RAGシステムの構築
tosuri13
6
310
非同期処理の迷宮を抜ける: 初学者がつまづく構造的な原因
pd1xx
1
710
堅牢なフロントエンドテスト基盤を構築するために行った取り組み
shogo4131
8
2.3k
宅宅自以為的浪漫:跟 AI 一起為自己辦的研討會寫一個售票系統
eddie
0
500
tparseでgo testの出力を見やすくする
utgwkk
2
210
認証・認可の基本を学ぼう後編
kouyuume
0
190
著者と進める!『AIと個人開発したくなったらまずCursorで要件定義だ!』
yasunacoffee
0
130
組み合わせ爆発にのまれない - 責務分割 x テスト
halhorn
1
150
Microservices Platforms: When Team Topologies Meets Microservices Patterns
cer
PRO
1
1k
Featured
See All Featured
jQuery: Nuts, Bolts and Bling
dougneiner
65
8.2k
[RailsConf 2023] Rails as a piece of cake
palkan
58
6.2k
How to train your dragon (web standard)
notwaldorf
97
6.4k
Evolution of real-time – Irina Nazarova, EuRuKo, 2024
irinanazarova
9
1.1k
How To Stay Up To Date on Web Technology
chriscoyier
791
250k
Designing for humans not robots
tammielis
254
26k
GraphQLとの向き合い方2022年版
quramy
50
14k
Building a Scalable Design System with Sketch
lauravandoore
463
34k
Performance Is Good for Brains [We Love Speed 2024]
tammyeverts
12
1.3k
It's Worth the Effort
3n
187
29k
The Straight Up "How To Draw Better" Workshop
denniskardys
239
140k
Practical Tips for Bootstrapping Information Extraction Pipelines
honnibal
25
1.6k
Transcript
FLOATING 101 POINT
FLOATING 100.999998 POINT
engineers we are
researchers we are
3.14159265358979 3238462643383279 5028841971693993 7510582097494459 2307816406286208 NUMBERS WE PLAY WITH ALL
DAY LONG
well, sometimes even at night. (yawn).
So, what is a floating point?
A floating point is ± D 1 .D 2 D
3 ···D n x Be
A floating point is sign ± D 1 .D 2
D 3 ···D n x Be
A floating point is significand ± D 1 .D 2
D 3 ···D n x Be
A floating point is base ± D 1 .D 2
D 3 ···D n x Be
A floating point is exponent ± D 1 .D 2
D 3 ···D n x Be
A floating point represents ± (D 1 + D 2
* B-1 + D 3 * B-2 + … + D n * B(n-1)) * Be
For example + 3.14 x 100 = (3 + 1*0.1
+ 4*0.01)*1 = 3.14
The point can float ! + 3.14 x 10-1 =
0.314
The point can float ! + 3.14 x 10+1 =
31.4
What if B = 2 ? + 1.00 x 2+2
= 4.0
Like machines do. http://grouper.ieee.org/groups/754/
Normalization of floating point
Multiple representations + 0.01 x 22 = 1.0 + 0.10
x 21 = 1.0 + 1.00 x 20 = 1.0
Normalized representation + 0.01 x 22 = 1.0 + 0.10
x 21 = 1.0 + 1.00 x 20 = 1.0
Normalized representation + (1.)000 x 20 1 is omitted
Normalized representation + (1.)000 x 20 there's room for an
extra digit!
Excess-127 representation -127 → 0 -126 → +1 … -1
→ +126 0 → +127
#include <float.h> FLT_MIN, FLT_MAX, ... #include <math.h> M_PI, M_E, NAN,
INFINITY, ...
Why no exact representation for 0.1?
FLOATING POINT REAL NUMBERS is used to represent
FLOATING POINT RATIONAL NUMBERS denotes a (finite) subset of
0.1 cannot be expressed as a power of 2 +
??? x 2??
+ 00 x 20 1 It's also a matter of
precision
+ 01 x 20 1 1.25 It's also a matter
of precision
+ 10 x 20 1 1.25 1.5 It's also a
matter of precision
+ 11 x 20 1 1.25 1.5 1.75 It's also
a matter of precision
+ 11 x 20 π/2 It's also a matter of
precision
+ 11 x 20 π/2 It's also a matter of
precision
+ 00 x 21 1 1.25 1.5 1.75 2.0 Not
just a matter of precision or basis...
+ 01 x 21 1 1.25 1.5 1.75 2.0 2.5
Not just a matter of precision or basis...
+ 10 x 21 1 1.25 1.5 1.75 2.0 2.5
3.0 Not just a matter of precision or basis...
Like death and taxes rounding errors are a fact of
life. http://wiki.octave.org/FAQ
+ 110 x 21 Operands that differ greatly + 100
x 2-2
+ 110000 x 21 Operands that differ greatly + 000101
x 21
+ 110000 x 21 Operands that differ greatly + 000101
x 21 = 110
None
Operands that are really close + 111 x 21 -
110 x 21 = 001 x 21
Operands that are really close + 111 x 21 -
110 x 21 = 100 x 2-2
None
Fixed point representation + 100.001010 = 22 + 2-3+ 2-5
= 4.15625
POINT WHAT'S THE WITH FLOATING
FP ARITHMETIC IS FAST Embedded in HW.
Single precision up to ~10+38. FP REPRESENTS A WIDE RANGE
HE APPROVES FP
Anyway, errors still there.
Okay, what about increasing the number of digits use decimal
representations estimating errors think before you type
More digits, please! double (52 significant bits) long double (112
significant bits) arbitrary precision * * language support needed
Use decimal representations! decimal (C# only) BigDecimal (Java only) std::decimal
(C++, coming soon)* * after IEEE-754 2008
Estimate the error of your algo rel_err = fabs(f –
fp) / f
Use float to represent time float time; while (true) time
+= 0.20;
Use float to represent time float time; while (true) time
+= 0.20; This is BAD. And you should feel BAD.
Compare float numbers (a == b)
Compare float numbers (a == b) fabs(a -b) <= FLT_EPSILON
Compare float numbers (a == b) fabs(a -b) <= FLT_EPSILON
fabs(a - b) <= max(fabs(a),fabs(b)) * pc
There is no silver bullet.
Use libraries (when available).
Vector addition (naive) float t[SIZE]; float result; for (i =
0; i < SIZE; ++i) result += t[i];
RESCUE GNU GSL TO THE
None
that's all folks! @lorisfichera – https://kid-a.github.com References and source code
available at https://github.com/kid-a/floating-point-seminar Credits Font: Yanone Kaffeesatz (http://www.yanone.de/typedesign/kaffeesatz/)